2017-01-14 21:09:57 +00:00

920 lines
28 KiB
C

#include "../copyright"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "snes9x.h"
#include "memmap.h"
#include "ppu.h"
#include "cpuexec.h"
#include "missing.h"
#include "dma.h"
#include "apu.h"
#include "gfx.h"
#include "sa1.h"
#include "spc7110.h"
#ifdef SDD1_DECOMP
#include "sdd1emu.h"
#endif
#ifdef SDD1_DECOMP
static uint8_t sdd1_decode_buffer[0x10000];
#endif
extern int HDMA_ModeByteCounts [8];
extern uint8_t* HDMAMemPointers [8];
extern uint8_t* HDMABasePointers [8];
// #define SETA010_HDMA_FROM_CART
#ifdef SETA010_HDMA_FROM_CART
uint32_t HDMARawPointers[8]; // Cart address space pointer
#endif
#if defined(__linux__) || defined(__WIN32__)
static int S9xCompareSDD1IndexEntries(const void* p1, const void* p2)
{
return (*(uint32_t*) p1 - * (uint32_t*) p2);
}
#endif
/**********************************************************************************************/
/* S9xDoDMA() */
/* This function preforms the general dma transfer */
/**********************************************************************************************/
void S9xDoDMA(uint8_t Channel)
{
uint8_t Work;
if (Channel > 7 || CPU.InDMA)
return;
CPU.InDMA = true;
bool in_sa1_dma = false;
uint8_t* in_sdd1_dma = NULL;
uint8_t* spc7110_dma = NULL;
bool s7_wrap = false;
SDMA* d = &DMA[Channel];
int count = d->TransferBytes;
// Prepare for custom chip DMA
if (count == 0)
count = 0x10000;
int inc = d->AAddressFixed ? 0 : (!d->AAddressDecrement ? 1 : -1);
if ((d->ABank == 0x7E || d->ABank == 0x7F) && d->BAddress == 0x80)
{
d->AAddress += d->TransferBytes;
//does an invalid DMA actually take time?
// I'd say yes, since 'invalid' is probably just the WRAM chip
// not being able to read and write itself at the same time
CPU.Cycles += (d->TransferBytes + 1) * SLOW_ONE_CYCLE;
goto update_address;
}
switch (d->BAddress)
{
case 0x18:
case 0x19:
if (IPPU.RenderThisFrame)
FLUSH_REDRAW();
break;
}
// S-DD1
#ifdef SDD1_DECOMP
if (Settings.SDD1)
{
if (d->AAddressFixed && Memory.FillRAM [0x4801] > 0)
{
// XXX: Should probably verify that we're DMAing from ROM?
// And somewhere we should make sure we're not running across a mapping boundary too.
inc = !d->AAddressDecrement ? 1 : -1;
uint8_t *in_ptr = GetBasePointer(((d->ABank << 16) | d->AAddress));
if (in_ptr)
{
in_ptr += d->AAddress;
SDD1_decompress(sdd1_decode_buffer, in_ptr, d->TransferBytes);
}
in_sdd1_dma = sdd1_decode_buffer;
}
Memory.FillRAM [0x4801] = 0;
}
#endif
if (Settings.SPC7110 && (d->AAddress == 0x4800 || d->ABank == 0x50))
{
uint32_t i, j;
i = (s7r.reg4805 | (s7r.reg4806 << 8));
i *= s7r.AlignBy;
i += s7r.bank50Internal;
i %= DECOMP_BUFFER_SIZE;
j = 0;
if ((i + d->TransferBytes) < DECOMP_BUFFER_SIZE)
spc7110_dma = &s7r.bank50[i];
else
{
spc7110_dma = (uint8_t*)malloc(d->TransferBytes);
j = DECOMP_BUFFER_SIZE - i;
memcpy(spc7110_dma, &s7r.bank50[i], j);
memcpy(&spc7110_dma[j], s7r.bank50, d->TransferBytes - j);
s7_wrap = true;
}
int icount = s7r.reg4809 | (s7r.reg480A << 8);
icount -= d->TransferBytes;
s7r.reg4809 = 0x00ff & icount;
s7r.reg480A = (0xff00 & icount) >> 8;
s7r.bank50Internal += d->TransferBytes;
s7r.bank50Internal %= DECOMP_BUFFER_SIZE;
inc = 1;
d->AAddress -= count;
}
if (d->BAddress == 0x18 && SA1.in_char_dma && (d->ABank & 0xf0) == 0x40)
{
// Perform packed bitmap to PPU character format conversion on the
// data before transmitting it to V-RAM via-DMA.
int num_chars = 1 << ((Memory.FillRAM [0x2231] >> 2) & 7);
int depth = (Memory.FillRAM [0x2231] & 3) == 0 ? 8 :
(Memory.FillRAM [0x2231] & 3) == 1 ? 4 : 2;
int bytes_per_char = 8 * depth;
int bytes_per_line = depth * num_chars;
int char_line_bytes = bytes_per_char * num_chars;
uint32_t addr = (d->AAddress / char_line_bytes) * char_line_bytes;
uint8_t* base = GetBasePointer((d->ABank << 16) + addr) + addr;
uint8_t* buffer = &Memory.ROM [MAX_ROM_SIZE - 0x10000];
uint8_t* p = buffer;
uint32_t inc = char_line_bytes - (d->AAddress % char_line_bytes);
uint32_t char_count = inc / bytes_per_char;
in_sa1_dma = true;
//printf ("%08x,", base); fflush (stdout);
//printf ("depth = %d, count = %d, bytes_per_char = %d, bytes_per_line = %d, num_chars = %d, char_line_bytes = %d\n",
//depth, count, bytes_per_char, bytes_per_line, num_chars, char_line_bytes);
int i;
switch (depth)
{
case 2:
for (i = 0; i < count; i += inc, base += char_line_bytes,
inc = char_line_bytes, char_count = num_chars)
{
uint32_t j;
uint8_t* line = base + (num_chars - char_count) * 2;
for (j = 0; j < char_count && p - buffer < count;
j++, line += 2)
{
int b, l;
uint8_t* q = line;
for (l = 0; l < 8; l++, q += bytes_per_line)
{
for (b = 0; b < 2; b++)
{
uint8_t r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 2) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 3) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 6) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 7) & 1);
}
p += 2;
}
}
}
break;
case 4:
for (i = 0; i < count; i += inc, base += char_line_bytes,
inc = char_line_bytes, char_count = num_chars)
{
uint32_t j;
uint8_t* line = base + (num_chars - char_count) * 4;
for (j = 0; j < char_count && p - buffer < count;
j++, line += 4)
{
uint8_t* q = line;
int b, l;
for (l = 0; l < 8; l++, q += bytes_per_line)
{
for (b = 0; b < 4; b++)
{
uint8_t r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 6) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 7) & 1);
}
p += 2;
}
p += 32 - 16;
}
}
break;
case 8:
for (i = 0; i < count; i += inc, base += char_line_bytes,
inc = char_line_bytes, char_count = num_chars)
{
uint8_t* line = base + (num_chars - char_count) * 8;
uint32_t j;
for (j = 0; j < char_count && p - buffer < count;
j++, line += 8)
{
uint8_t* q = line;
int b, l;
for (l = 0; l < 8; l++, q += bytes_per_line)
{
for (b = 0; b < 8; b++)
{
uint8_t r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1);
*(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1);
*(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1);
*(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1);
}
p += 2;
}
p += 64 - 16;
}
}
break;
}
}
if (!d->TransferDirection)
{
/* XXX: DMA is potentially broken here for cases where we DMA across
* XXX: memmap boundries. A possible solution would be to re-call
* XXX: GetBasePointer whenever we cross a boundry, and when
* XXX: GetBasePointer returns (0) to take the 'slow path' and use
* XXX: S9xGetByte instead of *base. GetBasePointer() would want to
* XXX: return (0) for MAP_PPU and whatever else is a register range
* XXX: rather than a RAM/ROM block, and we'd want to detect MAP_PPU
* XXX: (or specifically, Address Bus B addresses $2100-$21FF in
* XXX: banks $00-$3F) specially and treat it as MAP_NONE (since
* XXX: PPU->PPU transfers don't work).
*/
//reflects extra cycle used by DMA
CPU.Cycles += SLOW_ONE_CYCLE * (count + 1);
uint8_t* base = GetBasePointer((d->ABank << 16) + d->AAddress);
uint16_t p = d->AAddress;
if (!base)
base = Memory.ROM;
if (in_sa1_dma)
{
base = &Memory.ROM [MAX_ROM_SIZE - 0x10000];
p = 0;
}
if (in_sdd1_dma)
{
base = in_sdd1_dma;
p = 0;
}
if (spc7110_dma)
{
base = spc7110_dma;
p = 0;
}
if (inc > 0)
d->AAddress += count;
else if (inc < 0)
d->AAddress -= count;
if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6)
{
switch (d->BAddress)
{
case 0x04:
do
{
Work = *(base + p);
REGISTER_2104(Work);
p += inc;
}
while (--count > 0);
break;
case 0x18:
#ifndef CORRECT_VRAM_READS
IPPU.FirstVRAMRead = true;
#endif
if (!PPU.VMA.FullGraphicCount)
{
do
{
Work = *(base + p);
REGISTER_2118_linear(Work);
p += inc;
}
while (--count > 0);
}
else
{
do
{
Work = *(base + p);
REGISTER_2118_tile(Work);
p += inc;
}
while (--count > 0);
}
break;
case 0x19:
#ifndef CORRECT_VRAM_READS
IPPU.FirstVRAMRead = true;
#endif
if (!PPU.VMA.FullGraphicCount)
{
do
{
Work = *(base + p);
REGISTER_2119_linear(Work);
p += inc;
}
while (--count > 0);
}
else
{
do
{
Work = *(base + p);
REGISTER_2119_tile(Work);
p += inc;
}
while (--count > 0);
}
break;
case 0x22:
do
{
Work = *(base + p);
REGISTER_2122(Work);
p += inc;
}
while (--count > 0);
break;
case 0x80:
do
{
Work = *(base + p);
REGISTER_2180(Work);
p += inc;
}
while (--count > 0);
break;
default:
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
}
while (--count > 0);
break;
}
}
else if (d->TransferMode == 1 || d->TransferMode == 5)
{
if (d->BAddress == 0x18)
{
// Write to V-RAM
#ifndef CORRECT_VRAM_READS
IPPU.FirstVRAMRead = true;
#endif
if (!PPU.VMA.FullGraphicCount)
{
while (count > 1)
{
Work = *(base + p);
REGISTER_2118_linear(Work);
p += inc;
Work = *(base + p);
REGISTER_2119_linear(Work);
p += inc;
count -= 2;
}
if (count == 1)
{
Work = *(base + p);
REGISTER_2118_linear(Work);
p += inc;
}
}
else
{
while (count > 1)
{
Work = *(base + p);
REGISTER_2118_tile(Work);
p += inc;
Work = *(base + p);
REGISTER_2119_tile(Work);
p += inc;
count -= 2;
}
if (count == 1)
{
Work = *(base + p);
REGISTER_2118_tile(Work);
p += inc;
}
}
}
else
{
// DMA mode 1 general case
while (count > 1)
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
count -= 2;
}
if (count == 1)
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
}
}
}
else if (d->TransferMode == 3 || d->TransferMode == 7)
{
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
if (count <= 1)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
if (count <= 2)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
if (count <= 3)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
count -= 4;
}
while (count > 0);
}
else if (d->TransferMode == 4)
{
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
if (count <= 1)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
if (count <= 2)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2102 + d->BAddress);
p += inc;
if (count <= 3)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2103 + d->BAddress);
p += inc;
count -= 4;
}
while (count > 0);
}
}
else
{
/* XXX: DMA is potentially broken here for cases where the dest is
* XXX: in the Address Bus B range. Note that this bad dest may not
* XXX: cover the whole range of the DMA though, if we transfer
* XXX: 65536 bytes only 256 of them may be Address Bus B.
*/
do
{
switch (d->TransferMode)
{
case 0:
case 2:
case 6:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
--count;
break;
case 1:
case 5:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
count--;
break;
case 3:
case 7:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
count--;
break;
case 4:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2102 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2103 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
count--;
break;
default:
count = 0;
break;
}
}
while (count);
}
#ifndef USE_BLARGG_APU
#ifdef SPC700_C
IAPU.APUExecuting = Settings.APUEnabled;
APU_EXECUTE();
#endif
#endif
if (Settings.SuperFX)
while (CPU.Cycles > CPU.NextEvent)
S9xDoHBlankProcessing_SFX();
else /* if (!Settings.SuperFX) */
while (CPU.Cycles > CPU.NextEvent)
S9xDoHBlankProcessing_NoSFX();
if (Settings.SPC7110 && spc7110_dma)
{
if (spc7110_dma && s7_wrap)
free(spc7110_dma);
}
update_address:
// Super Punch-Out requires that the A-BUS address be updated after the
// DMA transfer.
Memory.FillRAM[0x4302 + (Channel << 4)] = (uint8_t) d->AAddress;
Memory.FillRAM[0x4303 + (Channel << 4)] = d->AAddress >> 8;
// Secret of the Mana requires that the DMA bytes transfer count be set to
// zero when DMA has completed.
Memory.FillRAM [0x4305 + (Channel << 4)] = 0;
Memory.FillRAM [0x4306 + (Channel << 4)] = 0;
DMA[Channel].IndirectAddress = 0;
d->TransferBytes = 0;
CPU.InDMA = false;
}
void S9xStartHDMA()
{
if (Settings.DisableHDMA)
IPPU.HDMA = 0;
else
missing.hdma_this_frame = IPPU.HDMA = Memory.FillRAM [0x420c];
//per anomie timing post
if (IPPU.HDMA != 0)
CPU.Cycles += ONE_CYCLE * 3;
IPPU.HDMAStarted = true;
uint8_t i;
for (i = 0; i < 8; i++)
{
if (IPPU.HDMA & (1 << i))
{
CPU.Cycles += SLOW_ONE_CYCLE ;
DMA [i].LineCount = 0;
DMA [i].FirstLine = true;
DMA [i].Address = DMA [i].AAddress;
if (DMA[i].HDMAIndirectAddressing)
CPU.Cycles += (SLOW_ONE_CYCLE << 2);
}
HDMAMemPointers [i] = NULL;
#ifdef SETA010_HDMA_FROM_CART
HDMARawPointers [i] = 0;
#endif
}
}
uint8_t S9xDoHDMA(uint8_t byte)
{
SDMA* p = &DMA [0];
int d = 0;
CPU.InDMA = true;
CPU.Cycles += ONE_CYCLE * 3;
uint8_t mask;
for (mask = 1; mask; mask <<= 1, p++, d++)
{
if (byte & mask)
{
if (!p->LineCount)
{
//remember, InDMA is set.
//Get/Set incur no charges!
CPU.Cycles += SLOW_ONE_CYCLE;
uint8_t line = S9xGetByte((p->ABank << 16) + p->Address);
if (line == 0x80)
{
p->Repeat = true;
p->LineCount = 128;
}
else
{
p->Repeat = !(line & 0x80);
p->LineCount = line & 0x7f;
}
// Disable H-DMA'ing into V-RAM (register 2118) for Hook
/* XXX: instead of p->BAddress == 0x18, make S9xSetPPU fail
* XXX: writes to $2118/9 when appropriate
*/
#ifdef SETA010_HDMA_FROM_CART
if (!p->LineCount)
#else
if (!p->LineCount || p->BAddress == 0x18)
#endif
{
byte &= ~mask;
p->IndirectAddress += HDMAMemPointers [d] - HDMABasePointers [d];
Memory.FillRAM [0x4305 + (d << 4)] = (uint8_t) p->IndirectAddress;
Memory.FillRAM [0x4306 + (d << 4)] = p->IndirectAddress >> 8;
continue;
}
p->Address++;
p->FirstLine = 1;
if (p->HDMAIndirectAddressing)
{
p->IndirectBank = Memory.FillRAM [0x4307 + (d << 4)];
//again, no cycle charges while InDMA is set!
CPU.Cycles += SLOW_ONE_CYCLE << 2;
p->IndirectAddress = S9xGetWord((p->ABank << 16) + p->Address);
p->Address += 2;
}
else
{
p->IndirectBank = p->ABank;
p->IndirectAddress = p->Address;
}
HDMABasePointers [d] = HDMAMemPointers [d] =
S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress);
#ifdef SETA010_HDMA_FROM_CART
HDMARawPointers [d] = (p->IndirectBank << 16) + p->IndirectAddress;
#endif
}
else
CPU.Cycles += SLOW_ONE_CYCLE;
if (!HDMAMemPointers [d])
{
if (!p->HDMAIndirectAddressing)
{
p->IndirectBank = p->ABank;
p->IndirectAddress = p->Address;
}
#ifdef SETA010_HDMA_FROM_CART
HDMARawPointers [d] = (p->IndirectBank << 16) + p->IndirectAddress;
#endif
if (!(HDMABasePointers [d] = HDMAMemPointers [d] =
S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress)))
{
/* XXX: Instead of this, goto a slow path that first
* XXX: verifies src!=Address Bus B, then uses
* XXX: S9xGetByte(). Or make S9xGetByte return OpenBus
* XXX: (probably?) for Address Bus B while inDMA.
*/
byte &= ~mask;
continue;
}
// Uncommenting the following line breaks Punchout - it starts
// H-DMA during the frame.
//p->FirstLine = true;
}
if (p->Repeat && !p->FirstLine)
{
p->LineCount--;
continue;
}
if (p->BAddress == 0x04)
{
if (SNESGameFixes.Uniracers)
{
PPU.OAMAddr = 0x10c;
PPU.OAMFlip = 0;
}
}
switch (p->TransferMode)
{
case 0:
CPU.Cycles += SLOW_ONE_CYCLE;
#ifdef SETA010_HDMA_FROM_CART
S9xSetPPU(S9xGetByte(HDMARawPointers [d]++), 0x2100 + p->BAddress);
HDMAMemPointers [d]++;
#else
S9xSetPPU(*HDMAMemPointers [d]++, 0x2100 + p->BAddress);
#endif
break;
case 5:
CPU.Cycles += 2 * SLOW_ONE_CYCLE;
#ifdef SETA010_HDMA_FROM_CART
S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2101 + p->BAddress);
HDMARawPointers [d] += 2;
#else
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
#endif
HDMAMemPointers [d] += 2;
/* fall through */
case 1:
CPU.Cycles += 2 * SLOW_ONE_CYCLE;
#ifdef SETA010_HDMA_FROM_CART
S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2101 + p->BAddress);
HDMARawPointers [d] += 2;
#else
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
#endif
HDMAMemPointers [d] += 2;
break;
case 2:
case 6:
CPU.Cycles += 2 * SLOW_ONE_CYCLE;
#ifdef SETA010_HDMA_FROM_CART
S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2100 + p->BAddress);
HDMARawPointers [d] += 2;
#else
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress);
#endif
HDMAMemPointers [d] += 2;
break;
case 3:
case 7:
CPU.Cycles += 4 * SLOW_ONE_CYCLE;
#ifdef SETA010_HDMA_FROM_CART
S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2100 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 2), 0x2101 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 3), 0x2101 + p->BAddress);
HDMARawPointers [d] += 4;
#else
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2101 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2101 + p->BAddress);
#endif
HDMAMemPointers [d] += 4;
break;
case 4:
CPU.Cycles += 4 * SLOW_ONE_CYCLE;
#ifdef SETA010_HDMA_FROM_CART
S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2101 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 2), 0x2102 + p->BAddress);
S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 3), 0x2103 + p->BAddress);
HDMARawPointers [d] += 4;
#else
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2102 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2103 + p->BAddress);
#endif
HDMAMemPointers [d] += 4;
break;
}
if (!p->HDMAIndirectAddressing)
p->Address += HDMA_ModeByteCounts [p->TransferMode];
p->IndirectAddress += HDMA_ModeByteCounts [p->TransferMode];
/* XXX: Check for p->IndirectAddress crossing a mapping boundry,
* XXX: and invalidate HDMAMemPointers[d]
*/
p->FirstLine = false;
p->LineCount--;
}
}
CPU.InDMA = false;
return (byte);
}
void S9xResetDMA()
{
int c, d;
for (d = 0; d < 8; d++)
{
DMA [d].TransferDirection = false;
DMA [d].HDMAIndirectAddressing = false;
DMA [d].AAddressFixed = true;
DMA [d].AAddressDecrement = false;
DMA [d].TransferMode = 0xff;
DMA [d].ABank = 0xff;
DMA [d].AAddress = 0xffff;
DMA [d].Address = 0xffff;
DMA [d].BAddress = 0xff;
DMA [d].TransferBytes = 0xffff;
}
for (c = 0x4300; c < 0x4380; c += 0x10)
{
for (d = c; d < c + 12; d++)
Memory.FillRAM [d] = 0xff;
Memory.FillRAM [c + 0xf] = 0xff;
}
}