mirror of
https://gitee.com/openharmony/ai_neural_network_runtime
synced 2024-11-23 07:39:54 +00:00
修改README文档,更新支持OH 4.1。
Signed-off-by: weiwei <weiwei17@huawei.com>
This commit is contained in:
parent
433ccc5c65
commit
d28da2179e
@ -49,7 +49,7 @@ In the root directory of the OpenHarmony source code, call the following command
|
||||
|
||||
### API Description
|
||||
|
||||
- [Native API reference](https://gitee.com/openharmony-sig/interface_native_header/tree/master/en/native_sdk/ai)
|
||||
- [Native API reference](https://gitee.com/openharmony/docs/blob/master/en/application-dev/reference/native-apis/_neural_network_runtime.md)
|
||||
- [HDI API reference](https://gitee.com/openharmony/drivers_interface/tree/master/nnrt)
|
||||
|
||||
### How to Use
|
||||
@ -59,5 +59,5 @@ In the root directory of the OpenHarmony source code, call the following command
|
||||
|
||||
## Repositories Involved
|
||||
|
||||
- [**neural_network_runtime**](https://gitee.com/openharmony-sig/neural_network_runtime)
|
||||
- [**neural_network_runtime**](https://gitee.com/openharmony/neural_network_runtime)
|
||||
- [third_party_mindspore](https://gitee.com/openharmony/third_party_mindspore)
|
||||
|
12
README_zh.md
12
README_zh.md
@ -11,7 +11,7 @@ Neural Network Runtime与MindSpore Lite使用MindIR统一模型的中间表达
|
||||
通常,AI应用、AI推理引擎、Neural Network Runtime处在同一个进程下,芯片驱动运行在另一个进程下,两者之间需要借助进程间通信(IPC)传递模型和计算数据。Neural Network Runtime根据HDI接口实现了HDI客户端,相应的,芯片厂商需要根据HDI接口实现并开放HDI服务。
|
||||
|
||||
**图1** Neural Network Runtime架构图
|
||||
!["Neural Network Runtime架构图"](./figures/neural_network_runtime_intro.png)
|
||||
!["Neural Network Runtime架构图"](./figures/zh-cn_neural_network_runtime_intro.jpg)
|
||||
|
||||
## 目录
|
||||
|
||||
@ -49,15 +49,15 @@ Neural Network Runtime与MindSpore Lite使用MindIR统一模型的中间表达
|
||||
|
||||
### 接口说明
|
||||
|
||||
- Native接口文档请参考:[Native接口](https://gitee.com/openharmony/ai_neural_network_runtime/tree/master/interfaces/kits/c)。
|
||||
- HDI接口文档请参考:[HDI接口](https://gitee.com/openharmony/drivers_interface/tree/master/nnrt)。
|
||||
- Native接口文档请参考:[Native接口](https://gitee.com/openharmony/docs/blob/master/zh-cn/application-dev/reference/native-apis/_neural_nework_runtime.md)。
|
||||
- HDI接口文档请参考:[HDI接口](https://gitee.com/openharmony/docs/blob/master/zh-cn/device-dev/reference/hdi-apis/_n_n_rt.md)。
|
||||
|
||||
### 使用说明
|
||||
|
||||
- AI推理引擎/应用开发请参考:[Neural Network Runtime应用开发指导](./neural-network-runtime-guidelines.md)。
|
||||
- AI加速芯片驱动/设备开发请参考:[Neural Network Runtime设备开发指导](./example/drivers/README_zh.md)。
|
||||
- AI推理引擎/应用开发请参考:[Neural Network Runtime对接AI推理框架开发指导](./neural-network-runtime-guidelines.md)。
|
||||
- AI加速芯片驱动/设备开发请参考:[Neural Network Runtime设备接入指导](./example/drivers/README_zh.md)。
|
||||
|
||||
## 相关仓
|
||||
|
||||
- [**neural_network_runtime**](https://gitee.com/openharmony-sig/neural_network_runtime)
|
||||
- [**neural_network_runtime**](https://gitee.com/openharmony/neural_network_runtime)
|
||||
- [third_party_mindspore](https://gitee.com/openharmony/third_party_mindspore)
|
||||
|
@ -1,4 +1,4 @@
|
||||
# NNRt设备开发指导
|
||||
# Neural Network Runtime设备接入指导
|
||||
|
||||
## 概述
|
||||
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 74 KiB |
BIN
figures/zh-cn_neural_network_runtime_intro.jpg
Normal file
BIN
figures/zh-cn_neural_network_runtime_intro.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.0 MiB |
@ -15,34 +15,33 @@ Neural Network Runtime作为AI推理引擎和加速芯片的桥梁,为AI推理
|
||||
|
||||
Neural Network Runtime部件的环境要求如下:
|
||||
|
||||
- 系统版本:OpenHarmony master分支。
|
||||
- 开发环境:Ubuntu 18.04及以上。
|
||||
- 接入设备:OpenHarmony定义的标准设备,并且系统中内置的硬件加速器驱动,已通过HDI接口对接Neural Network Runtime。
|
||||
- 接入设备:系统定义的标准设备,系统中内置AI硬件驱动并已接入Neural Network Runtime。
|
||||
|
||||
由于Neural Network Runtime通过OpenHarmony Native API对外开放,需要通过OpenHarmony的Native开发套件编译Neural Network Runtime应用。在社区的[每日构建](http://ci.openharmony.cn/dailys/dailybuilds)下载对应系统版本的ohos-sdk压缩包,从压缩包中提取对应平台的Native开发套件。以Linux为例,Native开发套件的压缩包命名为`native-linux-{版本号}.zip`。
|
||||
由于Neural Network Runtime通过OpenHarmony Native API对外开放,需要通过OpenHarmony的Native开发套件编译Neural Network Runtime应用。在社区的每日构建中下载对应系统版本的ohos-sdk压缩包,从压缩包中提取对应平台的Native开发套件。以Linux为例,Native开发套件的压缩包命名为`native-linux-{版本号}.zip`。
|
||||
|
||||
### 环境搭建
|
||||
|
||||
1. 打开Ubuntu编译服务器的终端。
|
||||
2. 把下载好的Native开发套件压缩包拷贝至当前用户根目录下。
|
||||
3. 执行以下命令解压Native开发套件的压缩包。
|
||||
```shell
|
||||
unzip native-linux-{版本号}.zip
|
||||
```
|
||||
```shell
|
||||
unzip native-linux-{版本号}.zip
|
||||
```
|
||||
|
||||
解压缩后的内容如下(随版本迭代,目录下的内容可能发生变化,请以最新版本的Native API为准):
|
||||
```text
|
||||
native/
|
||||
├── build // 交叉编译工具链
|
||||
├── build-tools // 编译构建工具
|
||||
├── docs
|
||||
├── llvm
|
||||
├── nativeapi_syscap_config.json
|
||||
├── ndk_system_capability.json
|
||||
├── NOTICE.txt
|
||||
├── oh-uni-package.json
|
||||
└── sysroot // Native API头文件和库
|
||||
```
|
||||
解压缩后的内容如下(随版本迭代,目录下的内容可能发生变化,请以最新版本的Native API为准):
|
||||
```text
|
||||
native/
|
||||
├── build // 交叉编译工具链
|
||||
├── build-tools // 编译构建工具
|
||||
├── docs
|
||||
├── llvm
|
||||
├── nativeapi_syscap_config.json
|
||||
├── ndk_system_capability.json
|
||||
├── NOTICE.txt
|
||||
├── oh-uni-package.json
|
||||
└── sysroot // Native API头文件和库
|
||||
```
|
||||
## 接口说明
|
||||
|
||||
这里给出Neural Network Runtime开发流程中通用的接口,具体请见下列表格。
|
||||
@ -54,44 +53,97 @@ native/
|
||||
| typedef struct OH_NNModel OH_NNModel | Neural Network Runtime的模型句柄,用于构造模型。 |
|
||||
| typedef struct OH_NNCompilation OH_NNCompilation | Neural Network Runtime的编译器句柄,用于编译AI模型。 |
|
||||
| typedef struct OH_NNExecutor OH_NNExecutor | Neural Network Runtime的执行器句柄,用于在指定设备上执行推理计算。 |
|
||||
| typedef struct NN_QuantParam NN_QuantParam | Neural Network Runtime的量化参数句柄,用于在构造模型时指定张量的量化参数。 |
|
||||
| typedef struct NN_TensorDesc NN_TensorDesc | Neural Network Runtime的张量描述句柄,用于描述张量的各类属性,例如数据布局、数据类型、形状等。 |
|
||||
| typedef struct NN_Tensor NN_Tensor | Neural Network Runtime的张量句柄,用于设置执行器的推理输入和输出张量。 |
|
||||
|
||||
### 模型构造相关接口
|
||||
### 模型构造接口
|
||||
|
||||
| 接口名称 | 描述 |
|
||||
| ------- | --- |
|
||||
| OH_NNModel_Construct() | 创建OH_NNModel类型的模型实例。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_AddTensor(OH_NNModel *model, const OH_NN_Tensor *tensor) | 向模型实例中添加张量。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_AddTensorToModel(OH_NNModel *model, const NN_TensorDesc *tensorDesc) | 向模型实例中添加张量。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_SetTensorData(OH_NNModel *model, uint32_t index, const void *dataBuffer, size_t length) | 设置张量的数值。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_AddOperation(OH_NNModel *model, OH_NN_OperationType op, const OH_NN_UInt32Array *paramIndices, const OH_NN_UInt32Array *inputIndices, const OH_NN_UInt32Array *outputIndices) | 向模型实例中添加算子。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_SpecifyInputsAndOutputs(OH_NNModel *model, const OH_NN_UInt32Array *inputIndices, const OH_NN_UInt32Array *outputIndices) | 指定模型的输入输出。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_SpecifyInputsAndOutputs(OH_NNModel *model, const OH_NN_UInt32Array *inputIndices, const OH_NN_UInt32Array *outputIndices) | 指定模型的输入和输出张量的索引值。 |
|
||||
| OH_NN_ReturnCode OH_NNModel_Finish(OH_NNModel *model) | 完成模型构图。|
|
||||
| void OH_NNModel_Destroy(OH_NNModel **model) | 释放模型实例。 |
|
||||
| void OH_NNModel_Destroy(OH_NNModel **model) | 销毁模型实例。 |
|
||||
|
||||
### 模型编译相关接口
|
||||
|
||||
### 模型编译接口
|
||||
|
||||
| 接口名称 | 描述 |
|
||||
| ------- | --- |
|
||||
| OH_NNCompilation *OH_NNCompilation_Construct(const OH_NNModel *model) | 创建OH_NNCompilation类型的编译实例。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_SetDevice(OH_NNCompilation *compilation, size_t deviceID) | 指定模型编译和计算的硬件。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_SetCache(OH_NNCompilation *compilation, const char *cachePath, uint32_t version) | 设置编译后的模型缓存路径和缓存版本。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_Build(OH_NNCompilation *compilation) | 进行模型编译。 |
|
||||
| void OH_NNCompilation_Destroy(OH_NNCompilation **compilation) | 释放OH_NNCompilation对象。 |
|
||||
| OH_NNCompilation *OH_NNCompilation_Construct(const OH_NNModel *model) | 基于模型实例创建OH_NNCompilation类型的编译实例。 |
|
||||
| OH_NNCompilation *OH_NNCompilation_ConstructWithOfflineModelFile(const char *modelPath) | 基于离线模型文件路径创建OH_NNCompilation类型的编译实例。 |
|
||||
| OH_NNCompilation *OH_NNCompilation_ConstructWithOfflineModelBuffer(const void *modelBuffer, size_t modelSize) | 基于离线模型文件内存创建OH_NNCompilation类型的编译实例。 |
|
||||
| OH_NNCompilation *OH_NNCompilation_ConstructForCache() | 创建一个空的编译实例,以便稍后从模型缓存中恢复。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_ExportCacheToBuffer(OH_NNCompilation *compilation, const void *buffer, size_t length, size_t *modelSize) | 将模型缓存写入到指定内存区域。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_ImportCacheFromBuffer(OH_NNCompilation *compilation, const void *buffer, size_t modelSize) | 从指定内存区域读取模型缓存。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_AddExtensionConfig(OH_NNCompilation *compilation, const char *configName, const void *configValue, const size_t configValueSize) | 为自定义硬件属性添加扩展配置,具体硬件的扩展属性名称和属性值需要从硬件厂商的文档中获取。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_SetDevice(OH_NNCompilation *compilation, size_t deviceID) | 指定模型编译和计算的硬件,可通过设备管理接口获取。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_SetCache(OH_NNCompilation *compilation, const char *cachePath, uint32_t version) | 设置编译模型的缓存目录和版本。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_SetPerformanceMode(OH_NNCompilation *compilation, OH_NN_PerformanceMode performanceMode) | 设置模型计算的性能模式。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_SetPriority(OH_NNCompilation *compilation, OH_NN_Priority priority) | 设置模型计算的优先级。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_EnableFloat16(OH_NNCompilation *compilation, bool enableFloat16) | 是否以float16的浮点数精度计算。 |
|
||||
| OH_NN_ReturnCode OH_NNCompilation_Build(OH_NNCompilation *compilation) | 执行模型编译。 |
|
||||
| void OH_NNCompilation_Destroy(OH_NNCompilation **compilation) | 销毁编译实例。 |
|
||||
|
||||
### 执行推理相关接口
|
||||
### 张量描述接口
|
||||
|
||||
| 接口名称 | 描述 |
|
||||
| ------- | --- |
|
||||
| NN_TensorDesc *OH_NNTensorDesc_Create() | 创建一个张量描述实例,用于后续创建张量。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_SetName(NN_TensorDesc *tensorDesc, const char *name) | 设置张量描述的名称。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_GetName(const NN_TensorDesc *tensorDesc, const char **name) | 获取张量描述的名称。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_SetDataType(NN_TensorDesc *tensorDesc, OH_NN_DataType dataType) | 设置张量描述的数据类型。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_GetDataType(const NN_TensorDesc *tensorDesc, OH_NN_DataType *dataType) | 获取张量描述的数据类型。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_SetShape(NN_TensorDesc *tensorDesc, const int32_t *shape, size_t shapeLength) | 设置张量描述的形状。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_GetShape(const NN_TensorDesc *tensorDesc, int32_t **shape, size_t *shapeLength) | 获取张量描述的形状。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_SetFormat(NN_TensorDesc *tensorDesc, OH_NN_Format format) | 设置张量描述的数据布局。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_GetFormat(const NN_TensorDesc *tensorDesc, OH_NN_Format *format) | 获取张量描述的数据布局。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_GetElementCount(const NN_TensorDesc *tensorDesc, size_t *elementCount) | 获取张量描述的元素个数。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_GetByteSize(const NN_TensorDesc *tensorDesc, size_t *byteSize) | 获取基于张量描述的形状和数据类型计算的数据占用字节数。 |
|
||||
| OH_NN_ReturnCode OH_NNTensorDesc_Destroy(NN_TensorDesc **tensorDesc) | 销毁张量描述实例。 |
|
||||
|
||||
### 张量接口
|
||||
|
||||
| 接口名称 | 描述 |
|
||||
| ------- | --- |
|
||||
| NN_Tensor* OH_NNTensor_Create(size_t deviceID, NN_TensorDesc *tensorDesc) | 从张量描述创建张量实例,会申请设备共享内存。 |
|
||||
| NN_Tensor* OH_NNTensor_CreateWithSize(size_t deviceID, NN_TensorDesc *tensorDesc, size_t size) | 按照指定内存大小和张量描述创建张量实例,会申请设备共享内存。 |
|
||||
| NN_Tensor* OH_NNTensor_CreateWithFd(size_t deviceID, NN_TensorDesc *tensorDesc, int fd, size_t size, size_t offset) | 按照指定共享内存的文件描述符和张量描述创建张量实例,从而可以复用其他张量的设备共享内存。 |
|
||||
| NN_TensorDesc* OH_NNTensor_GetTensorDesc(const NN_Tensor *tensor) | 获取张量内部的张量描述实例指针,从而可读取张量的属性,例如数据类型、形状等。 |
|
||||
| void* OH_NNTensor_GetDataBuffer(const NN_Tensor *tensor) | 获取张量数据的内存地址,可以读写张量数据。 |
|
||||
| OH_NN_ReturnCode OH_NNTensor_GetFd(const NN_Tensor *tensor, int *fd) | 获取张量数据所在共享内存的文件描述符,文件描述符fd对应了一块设备共享内存。 |
|
||||
| OH_NN_ReturnCode OH_NNTensor_GetSize(const NN_Tensor *tensor, size_t *size) | 获取张量数据所在共享内存的大小。 |
|
||||
| OH_NN_ReturnCode OH_NNTensor_GetOffset(const NN_Tensor *tensor, size_t *offset) | 获取张量数据所在共享内存上的偏移量,张量数据可使用的大小为所在共享内存的大小减去偏移量。 |
|
||||
| OH_NN_ReturnCode OH_NNTensor_Destroy(NN_Tensor **tensor) | 销毁张量实例。 |
|
||||
|
||||
### 执行推理接口
|
||||
|
||||
| 接口名称 | 描述 |
|
||||
| ------- | --- |
|
||||
| OH_NNExecutor *OH_NNExecutor_Construct(OH_NNCompilation *compilation) | 创建OH_NNExecutor类型的执行器实例。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_SetInput(OH_NNExecutor *executor, uint32_t inputIndex, const OH_NN_Tensor *tensor, const void *dataBuffer, size_t length) | 设置模型单个输入的数据。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_SetOutput(OH_NNExecutor *executor, uint32_t outputIndex, void *dataBuffer, size_t length) | 设置模型单个输出的缓冲区。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_Run(OH_NNExecutor *executor) | 执行推理。 |
|
||||
| void OH_NNExecutor_Destroy(OH_NNExecutor **executor) | 销毁OH_NNExecutor实例,释放实例占用的内存。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_GetOutputShape(OH_NNExecutor *executor, uint32_t outputIndex, int32_t **shape, uint32_t *shapeLength) | 获取输出张量的维度信息,用于输出张量具有动态形状的情况。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_GetInputCount(const OH_NNExecutor *executor, size_t *inputCount) | 获取输入张量的数量。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_GetOutputCount(const OH_NNExecutor *executor, size_t *outputCount) | 获取输出张量的数量。 |
|
||||
| NN_TensorDesc* OH_NNExecutor_CreateInputTensorDesc(const OH_NNExecutor *executor, size_t index) | 由指定索引值创建一个输入张量的描述,用于读取张量的属性或创建张量实例。 |
|
||||
| NN_TensorDesc* OH_NNExecutor_CreateOutputTensorDesc(const OH_NNExecutor *executor, size_t index) | 由指定索引值创建一个输出张量的描述,用于读取张量的属性或创建张量实例。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_GetInputDimRange(const OH_NNExecutor *executor, size_t index, size_t **minInputDims, size_t **maxInputDims, size_t *shapeLength) |获取所有输入张量的维度范围。当输入张量具有动态形状时,不同设备可能支持不同的维度范围。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_SetOnRunDone(OH_NNExecutor *executor, NN_OnRunDone onRunDone) | 设置异步推理结束后的回调处理函数,回调函数定义详见接口文档。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_SetOnServiceDied(OH_NNExecutor *executor, NN_OnServiceDied onServiceDied) | 设置异步推理执行期间设备驱动服务突然死亡时的回调处理函数,回调函数定义详见接口文档。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_RunSync(OH_NNExecutor *executor, NN_Tensor *inputTensor[], size_t inputCount, NN_Tensor *outputTensor[], size_t outputCount) | 执行同步推理。 |
|
||||
| OH_NN_ReturnCode OH_NNExecutor_RunAsync(OH_NNExecutor *executor, NN_Tensor *inputTensor[], size_t inputCount, NN_Tensor *outputTensor[], size_t outputCount, int32_t timeout, void *userData) | 执行异步推理。 |
|
||||
| void OH_NNExecutor_Destroy(OH_NNExecutor **executor) | 销毁执行器实例。 |
|
||||
|
||||
### 设备管理相关接口
|
||||
### 设备管理接口
|
||||
|
||||
| 接口名称 | 描述 |
|
||||
| ------- | --- |
|
||||
| OH_NN_ReturnCode OH_NNDevice_GetAllDevicesID(const size_t **allDevicesID, uint32_t *deviceCount) | 获取对接到 Neural Network Runtime 的硬件ID。 |
|
||||
| OH_NN_ReturnCode OH_NNDevice_GetAllDevicesID(const size_t **allDevicesID, uint32_t *deviceCount) | 获取对接到Neural Network Runtime的所有硬件ID。 |
|
||||
| OH_NN_ReturnCode OH_NNDevice_GetName(size_t deviceID, const char **name) | 获取指定硬件的名称。 |
|
||||
| OH_NN_ReturnCode OH_NNDevice_GetType(size_t deviceID, OH_NN_DeviceType *deviceType) | 获取指定硬件的类别信息。 |
|
||||
|
||||
|
||||
## 开发步骤
|
||||
@ -100,7 +152,7 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
|
||||
1. 创建应用样例文件。
|
||||
|
||||
首先,创建Neural Network Runtime应用样例的源文件。在项目目录下执行以下命令,创建`nnrt_example/`目录,在目录下创建 `nnrt_example.cpp` 源文件。
|
||||
首先,创建Neural Network Runtime应用样例的源文件。在项目目录下执行以下命令,创建`nnrt_example/`目录,并在目录下创建 `nnrt_example.cpp` 源文件。
|
||||
|
||||
```shell
|
||||
mkdir ~/nnrt_example && cd ~/nnrt_example
|
||||
@ -109,112 +161,245 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
|
||||
2. 导入Neural Network Runtime。
|
||||
|
||||
在 `nnrt_example.cpp` 文件的开头添加以下代码,引入Neural Network Runtime模块。
|
||||
在 `nnrt_example.cpp` 文件的开头添加以下代码,引入Neural Network Runtime。
|
||||
|
||||
```cpp
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstdarg>
|
||||
#include "hilog/log.h"
|
||||
#include "neural_network_runtime/neural_network_runtime.h"
|
||||
|
||||
// 常量,用于指定输入、输出数据的字节长度
|
||||
const size_t DATA_LENGTH = 4 * 12;
|
||||
```
|
||||
|
||||
3. 构造模型。
|
||||
|
||||
使用Neural Network Runtime接口,构造`Add`单算子样例模型。
|
||||
3. 定义日志打印、设置输入数据、数据打印等辅助函数。
|
||||
|
||||
```cpp
|
||||
OH_NN_ReturnCode BuildModel(OH_NNModel** pModel)
|
||||
#define LOG_DOMAIN 0xD002101
|
||||
#define LOG_TAG "NNRt"
|
||||
#define LOGD(...) OH_LOG_DEBUG(LOG_APP, __VA_ARGS__)
|
||||
#define LOGI(...) OH_LOG_INFO(LOG_APP, __VA_ARGS__)
|
||||
#define LOGW(...) OH_LOG_WARN(LOG_APP, __VA_ARGS__)
|
||||
#define LOGE(...) OH_LOG_ERROR(LOG_APP, __VA_ARGS__)
|
||||
#define LOGF(...) OH_LOG_FATAL(LOG_APP, __VA_ARGS__)
|
||||
|
||||
// 返回值检查宏
|
||||
#define CHECKNEQ(realRet, expectRet, retValue, ...) \
|
||||
do { \
|
||||
if ((realRet) != (expectRet)) { \
|
||||
printf(__VA_ARGS__); \
|
||||
return (retValue); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CHECKEQ(realRet, expectRet, retValue, ...) \
|
||||
do { \
|
||||
if ((realRet) == (expectRet)) { \
|
||||
printf(__VA_ARGS__); \
|
||||
return (retValue); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// 设置输入数据用于推理
|
||||
OH_NN_ReturnCode SetInputData(NN_Tensor* inputTensor[], size_t inputSize)
|
||||
{
|
||||
// 创建模型实例,进行模型构造
|
||||
OH_NNModel* model = OH_NNModel_Construct();
|
||||
if (model == nullptr) {
|
||||
std::cout << "Create model failed." << std::endl;
|
||||
return OH_NN_MEMORY_ERROR;
|
||||
OH_NN_DataType dataType(OH_NN_FLOAT32);
|
||||
OH_NN_ReturnCode ret{OH_NN_FAILED};
|
||||
size_t elementCount = 0;
|
||||
for (size_t i = 0; i < inputSize; ++i) {
|
||||
// 获取张量的数据内存
|
||||
auto data = OH_NNTensor_GetDataBuffer(inputTensor[i]);
|
||||
CHECKEQ(data, nullptr, OH_NN_FAILED, "Failed to get data buffer.");
|
||||
// 获取张量的描述
|
||||
auto desc = OH_NNTensor_GetTensorDesc(inputTensor[i]);
|
||||
CHECKEQ(desc, nullptr, OH_NN_FAILED, "Failed to get desc.");
|
||||
// 获取张量的数据类型
|
||||
ret = OH_NNTensorDesc_GetDataType(desc, &dataType);
|
||||
CHECKNEQ(ret, OH_NN_SUCCESS, OH_NN_FAILED, "Failed to get data type.");
|
||||
// 获取张量的元素个数
|
||||
ret = OH_NNTensorDesc_GetElementCount(desc, &elementCount);
|
||||
CHECKNEQ(ret, OH_NN_SUCCESS, OH_NN_FAILED, "Failed to get element count.");
|
||||
switch(dataType) {
|
||||
case OH_NN_FLOAT32: {
|
||||
float* floatValue = reinterpret_cast<float*>(data);
|
||||
for (size_t j = 0; j < elementCount; ++j) {
|
||||
floatValue[j] = static_cast<float>(j);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case OH_NN_INT32: {
|
||||
int* intValue = reinterpret_cast<int*>(data);
|
||||
for (size_t j = 0; j < elementCount; ++j) {
|
||||
intValue[j] = static_cast<int>(j);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
return OH_NN_FAILED;
|
||||
}
|
||||
}
|
||||
return OH_NN_SUCCESS;
|
||||
}
|
||||
|
||||
OH_NN_ReturnCode Print(NN_Tensor* outputTensor[], size_t outputSize)
|
||||
{
|
||||
OH_NN_DataType dataType(OH_NN_FLOAT32);
|
||||
OH_NN_ReturnCode ret{OH_NN_FAILED};
|
||||
size_t elementCount = 0;
|
||||
for (size_t i = 0; i < outputSize; ++i) {
|
||||
auto data = OH_NNTensor_GetDataBuffer(outputTensor[i]);
|
||||
CHECKEQ(data, nullptr, OH_NN_FAILED, "Failed to get data buffer.");
|
||||
auto desc = OH_NNTensor_GetTensorDesc(outputTensor[i]);
|
||||
CHECKEQ(desc, nullptr, OH_NN_FAILED, "Failed to get desc.");
|
||||
ret = OH_NNTensorDesc_GetDataType(desc, &dataType);
|
||||
CHECKNEQ(ret, OH_NN_SUCCESS, OH_NN_FAILED, "Failed to get data type.");
|
||||
ret = OH_NNTensorDesc_GetElementCount(desc, &elementCount);
|
||||
CHECKNEQ(ret, OH_NN_SUCCESS, OH_NN_FAILED, "Failed to get element count.");
|
||||
switch(dataType) {
|
||||
case OH_NN_FLOAT32: {
|
||||
float* floatValue = reinterpret_cast<float*>(data);
|
||||
for (size_t j = 0; j < elementCount; ++j) {
|
||||
std::cout << "Output index: " << j << ", value is: " << floatValue[j] << "." << std::endl;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case OH_NN_INT32: {
|
||||
int* intValue = reinterpret_cast<int*>(data);
|
||||
for (size_t j = 0; j < elementCount; ++j) {
|
||||
std::cout << "Output index: " << j << ", value is: " << intValue[j] << "." << std::endl;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
return OH_NN_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
// 添加Add算子的第一个输入Tensor,类型为float32,张量形状为[1, 2, 2, 3]
|
||||
int32_t inputDims[4] = {1, 2, 2, 3};
|
||||
OH_NN_Tensor input1 = {OH_NN_FLOAT32, 4, inputDims, nullptr, OH_NN_TENSOR};
|
||||
OH_NN_ReturnCode ret = OH_NNModel_AddTensor(model, &input1);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, add Tensor of first input failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 添加Add算子的第二个输入Tensor,类型为float32,张量形状为[1, 2, 2, 3]
|
||||
OH_NN_Tensor input2 = {OH_NN_FLOAT32, 4, inputDims, nullptr, OH_NN_TENSOR};
|
||||
ret = OH_NNModel_AddTensor(model, &input2);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, add Tensor of second input failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 添加Add算子的参数Tensor,该参数Tensor用于指定激活函数的类型,Tensor的数据类型为int8。
|
||||
int32_t activationDims = 1;
|
||||
int8_t activationValue = OH_NN_FUSED_NONE;
|
||||
OH_NN_Tensor activation = {OH_NN_INT8, 1, &activationDims, nullptr, OH_NN_ADD_ACTIVATIONTYPE};
|
||||
ret = OH_NNModel_AddTensor(model, &activation);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, add Tensor of activation failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 将激活函数类型设置为OH_NN_FUSED_NONE,表示该算子不添加激活函数。
|
||||
ret = OH_NNModel_SetTensorData(model, 2, &activationValue, sizeof(int8_t));
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, set value of activation failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 设置Add算子的输出,类型为float32,张量形状为[1, 2, 2, 3]
|
||||
OH_NN_Tensor output = {OH_NN_FLOAT32, 4, inputDims, nullptr, OH_NN_TENSOR};
|
||||
ret = OH_NNModel_AddTensor(model, &output);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, add Tensor of output failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 指定Add算子的输入、参数和输出索引
|
||||
uint32_t inputIndicesValues[2] = {0, 1};
|
||||
uint32_t paramIndicesValues = 2;
|
||||
uint32_t outputIndicesValues = 3;
|
||||
OH_NN_UInt32Array paramIndices = {¶mIndicesValues, 1};
|
||||
OH_NN_UInt32Array inputIndices = {inputIndicesValues, 2};
|
||||
OH_NN_UInt32Array outputIndices = {&outputIndicesValues, 1};
|
||||
|
||||
// 向模型实例添加Add算子
|
||||
ret = OH_NNModel_AddOperation(model, OH_NN_OPS_ADD, ¶mIndices, &inputIndices, &outputIndices);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, add operation failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 设置模型实例的输入、输出索引
|
||||
ret = OH_NNModel_SpecifyInputsAndOutputs(model, &inputIndices, &outputIndices);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, specify inputs and outputs failed." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// 完成模型实例的构建
|
||||
ret = OH_NNModel_Finish(model);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed, error happened when finishing model construction." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
*pModel = model;
|
||||
return OH_NN_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
4. 查询Neural Network Runtime已经对接的加速芯片。
|
||||
4. 构造模型。
|
||||
|
||||
Neural Network Runtime支持通过HDI接口,对接多种加速芯片。在执行模型编译前,需要查询当前设备下,Neural Network Runtime已经对接的加速芯片。每个加速芯片对应唯一的ID值,在编译阶段需要通过设备ID,指定模型编译的芯片。
|
||||
使用Neural Network Runtime的模型构造接口,构造`Add`单算子样例模型。
|
||||
|
||||
```cpp
|
||||
OH_NN_ReturnCode BuildModel(OH_NNModel** pmodel)
|
||||
{
|
||||
// 创建模型实例model,进行模型构造
|
||||
OH_NNModel* model = OH_NNModel_Construct();
|
||||
CHECKEQ(model, nullptr, -1, "Create model failed.");
|
||||
|
||||
// 添加Add算子的第一个输入张量,类型为float32,张量形状为[1, 2, 2, 3]
|
||||
NN_TensorDesc* tensorDesc = OH_NNTensorDesc_Create();
|
||||
CHECKEQ(tensorDesc, nullptr, -1, "Create TensorDesc failed.");
|
||||
|
||||
int32_t inputDims[4] = {1, 2, 2, 3};
|
||||
returnCode = OH_NNTensorDesc_SetShape(tensorDesc, inputDims, 4);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc shape failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetDataType(tensorDesc, OH_NN_FLOAT32);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc data type failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetFormat(tensorDesc, OH_NN_FORMAT_NONE);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc format failed.");
|
||||
|
||||
returnCode = OH_NNModel_AddTensorToModel(model, tensorDesc);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Add first TensorDesc to model failed.");
|
||||
|
||||
returnCode = OH_NNModel_SetTensorType(model, 0, OH_NN_TENSOR);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set model tensor type failed.");
|
||||
|
||||
// 添加Add算子的第二个输入张量,类型为float32,张量形状为[1, 2, 2, 3]
|
||||
tensorDesc = OH_NNTensorDesc_Create();
|
||||
CHECKEQ(tensorDesc, nullptr, -1, "Create TensorDesc failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetShape(tensorDesc, inputDims, 4);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc shape failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetDataType(tensorDesc, OH_NN_FLOAT32);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc data type failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetFormat(tensorDesc, OH_NN_FORMAT_NONE);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc format failed.");
|
||||
|
||||
returnCode = OH_NNModel_AddTensorToModel(model, tensorDesc);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Add second TensorDesc to model failed.");
|
||||
|
||||
returnCode = OH_NNModel_SetTensorType(model, 1, OH_NN_TENSOR);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set model tensor type failed.");
|
||||
|
||||
// 添加Add算子的参数张量,该参数张量用于指定激活函数的类型,张量的数据类型为int8。
|
||||
tensorDesc = OH_NNTensorDesc_Create();
|
||||
CHECKEQ(tensorDesc, nullptr, -1, "Create TensorDesc failed.");
|
||||
|
||||
int32_t activationDims = 1;
|
||||
returnCode = OH_NNTensorDesc_SetShape(tensorDesc, &activationDims, 1);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc shape failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetDataType(tensorDesc, OH_NN_INT8);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc data type failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetFormat(tensorDesc, OH_NN_FORMAT_NONE);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc format failed.");
|
||||
|
||||
returnCode = OH_NNModel_AddTensorToModel(model, tensorDesc);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Add second TensorDesc to model failed.");
|
||||
|
||||
returnCode = OH_NNModel_SetTensorType(model, 2, OH_NN_ADD_ACTIVATIONTYPE);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set model tensor type failed.");
|
||||
|
||||
// 将激活函数类型设置为OH_NNBACKEND_FUSED_NONE,表示该算子不添加激活函数。
|
||||
int8_t activationValue = OH_NN_FUSED_NONE;
|
||||
returnCode = OH_NNModel_SetTensorData(model, 2, &activationValue, sizeof(int8_t));
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set model tensor data failed.");
|
||||
|
||||
// 设置Add算子的输出张量,类型为float32,张量形状为[1, 2, 2, 3]
|
||||
tensorDesc = OH_NNTensorDesc_Create();
|
||||
CHECKEQ(tensorDesc, nullptr, -1, "Create TensorDesc failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetShape(tensorDesc, inputDims, 4);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc shape failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetDataType(tensorDesc, OH_NN_FLOAT32);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc data type failed.");
|
||||
|
||||
returnCode = OH_NNTensorDesc_SetFormat(tensorDesc, OH_NN_FORMAT_NONE);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set TensorDesc format failed.");
|
||||
|
||||
returnCode = OH_NNModel_AddTensorToModel(model, tensorDesc);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Add forth TensorDesc to model failed.");
|
||||
|
||||
returnCode = OH_NNModel_SetTensorType(model, 3, OH_NN_TENSOR);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Set model tensor type failed.");
|
||||
|
||||
// 指定Add算子的输入张量、参数张量和输出张量的索引
|
||||
uint32_t inputIndicesValues[2] = {0, 1};
|
||||
uint32_t paramIndicesValues = 2;
|
||||
uint32_t outputIndicesValues = 3;
|
||||
OH_NN_UInt32Array paramIndices = {¶mIndicesValues, 1 * 4};
|
||||
OH_NN_UInt32Array inputIndices = {inputIndicesValues, 2 * 4};
|
||||
OH_NN_UInt32Array outputIndices = {&outputIndicesValues, 1 * 4};
|
||||
|
||||
// 向模型实例添加Add算子
|
||||
returnCode = OH_NNModel_AddOperation(model, OH_NN_OPS_ADD, ¶mIndices, &inputIndices, &outputIndices);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Add operation to model failed.");
|
||||
|
||||
// 设置模型实例的输入张量、输出张量的索引
|
||||
returnCode = OH_NNModel_SpecifyInputsAndOutputs(model, &inputIndices, &outputIndices);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Specify model inputs and outputs failed.");
|
||||
|
||||
// 完成模型实例的构建
|
||||
returnCode = OH_NNModel_Finish(model);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "Build model failed.");
|
||||
|
||||
// 返回模型实例
|
||||
*pmodel = model;
|
||||
return OH_NN_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
5. 查询Neural Network Runtime已经对接的AI加速芯片。
|
||||
|
||||
Neural Network Runtime支持通过HDI接口,对接多种AI加速芯片。在执行模型编译前,需要查询当前设备下,Neural Network Runtime已经对接的AI加速芯片。每个AI加速芯片对应唯一的ID值,在编译阶段需要通过设备ID,指定模型编译的芯片。
|
||||
```cpp
|
||||
void GetAvailableDevices(std::vector<size_t>& availableDevice)
|
||||
{
|
||||
@ -235,116 +420,140 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
}
|
||||
```
|
||||
|
||||
5. 在指定的设备上编译模型。
|
||||
6. 在指定的设备上编译模型。
|
||||
|
||||
Neural Network Runtime使用抽象的模型表达描述AI模型的拓扑结构,在加速芯片上执行前,需要通过Neural Network Runtime提供的编译模块,将抽象的模型表达下发至芯片驱动层,转换成可以直接推理计算的格式。
|
||||
Neural Network Runtime使用抽象的模型表达描述AI模型的拓扑结构。在AI加速芯片上执行前,需要通过Neural Network Runtime提供的编译模块来创建编译实例,并由编译实例将抽象的模型表达下发至芯片驱动层,转换成可以直接推理计算的格式,即模型编译。
|
||||
```cpp
|
||||
OH_NN_ReturnCode CreateCompilation(OH_NNModel* model, const std::vector<size_t>& availableDevice, OH_NNCompilation** pCompilation)
|
||||
OH_NN_ReturnCode CreateCompilation(OH_NNModel* model, const std::vector<size_t>& availableDevice,
|
||||
OH_NNCompilation** pCompilation)
|
||||
{
|
||||
// 创建编译实例,用于将模型传递至底层硬件编译
|
||||
// 创建编译实例compilation,将构图的模型实例或MSLite传下来的模型实例传入
|
||||
OH_NNCompilation* compilation = OH_NNCompilation_Construct(model);
|
||||
if (compilation == nullptr) {
|
||||
std::cout << "CreateCompilation failed, error happended when creating compilation." << std::endl;
|
||||
return OH_NN_MEMORY_ERROR;
|
||||
}
|
||||
CHECKEQ(compilation, nullptr, -1, "OH_NNCore_ConstructCompilationWithNNModel failed.");
|
||||
|
||||
// 设置编译的硬件、缓存路径、性能模式、计算优先级、是否开启float16低精度计算等选项
|
||||
|
||||
// 选择在第一个设备上编译模型
|
||||
OH_NN_ReturnCode ret = OH_NNCompilation_SetDevice(compilation, availableDevice[0]);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "CreateCompilation failed, error happened when setting device." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
returnCode = OH_NNCompilation_SetDevice(compilation, availableDevice[0]);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNCompilation_SetDevice failed.");
|
||||
|
||||
// 将模型编译结果缓存在/data/local/tmp目录下,版本号指定为1
|
||||
ret = OH_NNCompilation_SetCache(compilation, "/data/local/tmp", 1);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "CreateCompilation failed, error happened when setting cache path." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
returnCode = OH_NNCompilation_SetCache(compilation, "/data/local/tmp", 1);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNCompilation_SetCache failed.");
|
||||
|
||||
// 完成编译设置,进行模型编译
|
||||
ret = OH_NNCompilation_Build(compilation);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "CreateCompilation failed, error happened when building compilation." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
// 设置硬件性能模式
|
||||
returnCode = OH_NNCompilation_SetPerformanceMode(compilation, OH_NN_PERFORMANCE_EXTREME);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNCompilation_SetPerformanceMode failed.");
|
||||
|
||||
// 设置推理执行优先级
|
||||
returnCode = OH_NNCompilation_SetPriority(compilation, OH_NN_PRIORITY_HIGH);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNCompilation_SetPriority failed.");
|
||||
|
||||
// 是否开启FP16计算模式
|
||||
returnCode = OH_NNCompilation_EnableFloat16(compilation, false);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNCompilation_EnableFloat16 failed.");
|
||||
|
||||
// 执行模型编译
|
||||
returnCode = OH_NNCompilation_Build(compilation);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNCompilation_Build failed.");
|
||||
|
||||
*pCompilation = compilation;
|
||||
return OH_NN_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
6. 创建执行器。
|
||||
7. 创建执行器。
|
||||
|
||||
完成模型编译后,需要调用Neural Network Runtime的执行模块,创建推理执行器。执行阶段,设置模型输入、获取模型输出和触发推理计算的操作均围绕执行器完成。
|
||||
完成模型编译后,需要调用Neural Network Runtime的执行模块,通过编译实例创建执行器。模型推理阶段中的设置模型输入、触发推理计算以及获取模型输出等操作均需要围绕执行器完成。
|
||||
```cpp
|
||||
OH_NNExecutor* CreateExecutor(OH_NNCompilation* compilation)
|
||||
{
|
||||
// 创建执行实例
|
||||
OH_NNExecutor* executor = OH_NNExecutor_Construct(compilation);
|
||||
// 通过编译实例compilation创建执行器executor
|
||||
OH_NNExecutor *executor = OH_NNExecutor_Construct(compilation);
|
||||
CHECKEQ(executor, nullptr, -1, "OH_NNExecutor_Construct failed.");
|
||||
return executor;
|
||||
}
|
||||
```
|
||||
|
||||
7. 执行推理计算,并打印计算结果。
|
||||
8. 执行推理计算,并打印推理结果。
|
||||
|
||||
通过执行模块提供的接口,将推理计算所需要的输入数据传递给执行器,触发执行器完成一次推理计算,获取模型的推理计算结果。
|
||||
通过执行模块提供的接口,将推理计算所需要的输入数据传递给执行器,触发执行器完成一次推理计算,获取模型的推理结果并打印。
|
||||
```cpp
|
||||
OH_NN_ReturnCode Run(OH_NNExecutor* executor)
|
||||
OH_NN_ReturnCode Run(OH_NNExecutor* executor, const std::vector<size_t>& availableDevice)
|
||||
{
|
||||
// 构造示例数据
|
||||
float input1[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
|
||||
float input2[12] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22};
|
||||
|
||||
int32_t inputDims[4] = {1, 2, 2, 3};
|
||||
OH_NN_Tensor inputTensor1 = {OH_NN_FLOAT32, 4, inputDims, nullptr, OH_NN_TENSOR};
|
||||
OH_NN_Tensor inputTensor2 = {OH_NN_FLOAT32, 4, inputDims, nullptr, OH_NN_TENSOR};
|
||||
|
||||
// 设置执行的输入
|
||||
|
||||
// 设置执行的第一个输入,输入数据由input1指定
|
||||
OH_NN_ReturnCode ret = OH_NNExecutor_SetInput(executor, 0, &inputTensor1, input1, DATA_LENGTH);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "Run failed, error happened when setting first input." << std::endl;
|
||||
return ret;
|
||||
// 从executor获取输入输出信息
|
||||
// 获取输入张量的个数
|
||||
size_t inputCount = 0;
|
||||
returnCode = OH_NNExecutor_GetInputCount(executor, &inputCount);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNExecutor_GetInputCount failed.");
|
||||
std::vector<NN_TensorDesc*> inputTensorDescs;
|
||||
NN_TensorDesc* tensorDescTmp = nullptr;
|
||||
for (size_t i = 0; i < inputCount; ++i) {
|
||||
// 创建输入张量的描述
|
||||
tensorDescTmp = OH_NNExecutor_CreateInputTensorDesc(executor, i);
|
||||
CHECKEQ(tensorDescTmp, nullptr, -1, "OH_NNExecutor_CreateInputTensorDesc failed.");
|
||||
inputTensorDescs.emplace_back(tensorDescTmp);
|
||||
}
|
||||
// 获取输出张量的个数
|
||||
size_t outputCount = 0;
|
||||
returnCode = OH_NNExecutor_GetOutputCount(executor, &outputCount);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNExecutor_GetOutputCount failed.");
|
||||
std::vector<NN_TensorDesc*> outputTensorDescs;
|
||||
for (size_t i = 0; i < outputCount; ++i) {
|
||||
// 创建输出张量的描述
|
||||
tensorDescTmp = OH_NNExecutor_CreateOutputTensorDesc(executor, i);
|
||||
CHECKEQ(tensorDescTmp, nullptr, -1, "OH_NNExecutor_CreateOutputTensorDesc failed.");
|
||||
outputTensorDescs.emplace_back(tensorDescTmp);
|
||||
}
|
||||
|
||||
// 设置执行的第二个输入,输入数据由input2指定
|
||||
ret = OH_NNExecutor_SetInput(executor, 1, &inputTensor2, input2, DATA_LENGTH);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "Run failed, error happened when setting second input." << std::endl;
|
||||
return ret;
|
||||
// 创建输入和输出张量
|
||||
NN_Tensor* inputTensors[inputCount];
|
||||
NN_Tensor* tensor = nullptr;
|
||||
for (size_t i = 0; i < inputCount; ++i) {
|
||||
tensor = nullptr;
|
||||
tensor = OH_NNTensor_Create(availableDevice[0], inputTensorDescs[i]);
|
||||
CHECKEQ(tensor, nullptr, -1, "OH_NNTensor_Create failed.");
|
||||
inputTensors[i] = tensor;
|
||||
}
|
||||
NN_Tensor* outputTensors[outputCount];
|
||||
for (size_t i = 0; i < outputCount; ++i) {
|
||||
tensor = nullptr;
|
||||
tensor = OH_NNTensor_Create(availableDevice[0], outputTensorDescs[i]);
|
||||
CHECKEQ(tensor, nullptr, -1, "OH_NNTensor_Create failed.");
|
||||
outputTensors[i] = tensor;
|
||||
}
|
||||
|
||||
// 设置输出的数据缓冲区,OH_NNExecutor_Run执行计算后,输出结果将保留在output中
|
||||
float output[12];
|
||||
ret = OH_NNExecutor_SetOutput(executor, 0, output, DATA_LENGTH);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "Run failed, error happened when setting output buffer." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
// 设置输入张量的数据
|
||||
returnCode = SetInputData(inputTensors, inputCount);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "SetInputData failed.");
|
||||
|
||||
// 执行计算
|
||||
ret = OH_NNExecutor_Run(executor);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "Run failed, error doing execution." << std::endl;
|
||||
return ret;
|
||||
}
|
||||
// 执行推理
|
||||
returnCode = OH_NNExecutor_RunSync(executor, inputTensors, inputCount, outputTensors, outputCount);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNExecutor_RunSync failed.");
|
||||
|
||||
// 打印输出结果
|
||||
for (uint32_t i = 0; i < 12; i++) {
|
||||
std::cout << "Output index: " << i << ", value is: " << output[i] << "." << std::endl;
|
||||
// 打印输出张量的数据
|
||||
Print(outputTensors, outputCount);
|
||||
|
||||
// 清理输入和输出张量以及张量描述
|
||||
for (size_t i = 0; i < inputCount; ++i) {
|
||||
returnCode = OH_NNTensor_Destroy(&inputTensors[i]);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNTensor_Destroy failed.");
|
||||
returnCode = OH_NNTensorDesc_Destroy(&inputTensorDescs[i]);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNTensorDesc_Destroy failed.");
|
||||
}
|
||||
for (size_t i = 0; i < outputCount; ++i) {
|
||||
returnCode = OH_NNTensor_Destroy(&outputTensors[i]);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNTensor_Destroy failed.");
|
||||
returnCode = OH_NNTensorDesc_Destroy(&outputTensorDescs[i]);
|
||||
CHECKNEQ(returnCode, OH_NN_SUCCESS, -1, "OH_NNTensorDesc_Destroy failed.");
|
||||
}
|
||||
|
||||
return OH_NN_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
8. 构建端到端模型构造-编译-执行流程。
|
||||
9. 构建端到端模型构造-编译-执行流程。
|
||||
|
||||
步骤3-步骤7实现了模型的模型构造、编译和执行流程,并封装成4个函数,便于模块化开发。以下示例代码将4个函数串联成完整的Neural Network Runtime开发流程。
|
||||
步骤4-步骤8实现了模型的模型构造、编译和执行流程,并封装成多个函数,便于模块化开发。以下示例代码将串联这些函数, 形成一个完整的Neural Network Runtime使用流程。
|
||||
```cpp
|
||||
int main()
|
||||
{
|
||||
@ -353,7 +562,8 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
OH_NNExecutor* executor = nullptr;
|
||||
std::vector<size_t> availableDevices;
|
||||
|
||||
// 模型构造阶段
|
||||
// 模型构造
|
||||
OH_NNModel* model = nullptr;
|
||||
OH_NN_ReturnCode ret = BuildModel(&model);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "BuildModel failed." << std::endl;
|
||||
@ -369,7 +579,7 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 模型编译阶段
|
||||
// 模型编译
|
||||
ret = CreateCompilation(model, availableDevices, &compilation);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "CreateCompilation failed." << std::endl;
|
||||
@ -378,28 +588,29 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 销毁模型实例
|
||||
OH_NNModel_Destroy(&model);
|
||||
|
||||
// 创建模型的推理执行器
|
||||
executor = CreateExecutor(compilation);
|
||||
if (executor == nullptr) {
|
||||
std::cout << "CreateExecutor failed, no executor is created." << std::endl;
|
||||
OH_NNModel_Destroy(&model);
|
||||
OH_NNCompilation_Destroy(&compilation);
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 使用上一步创建的执行器,执行单步推理计算
|
||||
ret = Run(executor);
|
||||
// 销毁编译实例
|
||||
OH_NNCompilation_Destroy(&compilation);
|
||||
|
||||
// 使用上一步创建的执行器,执行推理计算
|
||||
ret = Run(executor, availableDevices);
|
||||
if (ret != OH_NN_SUCCESS) {
|
||||
std::cout << "Run failed." << std::endl;
|
||||
OH_NNModel_Destroy(&model);
|
||||
OH_NNCompilation_Destroy(&compilation);
|
||||
OH_NNExecutor_Destroy(&executor);
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 释放申请的资源
|
||||
OH_NNModel_Destroy(&model);
|
||||
OH_NNCompilation_Destroy(&compilation);
|
||||
// 销毁执行器实例
|
||||
OH_NNExecutor_Destroy(&executor);
|
||||
|
||||
return 0;
|
||||
@ -420,7 +631,8 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
)
|
||||
|
||||
target_link_libraries(nnrt_example
|
||||
neural_network_runtime.z
|
||||
neural_network_runtime
|
||||
neural_network_core
|
||||
)
|
||||
```
|
||||
|
||||
@ -447,18 +659,18 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
|
||||
如果样例执行正常,应该得到以下输出。
|
||||
```text
|
||||
Output index: 0, value is: 11.000000.
|
||||
Output index: 1, value is: 13.000000.
|
||||
Output index: 2, value is: 15.000000.
|
||||
Output index: 3, value is: 17.000000.
|
||||
Output index: 4, value is: 19.000000.
|
||||
Output index: 5, value is: 21.000000.
|
||||
Output index: 6, value is: 23.000000.
|
||||
Output index: 7, value is: 25.000000.
|
||||
Output index: 8, value is: 27.000000.
|
||||
Output index: 9, value is: 29.000000.
|
||||
Output index: 10, value is: 31.000000.
|
||||
Output index: 11, value is: 33.000000.
|
||||
Output index: 0, value is: 0.000000.
|
||||
Output index: 1, value is: 2.000000.
|
||||
Output index: 2, value is: 4.000000.
|
||||
Output index: 3, value is: 6.000000.
|
||||
Output index: 4, value is: 8.000000.
|
||||
Output index: 5, value is: 10.000000.
|
||||
Output index: 6, value is: 12.000000.
|
||||
Output index: 7, value is: 14.000000.
|
||||
Output index: 8, value is: 16.000000.
|
||||
Output index: 9, value is: 18.000000.
|
||||
Output index: 10, value is: 20.000000.
|
||||
Output index: 11, value is: 22.000000.
|
||||
```
|
||||
|
||||
4. 检查模型缓存(可选)。
|
||||
@ -476,15 +688,10 @@ Neural Network Runtime的开发流程主要包含**模型构造**、**模型编
|
||||
|
||||
以下为打印结果:
|
||||
```text
|
||||
# 0.nncache cache_info.nncache
|
||||
# 0.nncache 1.nncache 2.nncache cache_info.nncache
|
||||
```
|
||||
|
||||
如果缓存不再使用,需要手动删除缓存,可以参考以下命令,删除缓存文件。
|
||||
```shell
|
||||
rm /data/local/tmp/*nncache
|
||||
```
|
||||
|
||||
## 相关实例
|
||||
|
||||
第三方AI推理框架对接Neural Network Runtime的流程,可以参考以下相关实例:
|
||||
- [Tensorflow Lite接入NNRt Delegate开发指南](https://gitee.com/openharmony-sig/neural_network_runtime/tree/master/example/deep_learning_framework)
|
||||
```
|
Loading…
Reference in New Issue
Block a user