mirror of
https://gitee.com/openharmony/kernel_linux
synced 2025-01-05 15:30:35 +00:00
[PATCH] knfsd: Update rpc-cache.txt to match recent changes
Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
ad1b5229de
commit
4912147167
@ -1,4 +1,4 @@
|
||||
This document gives a brief introduction to the caching
|
||||
This document gives a brief introduction to the caching
|
||||
mechanisms in the sunrpc layer that is used, in particular,
|
||||
for NFS authentication.
|
||||
|
||||
@ -25,25 +25,17 @@ The common code handles such things as:
|
||||
- supporting 'NEGATIVE' as well as positive entries
|
||||
- allowing an EXPIRED time on cache items, and removing
|
||||
items after they expire, and are no longe in-use.
|
||||
|
||||
Future code extensions are expect to handle
|
||||
- making requests to user-space to fill in cache entries
|
||||
- allowing user-space to directly set entries in the cache
|
||||
- delaying RPC requests that depend on as-yet incomplete
|
||||
cache entries, and replaying those requests when the cache entry
|
||||
is complete.
|
||||
- maintaining last-access times on cache entries
|
||||
- clean out old entries when the caches become full
|
||||
|
||||
The code for performing a cache lookup is also common, but in the form
|
||||
of a template. i.e. a #define.
|
||||
Each cache defines a lookup function by using the DefineCacheLookup
|
||||
macro, or the simpler DefineSimpleCacheLookup macro
|
||||
- clean out old entries as they expire.
|
||||
|
||||
Creating a Cache
|
||||
----------------
|
||||
|
||||
1/ A cache needs a datum to cache. This is in the form of a
|
||||
1/ A cache needs a datum to store. This is in the form of a
|
||||
structure definition that must contain a
|
||||
struct cache_head
|
||||
as an element, usually the first.
|
||||
@ -51,35 +43,69 @@ Creating a Cache
|
||||
Each cache element is reference counted and contains
|
||||
expiry and update times for use in cache management.
|
||||
2/ A cache needs a "cache_detail" structure that
|
||||
describes the cache. This stores the hash table, and some
|
||||
parameters for cache management.
|
||||
3/ A cache needs a lookup function. This is created using
|
||||
the DefineCacheLookup macro. This lookup function is used both
|
||||
to find entries and to update entries. The normal mode for
|
||||
updating an entry is to replace the old entry with a new
|
||||
entry. However it is possible to allow update-in-place
|
||||
for those caches where it makes sense (no atomicity issues
|
||||
or indirect reference counting issue)
|
||||
4/ A cache needs to be registered using cache_register(). This
|
||||
includes in on a list of caches that will be regularly
|
||||
cleaned to discard old data. For this to work, some
|
||||
thread must periodically call cache_clean
|
||||
|
||||
describes the cache. This stores the hash table, some
|
||||
parameters for cache management, and some operations detailing how
|
||||
to work with particular cache items.
|
||||
The operations requires are:
|
||||
struct cache_head *alloc(void)
|
||||
This simply allocates appropriate memory and returns
|
||||
a pointer to the cache_detail embedded within the
|
||||
structure
|
||||
void cache_put(struct kref *)
|
||||
This is called when the last reference to an item is
|
||||
is dropped. The pointer passed is to the 'ref' field
|
||||
in the cache_head. cache_put should release any
|
||||
references create by 'cache_init' and, if CACHE_VALID
|
||||
is set, any references created by cache_update.
|
||||
It should then release the memory allocated by
|
||||
'alloc'.
|
||||
int match(struct cache_head *orig, struct cache_head *new)
|
||||
test if the keys in the two structures match. Return
|
||||
1 if they do, 0 if they don't.
|
||||
void init(struct cache_head *orig, struct cache_head *new)
|
||||
Set the 'key' fields in 'new' from 'orig'. This may
|
||||
include taking references to shared objects.
|
||||
void update(struct cache_head *orig, struct cache_head *new)
|
||||
Set the 'content' fileds in 'new' from 'orig'.
|
||||
int cache_show(struct seq_file *m, struct cache_detail *cd,
|
||||
struct cache_head *h)
|
||||
Optional. Used to provide a /proc file that lists the
|
||||
contents of a cache. This should show one item,
|
||||
usually on just one line.
|
||||
int cache_request(struct cache_detail *cd, struct cache_head *h,
|
||||
char **bpp, int *blen)
|
||||
Format a request to be send to user-space for an item
|
||||
to be instantiated. *bpp is a buffer of size *blen.
|
||||
bpp should be moved forward over the encoded message,
|
||||
and *blen should be reduced to show how much free
|
||||
space remains. Return 0 on success or <0 if not
|
||||
enough room or other problem.
|
||||
int cache_parse(struct cache_detail *cd, char *buf, int len)
|
||||
A message from user space has arrived to fill out a
|
||||
cache entry. It is in 'buf' of length 'len'.
|
||||
cache_parse should parse this, find the item in the
|
||||
cache with sunrpc_cache_lookup, and update the item
|
||||
with sunrpc_cache_update.
|
||||
|
||||
|
||||
3/ A cache needs to be registered using cache_register(). This
|
||||
includes it on a list of caches that will be regularly
|
||||
cleaned to discard old data.
|
||||
|
||||
Using a cache
|
||||
-------------
|
||||
|
||||
To find a value in a cache, call the lookup function passing it a the
|
||||
datum which contains key, and possibly content, and a flag saying
|
||||
whether to update the cache with new data from the datum. Depending
|
||||
on how the cache lookup function was defined, it may take an extra
|
||||
argument to identify the particular cache in question.
|
||||
To find a value in a cache, call sunrpc_cache_lookup passing a pointer
|
||||
to the cache_head in a sample item with the 'key' fields filled in.
|
||||
This will be passed to ->match to identify the target entry. If no
|
||||
entry is found, a new entry will be create, added to the cache, and
|
||||
marked as not containing valid data.
|
||||
|
||||
Except in cases of kmalloc failure, the lookup function
|
||||
will return a new datum which will store the key and
|
||||
may contain valid content, or may not.
|
||||
This datum is typically passed to cache_check which determines the
|
||||
validity of the datum and may later initiate an upcall to fill
|
||||
in the data.
|
||||
The item returned is typically passed to cache_check which will check
|
||||
if the data is valid, and may initiate an up-call to get fresh data.
|
||||
cache_check will return -ENOENT in the entry is negative or if an up
|
||||
call is needed but not possible, -EAGAIN if an upcall is pending,
|
||||
or 0 if the data is valid;
|
||||
|
||||
cache_check can be passed a "struct cache_req *". This structure is
|
||||
typically embedded in the actual request and can be used to create a
|
||||
@ -90,6 +116,13 @@ item does become valid, the deferred copy of the request will be
|
||||
revisited (->revisit). It is expected that this method will
|
||||
reschedule the request for processing.
|
||||
|
||||
The value returned by sunrpc_cache_lookup can also be passed to
|
||||
sunrpc_cache_update to set the content for the item. A second item is
|
||||
passed which should hold the content. If the item found by _lookup
|
||||
has valid data, then it is discarded and a new item is created. This
|
||||
saves any user of an item from worrying about content changing while
|
||||
it is being inspected. If the item found by _lookup does not contain
|
||||
valid data, then the content is copied across and CACHE_VALID is set.
|
||||
|
||||
Populating a cache
|
||||
------------------
|
||||
@ -114,8 +147,8 @@ should be create or updated to have the given content, and the
|
||||
expiry time should be set on that item.
|
||||
|
||||
Reading from a channel is a bit more interesting. When a cache
|
||||
lookup fail, or when it suceeds but finds an entry that may soon
|
||||
expiry, a request is lodged for that cache item to be updated by
|
||||
lookup fails, or when it succeeds but finds an entry that may soon
|
||||
expire, a request is lodged for that cache item to be updated by
|
||||
user-space. These requests appear in the channel file.
|
||||
|
||||
Successive reads will return successive requests.
|
||||
@ -130,7 +163,7 @@ Thus a user-space helper is likely to:
|
||||
write a response
|
||||
loop.
|
||||
|
||||
If it dies and needs to be restarted, any requests that have not be
|
||||
If it dies and needs to be restarted, any requests that have not been
|
||||
answered will still appear in the file and will be read by the new
|
||||
instance of the helper.
|
||||
|
||||
@ -142,10 +175,9 @@ Each cache should also define a "cache_request" method which
|
||||
takes a cache item and encodes a request into the buffer
|
||||
provided.
|
||||
|
||||
|
||||
Note: If a cache has no active readers on the channel, and has had not
|
||||
active readers for more than 60 seconds, further requests will not be
|
||||
added to the channel but instead all looks that do not find a valid
|
||||
added to the channel but instead all lookups that do not find a valid
|
||||
entry will fail. This is partly for backward compatibility: The
|
||||
previous nfs exports table was deemed to be authoritative and a
|
||||
failed lookup meant a definite 'no'.
|
||||
@ -154,18 +186,17 @@ request/response format
|
||||
-----------------------
|
||||
|
||||
While each cache is free to use it's own format for requests
|
||||
and responses over channel, the following is recommended are
|
||||
and responses over channel, the following is recommended as
|
||||
appropriate and support routines are available to help:
|
||||
Each request or response record should be printable ASCII
|
||||
with precisely one newline character which should be at the end.
|
||||
Fields within the record should be separated by spaces, normally one.
|
||||
If spaces, newlines, or nul characters are needed in a field they
|
||||
much be quotes. two mechanisms are available:
|
||||
much be quoted. two mechanisms are available:
|
||||
1/ If a field begins '\x' then it must contain an even number of
|
||||
hex digits, and pairs of these digits provide the bytes in the
|
||||
field.
|
||||
2/ otherwise a \ in the field must be followed by 3 octal digits
|
||||
which give the code for a byte. Other characters are treated
|
||||
as them selves. At the very least, space, newlines nul, and
|
||||
as them selves. At the very least, space, newline, nul, and
|
||||
'\' must be quoted in this way.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user