mirror of
https://gitee.com/openharmony/global_i18n
synced 2024-11-30 10:40:55 +00:00
a13bab1f0b
Signed-off-by: 王剑 <wangjian497@huawei.com>
153 lines
4.6 KiB
Python
153 lines
4.6 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
"""
|
|
* Copyright (c) 2022 Huawei Device Co., Ltd.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
"""
|
|
import re
|
|
import os
|
|
import logging
|
|
import pickle
|
|
import png
|
|
|
|
|
|
def read_data(filename):
|
|
data_res = {}
|
|
loc_pattern = re.compile("\(.*\)")
|
|
tz_pattern = re.compile("\[.*\]")
|
|
raw_lines = []
|
|
with open(filename, "r") as f:
|
|
lines = f.readlines()
|
|
for line in lines:
|
|
raw_lines.append(line)
|
|
for line in raw_lines:
|
|
line = line.strip()
|
|
loc = re.search(loc_pattern, line).group()
|
|
tz = re.search(tz_pattern, line).group()
|
|
location = eval(loc)
|
|
timezones = tz[1:-1].split(",")
|
|
data_res[location] = timezones
|
|
with os.fdopen(os.open("data/loc2tz.pickle", os.O_RDWR | os.O_CREAT, 0o640), "wb") as f:
|
|
pickle.dump(data_res, f)
|
|
return data_res
|
|
|
|
|
|
def load_data(pickle_name):
|
|
with open(pickle_name, "rb") as f:
|
|
loaded_data = pickle.load(f)
|
|
return loaded_data
|
|
|
|
|
|
def classify_timezones(data_input):
|
|
group_wn = set()
|
|
group_en = set()
|
|
group_ws = set()
|
|
group_es = set()
|
|
for loc, tzs in data_input.items():
|
|
if loc[0] < 0 and loc[1] >= 0:
|
|
for tz in tzs:
|
|
group_wn.add(tz)
|
|
elif loc[0] >= 0 and loc[1] >= 0:
|
|
for tz in tzs:
|
|
group_en.add(tz)
|
|
elif loc[0] < 0 and loc[1] < 0:
|
|
for tz in tzs:
|
|
group_ws.add(tz)
|
|
else:
|
|
for tz in tzs:
|
|
group_es.add(tz)
|
|
return [group_wn, group_en, group_ws, group_es]
|
|
|
|
|
|
def numerized_dictionary(classes):
|
|
numerized_classes = []
|
|
for group in classes:
|
|
temp_group = {}
|
|
sgroup = list(group)
|
|
sgroup.sort()
|
|
for num, name in enumerate(sgroup):
|
|
temp_group[name] = num
|
|
numerized_classes.append(temp_group)
|
|
for i, c in enumerate(numerized_classes):
|
|
logging.info(i)
|
|
logging.info(c)
|
|
return numerized_classes
|
|
|
|
|
|
def export_numerized_dicts(numerized_classes):
|
|
with os.fdopen(os.open("data/name2num.txt", os.O_RDWR | os.O_CREAT, 0o640), "w", encoding="utf-8") as f:
|
|
f.write(str(numerized_classes))
|
|
num2name_dict_list = []
|
|
for d in numerized_classes:
|
|
num2name = dict(zip(d.values(), d.keys()))
|
|
num2name_dict_list.append(num2name)
|
|
with os.fdopen(os.open("data/num2name.txt", os.O_RDWR | os.O_CREAT, 0o640), "w", encoding="utf-8") as f:
|
|
f.write(str(num2name_dict_list))
|
|
|
|
|
|
def generate_array_from_data(data_input, numerized_classes):
|
|
total_nums_list = []
|
|
for key, val in data_input.items():
|
|
original_keys = key
|
|
if original_keys[0] < 0 and original_keys[1] >= 0:
|
|
quater = 0
|
|
elif original_keys[0] >= 0 and original_keys[1] >= 0:
|
|
quater = 1
|
|
elif original_keys[0] < 0 and original_keys[1] < 0:
|
|
quater = 2
|
|
else:
|
|
quater = 3
|
|
names_l = []
|
|
for v in val:
|
|
names_l.append(numerized_classes[quater][v])
|
|
nums_l = [255, 255, 255]
|
|
for i in enumerate(names_l):
|
|
nums_l[i[0]] = names_l[i[0]]
|
|
total_nums_list += nums_l
|
|
return total_nums_list
|
|
|
|
|
|
def group_in_total(total_list):
|
|
i = 0
|
|
map_of_array = []
|
|
col_of_array = []
|
|
for item in total_list:
|
|
col_of_array.append(item)
|
|
i += 1
|
|
if i == 1800 * 3:
|
|
map_of_array.append(col_of_array)
|
|
col_of_array = []
|
|
i = 0
|
|
return map_of_array
|
|
|
|
|
|
def pack2png(map_of_array):
|
|
png.from_array(map_of_array, "RGB").save("data/loc2tz.dat")
|
|
|
|
|
|
def save_png_test():
|
|
array_one_point = [255, 0, 0]
|
|
array_one_row = [array_one_point] * 3600
|
|
array_map = [array_one_row] * 1800
|
|
png.from_array(array_map, "RGB").save("03.png")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
read_data("data/location2tz.txt")
|
|
data = load_data("data/loc2tz.pickle")
|
|
name_classes = classify_timezones(data)
|
|
nmrzd_classes = numerized_dictionary(name_classes)
|
|
export_numerized_dicts(nmrzd_classes)
|
|
t_list = generate_array_from_data(data, nmrzd_classes)
|
|
map_array = group_in_total(t_list)
|
|
pack2png(map_array) |