communication_ipc/README_zh.md
chenchong_666 afb0fdfdad 修改rust文档说明
Signed-off-by: chenchong_666 <chenchong57@huawei.com>
2023-08-25 15:05:40 +08:00

29 KiB
Raw Blame History

IPC/RPC组件

简介

IPCInter-Process Communication与RPCRemote Procedure Call机制用于实现跨进程通信不同的是前者使用Binder驱动用于设备内的跨进程通信而后者使用软总线驱动用于跨设备跨进程通信。IPC和RPC通常采用客户端-服务器Client-Server模型服务请求方Client可获取提供服务提供方Server的代理 Proxy并通过此代理读写数据来实现进程间的数据通信。通常系统能力System AbilityServer侧会先注册到系统能力管理者System Ability Manager缩写SAMgrSAMgr负责管理这些SA并向Client提供相关的接口。Client要和某个具体的SA通信必须先从SAMgr中获取该SA的代理然后使用代理和SA通信。三方应用可以使用FA提供的接口绑定服务提供方的Ability获取代理进行通信。下文使用Proxy表示服务请求方Stub表示服务提供方。

系统架构

图 1 IPC通信机制架构图

目录

/foundation/communication/ipc
├── interfaces        # 对外接口存放目录
│   └── innerkits     # 对内部子系统暴露的头文件存放目录
│       ├── ipc_core     # ipc 接口存放目录
│       └── libdbinder   # dbinder 接口存放目录
├── ipc            # ipc 框架代码
│   ├── native     # ipc native 实现存放目录
│       ├── src    # ipc native 源代码存放目录
│       └── test   # ipc native 单元测试用例存放目录
│   └── test       # ipc native 模块测试用例存放目录
├── service        # dbinder 实现存放目录
│   └── dbinder    # dbinder 源代码存放目录

约束

  1. 单个设备上跨进程通信时传输的数据量最大约为1MB过大的数据量请使用匿名共享内存。
  2. 不支持把跨设备的Proxy对象传递回该Proxy对象所指向的Stub对象所在的设备。

编译构建

JS侧依赖

import rpc from "@ohos.rpc"

Native侧编译依赖

sdk依赖

external_deps = [
  "ipc:ipc_core",
]

此外, IPC/RPC依赖的refbase实现在公共基础库下请增加对utils的依赖

external_deps = [
  "c_utils:utils",
]

Rust侧编译依赖

external_deps = [ "ipc:ipc_rust" ]

说明

JS侧实现跨进程通信基本步骤

  1. 获取代理

    使用ohos.app.ability.UIAbility提供的globalThis.context.connectServiceExtensionAbility方法绑定Ability在参数里指定要绑定的Ability所在应用的包名、组件名如果是跨设备的情况还需要指定所在设备的NetworkId。用户需要在服务端的onConnect方法里返回一个继承自ohos.rpc.RemoteObject的对象此对象会在其onRemoteMessageRequest方法里接收到请求。

  2. 发送请求

    客户端在globalThis.context.connectServiceExtensionAbility参数指定的回调函数接收到代理对象后使用ohos.rpc模块提供的方法完成RPC通信其中MessageParcel提供了读写各种类型数据的方法IRemoteObject提供了发送请求的方法RemoteObject提供了处理请求的方法onRemoteRequest用户需要重写。

Native侧实现跨进程通信的基本步骤

  1. 定义接口类

    接口类继承IRemoteBroker定义描述符、业务函数和消息码。

  2. 实现服务提供端Stub

    Stub继承IRemoteStub(Native)除了接口类中未实现方法外还需要实现AsObject方法及OnRemoteRequest方法。

  3. 实现服务请求端Proxy

    Proxy继承IRemoteProxy(Native)封装业务函数调用SendRequest将请求发送到Stub。

  4. 注册SA

    服务提供方所在进程启动后申请SA的唯一标识将Stub注册到SAMgr。

  5. 获取SA

  6. 通过SA的标识和设备NetworkId从SAMgr获取Proxy通过Proxy实现与Stub的跨进程通信。

Rust侧实现跨进程通信的基本步骤

  1. 定义接口

    继承IPC框架的IRemoteBroker特征定义一个业务自己的trait在此trait中定义proxy和stub之间的IPC方法。

  2. 定义服务

    和c++ 定义的服务类似Rust服务相关的类型有两个

    1由业务提供名字通过宏define_remote_object定义。

    2由业务定义框架不关心其内容只要求其必须实现步骤1中定义的接口trait。

  3. 定义代理

    代理的定义由业务提供名字通过宏define_remote_object定义代理的类型。

  4. 创建并注册服务

    服务定义完成后只有注册到samgr后其他进程才能获取该服务的代理完成和该服务的通信。

  5. 获取代理

    通过向samgr发起请求可以获取到指定服务的代理对象之后便可以调用该代理对象的IPC方法实现和服务的通信。

  6. 测试服务能力

接口说明

表 1 JS侧IPC关键API

模块 方法 功能说明
ohos.app.ability.UIAbility globalThis.context.connectServiceExtensionAbility(want: Want, options:ConnectOptions ): number 绑定指定的Ability在回调函数里接收代理对象
ohos.rpc.RemoteObject onRemoteMessageRequest(code: number, data: MessageParcel, reply: MessageParcel, options: MessageOption): boolean | Promise 服务端处理请求,返回结果
ohos.rpc.IRemoteObject sendRequest(code: number, data: MessageParcel, reply: MessageParcel, options: MessageOption): Promise 发送请求,在期约里接收结果
ohos.rpc.IRemoteObject sendRequest(code: number, data: MessageParcel, reply: MessageParcel, options: MessageOption, callback: AsyncCallback): void 发送请求,在回调函数里接收结果
ohos.rpc.MessageParcel writeRemoteObject(object: IRemoteObject): boolean 序列化IRemoteObject对象
ohos.rpc.MessageParcel readRemoteObject(): IRemoteObject 反序列化IRemoteObject对象

表 2 Native侧IPC接口

类/接口

方法

功能说明

IRemoteBroker

sptr<IRemoteObject> AsObject()

返回通信对象。派生类需要实现Stub端返回RemoteObject对象本身Proxy端返回代理对象。

IRemoteStub

virtual int OnRemoteRequest(uint32_t code, MessageParcel &data, MessageParcel &reply, MessageOption &option)

请求处理方法派生类需要重写处理Proxy的请求并返回结果。

IRemoteProxy

  

业务Proxy类派生自IRemoteProxy类。

使用说明

JS侧使用说明

  1. 客户端构造变量want指定要绑定的Ability所在应用的包名、组件名如果是跨设备的场景还需要目标设备NetworkId。构造变量connect指定绑定成功、绑定失败、断开连接时的回调函数。使用UIAbility提供的接口绑定Ability。

    import rpc from "@ohos.rpc"
    
    let proxy = null
    let connectId = null
    
    // 单个设备
    let want = {
        // 包名和组件名写实际的值
        "bundleName": "ohos.rpc.test.server",
        "abilityName": "ohos.rpc.test.server.ServiceAbility",
    }
    let connect = {
        onConnect:function(elementName, remote) {
            proxy = remote
        },
        onDisconnect:function(elementName) {
        },
        onFailed:function() {
            proxy = null
        }
    }
    connectId = globalThis.context.connectServiceExtensionAbility(want, connect)
    
    // 如果是跨设备绑定可以使用deviceManager获取目标设备NetworkId
    import deviceManager from '@ohos.distributedHardware.deviceManager'
    function deviceManagerCallback(deviceManager) {
        let deviceList = deviceManager.getTrustedDeviceListSync()
        let deviceId = deviceList[0].deviceId
        let want = {
            "bundleName": "ohos.rpc.test.server",
            "abilityName": "ohos.rpc.test.service.ServiceAbility",
            "deviceId": deviceId,
            "flags": 256
        }
        connectId = globalThis.context.connectServiceExtensionAbility(want, connect)
    }
    // 第一个参数是本应用的包名第二个参数是接收deviceManager的回调函数
    deviceManager.createDeviceManager("ohos.rpc.test", deviceManagerCallback)
    
  2. 服务端被绑定的Ability在onConnect方法里返回继承自rpc.RemoteObject的对象该对象需要实现onRemoteMessageRequest方法处理客户端的请求。

    import rpc from "@ohos.rpc"
    onConnect(want: Want) {
        var robj:rpc.RemoteObject = new Stub("rpcTestAbility")
        return robj
    }
    class Stub extends rpc.RemoteObject {
        constructor(descriptor) {
            super(descriptor)
        }
        onRemoteMessageRequest(code, data, reply, option) {
            // 根据code处理客户端的请求
            return true
        }
    }
    
  3. 客户端在onConnect回调里接收到代理对象调用sendRequest方法发起请求在期约或者回调函数里接收结果。

    import rpc from "@ohos.rpc"
    // 使用期约
    let option = new rpc.MessageOption()
    let data = rpc.MessageParcel.create()
    let reply = rpc.MessageParcel.create()
    // 往data里写入参数
    proxy.sendRequest(1, data, reply, option)
        .then(function(result) {
            if (result.errCode != 0) {
                console.error("send request failed, errCode: " + result.errCode)
                return
            }
            // 从result.reply里读取结果
        })
        .catch(function(e) {
            console.error("send request got exception: " + e)
        }
        .finally(() => {
            data.reclaim()
            reply.reclaim()
        })
    
    // 使用回调函数
    function sendRequestCallback(result) {
        try {
            if (result.errCode != 0) {
                console.error("send request failed, errCode: " + result.errCode)
                return
            }
            // 从result.reply里读取结果
        } finally {
            result.data.reclaim()
            result.reply.reclaim()
        }
    }
    let option = new rpc.MessageOption()
    let data = rpc.MessageParcel.create()
    let reply = rpc.MessageParcel.create()
    // 往data里写入参数
    proxy.sendRequest(1, data, reply, option, sendRequestCallback)
    
  4. IPC通信结束后使用UIAbility的接口断开连接。

    import rpc from "@ohos.rpc"
    globalThis.context.disconnectServiceExtensionAbility(connectionId).then((data) => {
        console.info('disconnectServiceExtensionAbility success');
    }).catch((error) => {
        console.error('disconnectServiceExtensionAbility failed');
    })
    

Native侧使用说明

  1. 定义IPC接口ITestAbility

    IPC接口继承IPC基类接口IRemoteBroker接口里定义描述符、业务函数和消息码其中业务函数在Proxy端和Stub端都需要实现。

    class ITestAbility : public IRemoteBroker {
    public:
    // DECLARE_INTERFACE_DESCRIPTOR是必须的 入参需使用std::u16string
    DECLARE_INTERFACE_DESCRIPTOR(u"test.ITestAbility"); // DESCRIPTOR接口描述符建议使用"组件名.类名"的格式
    int TRANS_ID_PING_ABILITY = 1; // 定义消息码
    virtual int TestPingAbility(const std::u16string &dummy) = 0; // 定义业务函数
    };
    
  2. 定义和实现服务端TestAbilityStub

    该类是和IPC框架相关的实现需要继承自IRemoteStub<ITestAbility>。Stub端作为接收请求的一端需重写OnRemoteRequest方法用于接收客户端调用。

    class TestAbilityStub : public IRemoteStub<ITestAbility> {
    public:
        virtual int OnRemoteRequest(uint32_t code, MessageParcel &data, MessageParcel &reply, MessageOption &option) override;
        int TestPingAbility(const std::u16string &dummy) override;
    };
    
    int TestAbilityStub::OnRemoteRequest(uint32_t code,
        MessageParcel &data, MessageParcel &reply, MessageOption &option)
    {
        if (data.ReadInterfaceToken() != GetDescriptor()) { // 校验是否为本服务的接口描述符,避免中继攻击
            return -1;
        }
        switch (code) {
            case TRANS_ID_PING_ABILITY: {
                std::u16string dummy = data.ReadString16();
                int result = TestPingAbility(dummy);
                reply.WriteInt32(result);
                return 0;
            }
            default:
                return IPCObjectStub::OnRemoteRequest(code, data, reply, option);
        }
    }
    
  3. 定义服务端业务函数具体实现类TestAbility

    class TestAbility : public TestAbilityStub {
    public:
        int TestPingAbility(const std::u16string &dummy);
    }
    
    int TestAbility::TestPingAbility(const std::u16string &dummy) {
        return 0;
    }
    
  4. 定义和实现客户端TestAbilityProxy

    该类是Proxy端实现继承自IRemoteProxy<ITestAbility>调用SendRequest接口向Stub端发送请求对外暴露服务端提供的能力。

    class TestAbilityProxy : public IRemoteProxy<ITestAbility> {
    public:
        explicit TestAbilityProxy(const sptr<IRemoteObject> &impl);
        int TestPingService(const std::u16string &dummy) override;
    private:
        static inline BrokerDelegator<TestAbilityProxy> delegator_; // 方便使用iface_cast宏
    }
    
    TestAbilityProxy::TestAbilityProxy(const sptr<IRemoteObject> &impl)
        : IRemoteProxy<ITestAbility>(impl)
    {
    }
    
    int TestAbilityProxy::TestPingService(const std::u16string &dummy) {
        MessageOption option;
        MessageParcel dataParcel, replyParcel;
        if(!dataParcel.WriteInterfaceToken(GetDescriptor())) { // 所有对外接口的proxy实现都要写入接口描述符用于stub端检验
            return -1;
        }
        if(!dataParcel.WriteString16(dummy)) {
            return -1;
        }
        int error = Remote()->SendRequest(TRANS_ID_PING_ABILITY, dataParcel, replyParcel, option);
        int result = (error == ERR_NONE) ? replyParcel.ReadInt32() : -1;
        return result;
    }
    
  5. 同步调用与异步调用

    MessageOption作为发送接口原型如下的入参可设定同步TF_SYNC、异步TF_ASYNC默认情况下设定为同步其余可通过MessageOption构造方法或void SetFlags(int flags)设定。

    int SendRequest(uint32_t code, MessageParcel &data,
        MessageParcel &reply, MessageOption &option) override;
    MessageOption option;
    option.setFlags(option.TF_ASYNC);
    
  6. SA注册与启动

    SA需要将自己的TestAbilityStub实例通过AddSystemAbility接口注册到SystemAbilityManager设备内与分布式的注册参数不同。

    // 注册到本设备内
    auto samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
    samgr->AddSystemAbility(said, new TestAbility());
    
    // 在组网场景下,会被同步到其他设备上
    auto samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
    ISystemAbilityManager::SAExtraProp saExtra;
    saExtra.isDistributed = true; // 设置为分布式SA
    int result = samgr->AddSystemAbility(said, new TestAbility(), saExtra);
    
  7. SA获取与调用

    通过SystemAbilityManager的GetSystemAbility方法可获取到对应SA的代理IRemoteObject然后构造TestAbilityProxy即可。

    // 获取本设备内注册的SA的proxy
    sptr<ISystemAbilityManager> samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
    sptr<IRemoteObject> remoteObject = samgr->GetSystemAbility(said);
    sptr<ITestAbility> testAbility = iface_cast<ITestAbility>(remoteObject); // 使用iface_cast宏转换成具体类型
    
    // 获取其他设备注册的SA的Proxy
    sptr<ISystemAbilityManager> samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
    sptr<IRemoteObject> remoteObject = samgr->GetSystemAbility(sdid, deviceId); // deviceId是指定设备的标识符
    sptr<TestAbilityProxy> proxy(new TestAbilityProxy(remoteObject)); // 直接构造具体Proxy
    

Rust侧使用说明

以下为CALCULATOR服务的完整开发步骤。

  1. 定义接口

    继承IPC框架IRemoteBroker特征定义一个业务自己的trait该trait中定义proxy和stub之间的IPC方法。示例如下定义了ICalc trait:

    /// Function between proxy and stub of ICalcService
    pub trait ICalc: IRemoteBroker {
        /// Calc add num1 + num2
        fn add(&self, num1: i32, num2: i32) -> IpcResult<i32>;
        /// Calc sub num1 + num2
        fn sub(&self, num1: i32, num2: i32) -> IpcResult<i32>;
        /// Calc mul num1 + num2
        fn mul(&self, num1: i32, num2: i32) -> IpcResult<i32>;
        /// Calc div num1 + num2
        fn div(&self, num1: i32, num2: i32) -> IpcResult<i32>;
    }
    

    1.1 定义枚举ICalcCode

    ICalcCode枚举中的变体表示calculator服务的不同功能。当然这一步不是必须的但是为了提高代码的可读性建议按照如下方法为每一个IPC方法定义code,示例如下:

    /// Function code of ICalcService
    pub enum ICalcCode {
        /// add
        CodeAdd = FIRST_CALL_TRANSACTION, // 由IPC框架定义值为1建议业务使用该值作为第一个IPC方法的code
        /// sub
        CodeSub,
        /// mul
        CodeMul,
        /// div
        CodeDiv,
    }
    

    1.2 ICalCode转换

    ICalCode实现TryFrom trait可以实现u32类型到CalCode枚举类型的转换。

    impl TryFrom<u32> for ICalcCode {
        type Error = IpcStatusCode;
        fn try_from(code: u32) -> IpcResult<Self> {
            match code {
                _ if code == ICalcCode::CodeAdd as u32 => Ok(ICalcCode::CodeAdd),
                _ if code == ICalcCode::CodeSub as u32 => Ok(ICalcCode::CodeSub),
                _ if code == ICalcCode::CodeMul as u32 => Ok(ICalcCode::CodeMul),
                _ if code == ICalcCode::CodeDiv as u32 => Ok(ICalcCode::CodeDiv),
                _ => Err(IpcStatusCode::Failed),
            }
        }
    }
    
  2. 定义服务

    和c++ 定义的服务类似Rust服务相关的类型有两个

    1由业务提供名字通过宏define_remote_object!定义如本例中的CalcStub。

    2由业务定义框架不关心其内容只要求其必须实现步骤1中定义的接口trait如本例中的CalcService。

    2.1 定义CalcService服务

    CalcService的定义如下所示实现了ICalc和IRemoteBroker特征服务中没有任何成员如有需要可以根据业务需要进行定义。

    /// example.calc.ipc.ICalcService type
    pub struct CalcService;
    // 实现ICalc特征
    impl ICalc for CalcService {
        fn add(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            Ok(add(&num1, &num2))
        }
        fn sub(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            Ok(sub(&num1, &num2))
        }
        fn mul(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            Ok(mul(&num1, &num2))
        }
        fn div(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            Ok(div(&num1, &num2))
        }
    }
    // 实现IRemoteBroker特征
    impl IRemoteBroker for CalcService {}
    /// add num1 + num2
    pub fn add(num1: &i32, num2: &i32) -> i32 {
        num1 + num2
    }
    /// sub num1 + num2
    pub fn sub(num1: &i32, num2: &i32) -> i32 {
        num1 - num2
    }
    /// mul num1 + num2
    pub fn mul(num1: &i32, num2: &i32) -> i32 {
        num1 * num2
    }
    /// div num1 + num2
    pub fn div(num1: &i32, num2: &i32) -> i32 {
        match num2 {
            0 => {
                println!("Zero cannot be divided");
                -1
            },
            _ => num1 / num2,
        }
    }
    

    2.2 实现on_icalc_remote_request()方法

    当服务收到IPC请求IPC框架会回调该方法业务在该方法中完成如下处理

    1完成参数的解析。

    2调用具体的服务IPC方法。

    3将处理结果写会reply。

    示例代码如下:

    fn on_icalc_remote_request(stub: &dyn ICalc, code: u32, data: &BorrowedMsgParcel,
        reply: &mut BorrowedMsgParcel) -> IpcResult<()> {
        match code.try_into()? {
            ICalcCode::CodeAdd => {
                let num1: i32 = data.read().expect("Failed to read num1 in addition operation");
                let num2: i32 = data.read().expect("Failed to read num2 in addition operation");
                let ret = stub.add(num1, num2)?;
                reply.write(&ret)?;
                Ok(())
            }
            ICalcCode::CodeSub => {
                let num1: i32 = data.read().expect("Failed to read num1 in subtraction operation");
                let num2: i32 = data.read().expect("Failed to read num1 in subtraction operation");
                let ret = stub.sub(num1, num2)?;
                reply.write(&ret)?;
                Ok(())
            }
            ICalcCode::CodeMul => {
                let num1: i32 = data.read().expect("Failed to read num1 in multiplication operation");
                let num2: i32 = data.read().expect("Failed to read num1 in multiplication operation");
                let ret = stub.mul(num1, num2)?;
                reply.write(&ret)?;
                Ok(())
            }
            ICalcCode::CodeDiv => {
                let num1: i32 = data.read().expect("Failed to read num1 in division  operation");
                let num2: i32 = data.read().expect("Failed to read num1 in division  operation");
                let ret = stub.div(num1, num2)?;
                reply.write(&ret)?;
                Ok(())
            }
        }
    }
    
  3. 定义代理

    代理的定义由业务提供名字通过宏define_remote_object定义代理的类型业务需要为代理实现ICalc。示例如下

    impl ICalc for CalcProxy {
        fn add(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            let mut data = MsgParcel::new().expect("MsgParcel should success");
            data.write(&num1)?;
            data.write(&num2)?;
            let reply = self.remote.send_request(ICalcCode::CodeAdd as u32,
                &data, false)?;
            let ret: i32 = reply.read().expect("need reply i32");
            Ok(ret)
        }
        fn sub(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            let mut data = MsgParcel::new().expect("MsgParcel should success");
            data.write(&num1)?;
            data.write(&num2)?;
            let reply = self.remote.send_request(ICalcCode::CodeSub as u32,
                &data, false)?;
            let ret: i32 = reply.read().expect("need reply i32");
            Ok(ret)
        }
        fn mul(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            let mut data = MsgParcel::new().expect("MsgParcel should success");
            data.write(&num1)?;
            data.write(&num2)?;
            let reply = self.remote.send_request(ICalcCode::CodeMul as u32,
                &data, false)?;
            let ret: i32 = reply.read().expect("need reply i32");
            Ok(ret)
        }
        fn div(&self, num1: i32, num2: i32) -> IpcResult<i32> {
            let mut data = MsgParcel::new().expect("MsgParcel should success");
            data.write(&num1)?;
            data.write(&num2)?;
            let reply = self.remote.send_request(ICalcCode::CodeDiv as u32,
                &data, false)?;
            let ret: i32 = reply.read().expect("need reply i32");
            Ok(ret)
        }
    }
    

    上述对象最终通过宏define_remote_object调用将业务定义的类型和IPC框架进行结合宏define_remote_object提供了如下几个关键信息

    1服务的接口特征ICalc。

    2服务的描述符为“example.calc.ipc.ICalcService”。

    3Rust服务类型名为CalcStub。

    4服务处理IPC请求的入口方法为on_icalc_remote_request。

    5代理类型为CalcProxy。

    示例代码如下:

    define_remote_object!(
        ICalc["example.calc.ipc.ICalcService"] {
            stub: CalcStub(on_icalc_remote_request),
            proxy: CalcProxy,
        }
    );
    
  4. 创建并注册服务

服务定义完成后只有注册到samgr后其他进程才能获取该服务的代理然后完成和该服务的通信。示例代码如下

fn main() {
    init_access_token();
    // 创建服务对象最终的服务对象为CalcStub
    let service = CalcStub::new_remote_stub(CalcService).expect("create CalcService success");
    // 向samgr注册服务
    add_service(&service.as_object().expect("get ICalc service failed"),
        EXAMPLE_IPC_CALC_SERVICE_ID).expect("add server to samgr failed");
    println!("join to ipc work thread");
    // 将主线程转换为IPC线程至此服务所在进程陷入循环
    join_work_thread();
}

注意add_service为IPC 框架提供的临时调试接口该接口应该由samgr模块提供。

  1. 获取代理

    通过向samgr发起请求可以获取到指定服务的代理对象之后便可以调用该代理对象的IPC方法实现和服务的通信。示例代码如下

    fn get_calc_service() -> RemoteObjRef<dyn ICalc>
    {
        let object = get_service(EXAMPLE_IPC_CALC_SERVICE_ID).expect("get icalc service failed");
        let remote = <dyn ICalc as FromRemoteObj>::try_from(object);
        let remote = match remote {
            Ok(x) => x,
            Err(error) => {
                println!("convert RemoteObj to CalcProxy failed: {}", error);
                panic!();
            }
        };
        remote
    }
    

    注意示例中的get_service()为IPC框架提供的临时接口该接口由samgr模块提供。

  2. 测试Calculartor服务能力

    当测试用例Calculator_Ability pass表示CalcService 服务能力ok。

    #[test]
    fn calculator_ability() {
        let remote = get_calc_service();
        // add
        let ret = remote.add(5, 5).expect("add failed");
        assert_eq!(ret, 10);
        // sub
        let ret = remote.sub(5, 5).expect("sub failed");
        assert_eq!(ret, 0);
        // mul
        let ret = remote.mul(5, 5).expect("mul failed");
        assert_eq!(ret, 25);
        // div
        let ret = remote.div(5, 5).expect("div failed");
        assert_eq!(ret, 1);
    }
    

相关仓

分布式软总线子系统

communication_ipc

commonlibrary_c_utils

distributedschedule_samgr