mirror of
https://github.com/libretro/snes9x2005.git
synced 2024-11-23 16:29:43 +00:00
253 lines
6.9 KiB
C
253 lines
6.9 KiB
C
#include "../copyright"
|
|
|
|
uint16_t DSP2Op09Word1 = 0;
|
|
uint16_t DSP2Op09Word2 = 0;
|
|
bool DSP2Op05HasLen = false;
|
|
int DSP2Op05Len = 0;
|
|
bool DSP2Op06HasLen = false;
|
|
int DSP2Op06Len = 0;
|
|
uint8_t DSP2Op05Transparent = 0;
|
|
|
|
void DSP2_Op05()
|
|
{
|
|
uint8_t color;
|
|
// Overlay bitmap with transparency.
|
|
// Input:
|
|
//
|
|
// Bitmap 1: i[0] <=> i[size-1]
|
|
// Bitmap 2: i[size] <=> i[2*size-1]
|
|
//
|
|
// Output:
|
|
//
|
|
// Bitmap 3: o[0] <=> o[size-1]
|
|
//
|
|
// Processing:
|
|
//
|
|
// Process all 4-bit pixels (nibbles) in the bitmap
|
|
//
|
|
// if ( BM2_pixel == transparent_color )
|
|
// pixelout = BM1_pixel
|
|
// else
|
|
// pixelout = BM2_pixel
|
|
|
|
// The max size bitmap is limited to 255 because the size parameter is a byte
|
|
// I think size=0 is an error. The behavior of the chip on size=0 is to
|
|
// return the last value written to DR if you read DR on Op05 with
|
|
// size = 0. I don't think it's worth implementing this quirk unless it's
|
|
// proven necessary.
|
|
|
|
int n;
|
|
unsigned char c1;
|
|
unsigned char c2;
|
|
unsigned char* p1 = DSP1.parameters;
|
|
unsigned char* p2 = &DSP1.parameters[DSP2Op05Len];
|
|
unsigned char* p3 = DSP1.output;
|
|
|
|
color = DSP2Op05Transparent & 0x0f;
|
|
|
|
for (n = 0; n < DSP2Op05Len; n++)
|
|
{
|
|
c1 = *p1++;
|
|
c2 = *p2++;
|
|
*p3++ = (((c2 >> 4) == color) ? c1 & 0xf0 : c2 & 0xf0) |
|
|
(((c2 & 0x0f) == color) ? c1 & 0x0f : c2 & 0x0f);
|
|
}
|
|
}
|
|
|
|
void DSP2_Op01()
|
|
{
|
|
// Op01 size is always 32 bytes input and output.
|
|
// The hardware does strange things if you vary the size.
|
|
|
|
int j;
|
|
unsigned char c0, c1, c2, c3;
|
|
unsigned char* p1 = DSP1.parameters;
|
|
unsigned char* p2a = DSP1.output;
|
|
unsigned char* p2b = &DSP1.output[16]; // halfway
|
|
|
|
// Process 8 blocks of 4 bytes each
|
|
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
c0 = *p1++;
|
|
c1 = *p1++;
|
|
c2 = *p1++;
|
|
c3 = *p1++;
|
|
|
|
*p2a++ = (c0 & 0x10) << 3 |
|
|
(c0 & 0x01) << 6 |
|
|
(c1 & 0x10) << 1 |
|
|
(c1 & 0x01) << 4 |
|
|
(c2 & 0x10) >> 1 |
|
|
(c2 & 0x01) << 2 |
|
|
(c3 & 0x10) >> 3 |
|
|
(c3 & 0x01);
|
|
|
|
*p2a++ = (c0 & 0x20) << 2 |
|
|
(c0 & 0x02) << 5 |
|
|
(c1 & 0x20) |
|
|
(c1 & 0x02) << 3 |
|
|
(c2 & 0x20) >> 2 |
|
|
(c2 & 0x02) << 1 |
|
|
(c3 & 0x20) >> 4 |
|
|
(c3 & 0x02) >> 1;
|
|
|
|
*p2b++ = (c0 & 0x40) << 1 |
|
|
(c0 & 0x04) << 4 |
|
|
(c1 & 0x40) >> 1 |
|
|
(c1 & 0x04) << 2 |
|
|
(c2 & 0x40) >> 3 |
|
|
(c2 & 0x04) |
|
|
(c3 & 0x40) >> 5 |
|
|
(c3 & 0x04) >> 2;
|
|
|
|
|
|
*p2b++ = (c0 & 0x80) |
|
|
(c0 & 0x08) << 3 |
|
|
(c1 & 0x80) >> 2 |
|
|
(c1 & 0x08) << 1 |
|
|
(c2 & 0x80) >> 4 |
|
|
(c2 & 0x08) >> 1 |
|
|
(c3 & 0x80) >> 6 |
|
|
(c3 & 0x08) >> 3;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void DSP2_Op06()
|
|
{
|
|
// Input:
|
|
// size
|
|
// bitmap
|
|
|
|
int i, j;
|
|
|
|
for (i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j--)
|
|
DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4);
|
|
}
|
|
|
|
bool DSP2Op0DHasLen = false;
|
|
int DSP2Op0DOutLen = 0;
|
|
int DSP2Op0DInLen = 0;
|
|
|
|
#ifndef DSP2_BIT_ACCURRATE_CODE
|
|
|
|
// Scale bitmap based on input length out output length
|
|
|
|
void DSP2_Op0D()
|
|
{
|
|
// Overload's algorithm - use this unless doing hardware testing
|
|
|
|
// One note: the HW can do odd byte scaling but since we divide
|
|
// by two to get the count of bytes this won't work well for
|
|
// odd byte scaling (in any of the current algorithm implementations).
|
|
// So far I haven't seen Dungeon Master use it.
|
|
// If it does we can adjust the parameters and code to work with it
|
|
|
|
int i;
|
|
int pixel_offset;
|
|
uint8_t pixelarray[512];
|
|
|
|
for (i = 0; i < DSP2Op0DOutLen * 2; i++)
|
|
{
|
|
pixel_offset = (i * DSP2Op0DInLen) / DSP2Op0DOutLen;
|
|
if ((pixel_offset & 1) == 0)
|
|
pixelarray[i] = DSP1.parameters[pixel_offset >> 1] >> 4;
|
|
else
|
|
pixelarray[i] = DSP1.parameters[pixel_offset >> 1] & 0x0f;
|
|
}
|
|
|
|
for (i = 0; i < DSP2Op0DOutLen; i++)
|
|
DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
|
|
}
|
|
|
|
#else
|
|
|
|
void DSP2_Op0D()
|
|
{
|
|
// Bit accurate hardware algorithm - uses fixed point math
|
|
// This should match the DSP2 Op0D output exactly
|
|
// I wouldn't recommend using this unless you're doing hardware debug.
|
|
// In some situations it has small visual artifacts that
|
|
// are not readily apparent on a TV screen but show up clearly
|
|
// on a monitor. Use Overload's scaling instead.
|
|
// This is for hardware verification testing.
|
|
//
|
|
// One note: the HW can do odd byte scaling but since we divide
|
|
// by two to get the count of bytes this won't work well for
|
|
// odd byte scaling (in any of the current algorithm implementations).
|
|
// So far I haven't seen Dungeon Master use it.
|
|
// If it does we can adjust the parameters and code to work with it
|
|
|
|
|
|
uint32_t multiplier; // Any size int >= 32-bits
|
|
uint32_t pixloc; // match size of multiplier
|
|
int i, j;
|
|
uint8_t pixelarray[512];
|
|
|
|
if (DSP2Op0DInLen <= DSP2Op0DOutLen)
|
|
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
|
|
else
|
|
multiplier = (DSP2Op0DInLen << 17) / ((DSP2Op0DOutLen << 1) + 1);
|
|
|
|
pixloc = 0;
|
|
for (i = 0; i < DSP2Op0DOutLen * 2; i++)
|
|
{
|
|
j = pixloc >> 16;
|
|
|
|
if (j & 1)
|
|
pixelarray[i] = DSP1.parameters[j >> 1] & 0x0f;
|
|
else
|
|
pixelarray[i] = (DSP1.parameters[j >> 1] & 0xf0) >> 4;
|
|
|
|
pixloc += multiplier;
|
|
}
|
|
|
|
for (i = 0; i < DSP2Op0DOutLen; i++)
|
|
DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0 // Probably no reason to use this code - it's not quite bit accurate and it doesn't look as good as Overload's algorithm
|
|
|
|
void DSP2_Op0D()
|
|
{
|
|
// Float implementation of Neviksti's algorithm
|
|
// This is the right algorithm to match the DSP2 bits but the precision
|
|
// of the PC float does not match the precision of the fixed point math
|
|
// on the DSP2 causing occasional one off data mismatches (which should
|
|
// be no problem because its just a one pixel difference in a scaled image
|
|
// to be displayed).
|
|
|
|
float multiplier;
|
|
float pixloc;
|
|
int i, j;
|
|
uint8_t pixelarray[512];
|
|
|
|
if (DSP2Op0DInLen <= DSP2Op0DOutLen)
|
|
multiplier = (float) 1.0;
|
|
else
|
|
multiplier = (float)((DSP2Op0DInLen * 2.0) / (DSP2Op0DOutLen * 2.0 + 1.0));
|
|
|
|
pixloc = 0.0;
|
|
for (i = 0; i < DSP2Op0DOutLen * 2; i++)
|
|
{
|
|
// j = (int)(i * multiplier);
|
|
j = (int) pixloc;
|
|
|
|
if (j & 1)
|
|
pixelarray[i] = DSP1.parameters[j >> 1] & 0x0f;
|
|
else
|
|
pixelarray[i] = (DSP1.parameters[j >> 1] & 0xf0) >> 4;
|
|
|
|
pixloc += multiplier; // use an add in the loop instead of multiply to increase loop speed
|
|
}
|
|
|
|
for (i = 0; i < DSP2Op0DOutLen; i++)
|
|
DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
|
|
}
|
|
|
|
#endif
|
|
|