arkcompiler_runtime_core/libpandafile/bytecode_emitter.cpp
ElevenDuan 4c383d5853 Fix codecheck 0821
Issue: https://gitee.com/openharmony/arkcompiler_ets_frontend/issues/IALI4L?from=project-issue
Signed-off-by: ElevenDuan <duanshiyi1@huawei.com>
Change-Id: I87a47de76baaaea7b680f1bcc607631f87c35ca4
2024-08-22 23:30:54 +08:00

297 lines
9.9 KiB
C++

/**
* Copyright (c) 2021-2022 Huawei Device Co., Ltd.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bytecode_emitter.h"
#include <bytecode_instruction-inl.h>
#include <macros.h>
#include <utils/bit_utils.h>
#include <utils/span.h>
namespace panda {
using Opcode = BytecodeInstruction::Opcode;
using Format = BytecodeInstruction::Format;
using BitImmSize = BytecodeEmitter::BitImmSize;
static inline constexpr BitImmSize GetBitLengthUnsigned(uint32_t val)
{
constexpr size_t BIT_4 = 4;
constexpr size_t BIT_8 = 8;
auto bitlen = MinimumBitsToStore(val);
if (bitlen <= BIT_4) {
return BitImmSize::BITSIZE_4;
}
if (bitlen <= BIT_8) {
return BitImmSize::BITSIZE_8;
}
return BitImmSize::BITSIZE_16;
}
static inline constexpr BitImmSize GetBitLengthSigned(int32_t val)
{
constexpr int32_t INT4T_MIN = -8;
constexpr int32_t INT4T_MAX = 7;
constexpr int32_t INT8T_MIN = std::numeric_limits<int8_t>::min();
constexpr int32_t INT8T_MAX = std::numeric_limits<int8_t>::max();
constexpr int32_t INT16T_MIN = std::numeric_limits<int16_t>::min();
constexpr int32_t INT16T_MAX = std::numeric_limits<int16_t>::max();
if (INT4T_MIN <= val && val <= INT4T_MAX) {
return BitImmSize::BITSIZE_4;
}
if (INT8T_MIN <= val && val <= INT8T_MAX) {
return BitImmSize::BITSIZE_8;
}
if (INT16T_MIN <= val && val <= INT16T_MAX) {
return BitImmSize::BITSIZE_16;
}
return BitImmSize::BITSIZE_32;
}
static inline void EmitImpl([[maybe_unused]] Span<uint8_t> buf, [[maybe_unused]] Span<const uint8_t> offsets) {}
template <typename Type, typename... Types>
static void EmitImpl(Span<uint8_t> buf, Span<const uint8_t> offsets, Type arg, Types... args)
{
static constexpr uint8_t BYTEMASK = 0xFF;
static constexpr uint8_t BITMASK_4 = 0xF;
static constexpr size_t BIT_4 = 4;
static constexpr size_t BIT_8 = 8;
static constexpr size_t BIT_16 = 16;
static constexpr size_t BIT_32 = 32;
static constexpr size_t BIT_64 = 64;
uint8_t offset = offsets[0];
size_t bitlen = offsets[1] - offsets[0];
size_t byte_offset = offset / BIT_8;
size_t bit_offset = offset % BIT_8;
switch (bitlen) {
case BIT_4: {
auto val = static_cast<uint8_t>(arg);
buf[byte_offset] |= static_cast<uint8_t>(static_cast<uint8_t>(val & BITMASK_4) << bit_offset);
break;
}
case BIT_8: {
auto val = static_cast<uint8_t>(arg);
buf[byte_offset] = val;
break;
}
case BIT_16: {
auto val = static_cast<uint16_t>(arg);
buf[byte_offset] = val & BYTEMASK;
buf[byte_offset + 1] = val >> BIT_8;
break;
}
case BIT_32: {
auto val = static_cast<uint32_t>(arg);
for (size_t i = 0; i < sizeof(uint32_t); i++) {
buf[byte_offset + i] = (val >> (i * BIT_8)) & BYTEMASK;
}
break;
}
case BIT_64: {
auto val = static_cast<uint64_t>(arg);
for (size_t i = 0; i < sizeof(uint64_t); i++) {
buf[byte_offset + i] = (val >> (i * BIT_8)) & BYTEMASK;
}
break;
}
default: {
UNREACHABLE();
break;
}
}
EmitImpl(buf, offsets.SubSpan(1), args...);
}
#ifndef WITH_MOCK
template <Format format, typename It, typename... Types>
static size_t Emit(It out, Types... args);
void BytecodeEmitter::Bind(const Label &label)
{
*label.pc_ = pc_;
targets_.insert(label);
}
BytecodeEmitter::ErrorCode BytecodeEmitter::Build(std::vector<uint8_t> *output)
{
ErrorCode res = CheckLabels();
if (res != ErrorCode::SUCCESS) {
return res;
}
res = ReserveSpaceForOffsets();
if (res != ErrorCode::SUCCESS) {
return res;
}
res = UpdateBranches();
if (res != ErrorCode::SUCCESS) {
return res;
}
*output = bytecode_;
return ErrorCode::SUCCESS;
}
/*
* NB! All conditional jumps with displacements not fitting into imm16
* are transformed into two instructions:
* jcc far # cc is any condiitonal code
* =>
* jCC next # CC is inverted cc
* jmp far
* next: # This label is inserted just after previous instruction.
*/
BytecodeEmitter::ErrorCode BytecodeEmitter::ReserveSpaceForOffsets()
{
uint32_t bias = 0;
std::map<uint32_t, Label> new_branches;
auto it = branches_.begin();
while (it != branches_.end()) {
uint32_t insn_pc = it->first + bias;
auto label = it->second;
BytecodeInstruction insn(&bytecode_[insn_pc]);
auto opcode = insn.GetOpcode();
const auto ENCODED_IMM_SIZE = GetBitImmSizeByOpcode(opcode);
const auto REAL_IMM_SIZE = GetBitLengthSigned(EstimateMaxDistance(insn_pc, label.GetPc(), bias));
auto new_target = insn_pc;
size_t extra_bytes = 0;
if (REAL_IMM_SIZE > ENCODED_IMM_SIZE) {
auto res = DoReserveSpaceForOffset(insn, insn_pc, REAL_IMM_SIZE, &extra_bytes, &new_target);
if (res != ErrorCode::SUCCESS) {
return res;
}
}
new_branches.insert(std::make_pair(new_target, label));
if (extra_bytes > 0) {
bias += extra_bytes;
UpdateLabelTargets(insn_pc, extra_bytes);
}
it = branches_.erase(it);
}
branches_ = std::move(new_branches);
return ErrorCode::SUCCESS;
}
BytecodeEmitter::ErrorCode BytecodeEmitter::DoReserveSpaceForOffset(const BytecodeInstruction &insn, uint32_t insn_pc,
BitImmSize expected_imm_size,
size_t *extra_bytes_ptr, uint32_t *target_ptr)
{
auto opcode = insn.GetOpcode();
const auto INSN_SIZE = GetSizeByOpcode(opcode);
auto upd_op = GetSuitableJump(opcode, expected_imm_size);
if (upd_op != Opcode::LAST) {
*extra_bytes_ptr = GetSizeByOpcode(upd_op) - INSN_SIZE;
bytecode_.insert(bytecode_.begin() + insn_pc + INSN_SIZE, *extra_bytes_ptr, 0);
} else {
*extra_bytes_ptr = GetSizeByOpcode(Opcode::JMP_IMM32);
bytecode_.insert(bytecode_.begin() + insn_pc + INSN_SIZE, *extra_bytes_ptr, 0);
upd_op = RevertConditionCode(opcode);
if (upd_op == Opcode::LAST) {
UNREACHABLE(); // no revcc and no far opcode
return ErrorCode::INTERNAL_ERROR;
}
UpdateBranchOffs(&bytecode_[insn_pc], INSN_SIZE + GetSizeByOpcode(Opcode::JMP_IMM32));
*target_ptr = insn_pc + INSN_SIZE;
Emit<Format::IMM32>(bytecode_.begin() + *target_ptr, Opcode::JMP_IMM32, 0);
}
if (BytecodeInstruction(reinterpret_cast<uint8_t *>(&upd_op)).IsPrefixed()) {
Emit<BytecodeInstruction::Format::PREF_NONE>(bytecode_.begin() + insn_pc, upd_op);
} else {
Emit<BytecodeInstruction::Format::NONE>(bytecode_.begin() + insn_pc, upd_op);
}
return ErrorCode::SUCCESS;
}
BytecodeEmitter::ErrorCode BytecodeEmitter::UpdateBranches()
{
for (std::pair<const uint32_t, Label> &branch : branches_) {
uint32_t insn_pc = branch.first;
Label label = branch.second;
auto offset = static_cast<int32_t>(label.GetPc()) - static_cast<int32_t>(insn_pc);
UpdateBranchOffs(&bytecode_[insn_pc], offset);
}
return ErrorCode::SUCCESS;
}
void BytecodeEmitter::UpdateLabelTargets(uint32_t pc, size_t bias)
{
pc_list_.push_front(pc);
Label fake(pc_list_.begin());
std::list<Label> updated_labels;
auto it = targets_.upper_bound(fake);
while (it != targets_.end()) {
Label label = *it;
it = targets_.erase(it);
*label.pc_ += bias;
updated_labels.push_back(label);
}
targets_.insert(updated_labels.begin(), updated_labels.end());
pc_list_.pop_front();
}
int32_t BytecodeEmitter::EstimateMaxDistance(uint32_t insn_pc, uint32_t target_pc, uint32_t bias) const
{
int32_t distance = 0;
uint32_t end_pc = 0;
std::map<uint32_t, Label>::const_iterator it;
if (static_cast<int64_t>(target_pc) < static_cast<int64_t>(insn_pc) + INT32_MIN ||
static_cast<int64_t>(target_pc) > static_cast<int64_t>(insn_pc) + INT32_MAX) {
LOG(ERROR, ASSEMBLER) << "Failed to emit jmp/jcc with displacement not fitting into imm32";
}
if (target_pc > insn_pc) {
it = branches_.lower_bound(insn_pc - bias);
distance = static_cast<int32_t>(target_pc - insn_pc);
end_pc = target_pc - bias;
} else if (target_pc < insn_pc) {
it = branches_.lower_bound(target_pc - bias);
distance = static_cast<int32_t>(static_cast<int64_t>(target_pc) - static_cast<int64_t>(insn_pc));
end_pc = insn_pc - bias;
} else {
// Do we support branch to itself?
return 0;
}
while (it != branches_.end() && it->first < end_pc) {
auto insn = BytecodeInstruction(&bytecode_[it->first + bias]);
auto longest = GetSizeByOpcode(GetLongestJump(insn.GetOpcode()));
distance += static_cast<int32_t>(longest - insn.GetSize());
++it;
}
return distance;
}
BytecodeEmitter::ErrorCode BytecodeEmitter::CheckLabels()
{
for (const std::pair<const uint32_t, Label> &branch : branches_) {
const Label &label = branch.second;
if (targets_.find(label) == targets_.end()) {
return ErrorCode::UNBOUND_LABELS;
}
}
return ErrorCode::SUCCESS;
}
#include <bytecode_emitter_gen.h>
#endif // WITH_MOCK
} // namespace panda