kernel_linux/kernel/workqueue.c
Pavel Emelyanov ba25f9dcc4 Use helpers to obtain task pid in printks
The task_struct->pid member is going to be deprecated, so start
using the helpers (task_pid_nr/task_pid_vnr/task_pid_nr_ns) in
the kernel.

The first thing to start with is the pid, printed to dmesg - in
this case we may safely use task_pid_nr(). Besides, printks produce
more (much more) than a half of all the explicit pid usage.

[akpm@linux-foundation.org: git-drm went and changed lots of stuff]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Dave Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:43 -07:00

883 lines
22 KiB
C

/*
* linux/kernel/workqueue.c
*
* Generic mechanism for defining kernel helper threads for running
* arbitrary tasks in process context.
*
* Started by Ingo Molnar, Copyright (C) 2002
*
* Derived from the taskqueue/keventd code by:
*
* David Woodhouse <dwmw2@infradead.org>
* Andrew Morton <andrewm@uow.edu.au>
* Kai Petzke <wpp@marie.physik.tu-berlin.de>
* Theodore Ts'o <tytso@mit.edu>
*
* Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/hardirq.h>
#include <linux/mempolicy.h>
#include <linux/freezer.h>
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
#include <linux/lockdep.h>
/*
* The per-CPU workqueue (if single thread, we always use the first
* possible cpu).
*/
struct cpu_workqueue_struct {
spinlock_t lock;
struct list_head worklist;
wait_queue_head_t more_work;
struct work_struct *current_work;
struct workqueue_struct *wq;
struct task_struct *thread;
int run_depth; /* Detect run_workqueue() recursion depth */
} ____cacheline_aligned;
/*
* The externally visible workqueue abstraction is an array of
* per-CPU workqueues:
*/
struct workqueue_struct {
struct cpu_workqueue_struct *cpu_wq;
struct list_head list;
const char *name;
int singlethread;
int freezeable; /* Freeze threads during suspend */
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};
/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
threads to each one as cpus come/go. */
static DEFINE_MUTEX(workqueue_mutex);
static LIST_HEAD(workqueues);
static int singlethread_cpu __read_mostly;
static cpumask_t cpu_singlethread_map __read_mostly;
/*
* _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
* flushes cwq->worklist. This means that flush_workqueue/wait_on_work
* which comes in between can't use for_each_online_cpu(). We could
* use cpu_possible_map, the cpumask below is more a documentation
* than optimization.
*/
static cpumask_t cpu_populated_map __read_mostly;
/* If it's single threaded, it isn't in the list of workqueues. */
static inline int is_single_threaded(struct workqueue_struct *wq)
{
return wq->singlethread;
}
static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
{
return is_single_threaded(wq)
? &cpu_singlethread_map : &cpu_populated_map;
}
static
struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
{
if (unlikely(is_single_threaded(wq)))
cpu = singlethread_cpu;
return per_cpu_ptr(wq->cpu_wq, cpu);
}
/*
* Set the workqueue on which a work item is to be run
* - Must *only* be called if the pending flag is set
*/
static inline void set_wq_data(struct work_struct *work,
struct cpu_workqueue_struct *cwq)
{
unsigned long new;
BUG_ON(!work_pending(work));
new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
atomic_long_set(&work->data, new);
}
static inline
struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
{
return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
}
static void insert_work(struct cpu_workqueue_struct *cwq,
struct work_struct *work, int tail)
{
set_wq_data(work, cwq);
/*
* Ensure that we get the right work->data if we see the
* result of list_add() below, see try_to_grab_pending().
*/
smp_wmb();
if (tail)
list_add_tail(&work->entry, &cwq->worklist);
else
list_add(&work->entry, &cwq->worklist);
wake_up(&cwq->more_work);
}
/* Preempt must be disabled. */
static void __queue_work(struct cpu_workqueue_struct *cwq,
struct work_struct *work)
{
unsigned long flags;
spin_lock_irqsave(&cwq->lock, flags);
insert_work(cwq, work, 1);
spin_unlock_irqrestore(&cwq->lock, flags);
}
/**
* queue_work - queue work on a workqueue
* @wq: workqueue to use
* @work: work to queue
*
* Returns 0 if @work was already on a queue, non-zero otherwise.
*
* We queue the work to the CPU it was submitted, but there is no
* guarantee that it will be processed by that CPU.
*/
int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
int ret = 0;
if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
BUG_ON(!list_empty(&work->entry));
__queue_work(wq_per_cpu(wq, get_cpu()), work);
put_cpu();
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(queue_work);
void delayed_work_timer_fn(unsigned long __data)
{
struct delayed_work *dwork = (struct delayed_work *)__data;
struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
struct workqueue_struct *wq = cwq->wq;
__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
}
/**
* queue_delayed_work - queue work on a workqueue after delay
* @wq: workqueue to use
* @dwork: delayable work to queue
* @delay: number of jiffies to wait before queueing
*
* Returns 0 if @work was already on a queue, non-zero otherwise.
*/
int fastcall queue_delayed_work(struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
timer_stats_timer_set_start_info(&dwork->timer);
if (delay == 0)
return queue_work(wq, &dwork->work);
return queue_delayed_work_on(-1, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
/**
* queue_delayed_work_on - queue work on specific CPU after delay
* @cpu: CPU number to execute work on
* @wq: workqueue to use
* @dwork: work to queue
* @delay: number of jiffies to wait before queueing
*
* Returns 0 if @work was already on a queue, non-zero otherwise.
*/
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
int ret = 0;
struct timer_list *timer = &dwork->timer;
struct work_struct *work = &dwork->work;
if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
BUG_ON(timer_pending(timer));
BUG_ON(!list_empty(&work->entry));
/* This stores cwq for the moment, for the timer_fn */
set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
timer->expires = jiffies + delay;
timer->data = (unsigned long)dwork;
timer->function = delayed_work_timer_fn;
if (unlikely(cpu >= 0))
add_timer_on(timer, cpu);
else
add_timer(timer);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
static void run_workqueue(struct cpu_workqueue_struct *cwq)
{
spin_lock_irq(&cwq->lock);
cwq->run_depth++;
if (cwq->run_depth > 3) {
/* morton gets to eat his hat */
printk("%s: recursion depth exceeded: %d\n",
__FUNCTION__, cwq->run_depth);
dump_stack();
}
while (!list_empty(&cwq->worklist)) {
struct work_struct *work = list_entry(cwq->worklist.next,
struct work_struct, entry);
work_func_t f = work->func;
#ifdef CONFIG_LOCKDEP
/*
* It is permissible to free the struct work_struct
* from inside the function that is called from it,
* this we need to take into account for lockdep too.
* To avoid bogus "held lock freed" warnings as well
* as problems when looking into work->lockdep_map,
* make a copy and use that here.
*/
struct lockdep_map lockdep_map = work->lockdep_map;
#endif
cwq->current_work = work;
list_del_init(cwq->worklist.next);
spin_unlock_irq(&cwq->lock);
BUG_ON(get_wq_data(work) != cwq);
work_clear_pending(work);
lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
f(work);
lock_release(&lockdep_map, 1, _THIS_IP_);
lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
"%s/0x%08x/%d\n",
current->comm, preempt_count(),
task_pid_nr(current));
printk(KERN_ERR " last function: ");
print_symbol("%s\n", (unsigned long)f);
debug_show_held_locks(current);
dump_stack();
}
spin_lock_irq(&cwq->lock);
cwq->current_work = NULL;
}
cwq->run_depth--;
spin_unlock_irq(&cwq->lock);
}
static int worker_thread(void *__cwq)
{
struct cpu_workqueue_struct *cwq = __cwq;
DEFINE_WAIT(wait);
if (cwq->wq->freezeable)
set_freezable();
set_user_nice(current, -5);
for (;;) {
prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
if (!freezing(current) &&
!kthread_should_stop() &&
list_empty(&cwq->worklist))
schedule();
finish_wait(&cwq->more_work, &wait);
try_to_freeze();
if (kthread_should_stop())
break;
run_workqueue(cwq);
}
return 0;
}
struct wq_barrier {
struct work_struct work;
struct completion done;
};
static void wq_barrier_func(struct work_struct *work)
{
struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
complete(&barr->done);
}
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
struct wq_barrier *barr, int tail)
{
INIT_WORK(&barr->work, wq_barrier_func);
__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
init_completion(&barr->done);
insert_work(cwq, &barr->work, tail);
}
static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
{
int active;
if (cwq->thread == current) {
/*
* Probably keventd trying to flush its own queue. So simply run
* it by hand rather than deadlocking.
*/
run_workqueue(cwq);
active = 1;
} else {
struct wq_barrier barr;
active = 0;
spin_lock_irq(&cwq->lock);
if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
insert_wq_barrier(cwq, &barr, 1);
active = 1;
}
spin_unlock_irq(&cwq->lock);
if (active)
wait_for_completion(&barr.done);
}
return active;
}
/**
* flush_workqueue - ensure that any scheduled work has run to completion.
* @wq: workqueue to flush
*
* Forces execution of the workqueue and blocks until its completion.
* This is typically used in driver shutdown handlers.
*
* We sleep until all works which were queued on entry have been handled,
* but we are not livelocked by new incoming ones.
*
* This function used to run the workqueues itself. Now we just wait for the
* helper threads to do it.
*/
void fastcall flush_workqueue(struct workqueue_struct *wq)
{
const cpumask_t *cpu_map = wq_cpu_map(wq);
int cpu;
might_sleep();
lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
lock_release(&wq->lockdep_map, 1, _THIS_IP_);
for_each_cpu_mask(cpu, *cpu_map)
flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
}
EXPORT_SYMBOL_GPL(flush_workqueue);
/*
* Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
* so this work can't be re-armed in any way.
*/
static int try_to_grab_pending(struct work_struct *work)
{
struct cpu_workqueue_struct *cwq;
int ret = -1;
if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
return 0;
/*
* The queueing is in progress, or it is already queued. Try to
* steal it from ->worklist without clearing WORK_STRUCT_PENDING.
*/
cwq = get_wq_data(work);
if (!cwq)
return ret;
spin_lock_irq(&cwq->lock);
if (!list_empty(&work->entry)) {
/*
* This work is queued, but perhaps we locked the wrong cwq.
* In that case we must see the new value after rmb(), see
* insert_work()->wmb().
*/
smp_rmb();
if (cwq == get_wq_data(work)) {
list_del_init(&work->entry);
ret = 1;
}
}
spin_unlock_irq(&cwq->lock);
return ret;
}
static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
struct work_struct *work)
{
struct wq_barrier barr;
int running = 0;
spin_lock_irq(&cwq->lock);
if (unlikely(cwq->current_work == work)) {
insert_wq_barrier(cwq, &barr, 0);
running = 1;
}
spin_unlock_irq(&cwq->lock);
if (unlikely(running))
wait_for_completion(&barr.done);
}
static void wait_on_work(struct work_struct *work)
{
struct cpu_workqueue_struct *cwq;
struct workqueue_struct *wq;
const cpumask_t *cpu_map;
int cpu;
might_sleep();
lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
lock_release(&work->lockdep_map, 1, _THIS_IP_);
cwq = get_wq_data(work);
if (!cwq)
return;
wq = cwq->wq;
cpu_map = wq_cpu_map(wq);
for_each_cpu_mask(cpu, *cpu_map)
wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
}
static int __cancel_work_timer(struct work_struct *work,
struct timer_list* timer)
{
int ret;
do {
ret = (timer && likely(del_timer(timer)));
if (!ret)
ret = try_to_grab_pending(work);
wait_on_work(work);
} while (unlikely(ret < 0));
work_clear_pending(work);
return ret;
}
/**
* cancel_work_sync - block until a work_struct's callback has terminated
* @work: the work which is to be flushed
*
* Returns true if @work was pending.
*
* cancel_work_sync() will cancel the work if it is queued. If the work's
* callback appears to be running, cancel_work_sync() will block until it
* has completed.
*
* It is possible to use this function if the work re-queues itself. It can
* cancel the work even if it migrates to another workqueue, however in that
* case it only guarantees that work->func() has completed on the last queued
* workqueue.
*
* cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
* pending, otherwise it goes into a busy-wait loop until the timer expires.
*
* The caller must ensure that workqueue_struct on which this work was last
* queued can't be destroyed before this function returns.
*/
int cancel_work_sync(struct work_struct *work)
{
return __cancel_work_timer(work, NULL);
}
EXPORT_SYMBOL_GPL(cancel_work_sync);
/**
* cancel_delayed_work_sync - reliably kill off a delayed work.
* @dwork: the delayed work struct
*
* Returns true if @dwork was pending.
*
* It is possible to use this function if @dwork rearms itself via queue_work()
* or queue_delayed_work(). See also the comment for cancel_work_sync().
*/
int cancel_delayed_work_sync(struct delayed_work *dwork)
{
return __cancel_work_timer(&dwork->work, &dwork->timer);
}
EXPORT_SYMBOL(cancel_delayed_work_sync);
static struct workqueue_struct *keventd_wq __read_mostly;
/**
* schedule_work - put work task in global workqueue
* @work: job to be done
*
* This puts a job in the kernel-global workqueue.
*/
int fastcall schedule_work(struct work_struct *work)
{
return queue_work(keventd_wq, work);
}
EXPORT_SYMBOL(schedule_work);
/**
* schedule_delayed_work - put work task in global workqueue after delay
* @dwork: job to be done
* @delay: number of jiffies to wait or 0 for immediate execution
*
* After waiting for a given time this puts a job in the kernel-global
* workqueue.
*/
int fastcall schedule_delayed_work(struct delayed_work *dwork,
unsigned long delay)
{
timer_stats_timer_set_start_info(&dwork->timer);
return queue_delayed_work(keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work);
/**
* schedule_delayed_work_on - queue work in global workqueue on CPU after delay
* @cpu: cpu to use
* @dwork: job to be done
* @delay: number of jiffies to wait
*
* After waiting for a given time this puts a job in the kernel-global
* workqueue on the specified CPU.
*/
int schedule_delayed_work_on(int cpu,
struct delayed_work *dwork, unsigned long delay)
{
return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work_on);
/**
* schedule_on_each_cpu - call a function on each online CPU from keventd
* @func: the function to call
*
* Returns zero on success.
* Returns -ve errno on failure.
*
* Appears to be racy against CPU hotplug.
*
* schedule_on_each_cpu() is very slow.
*/
int schedule_on_each_cpu(work_func_t func)
{
int cpu;
struct work_struct *works;
works = alloc_percpu(struct work_struct);
if (!works)
return -ENOMEM;
preempt_disable(); /* CPU hotplug */
for_each_online_cpu(cpu) {
struct work_struct *work = per_cpu_ptr(works, cpu);
INIT_WORK(work, func);
set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
}
preempt_enable();
flush_workqueue(keventd_wq);
free_percpu(works);
return 0;
}
void flush_scheduled_work(void)
{
flush_workqueue(keventd_wq);
}
EXPORT_SYMBOL(flush_scheduled_work);
/**
* execute_in_process_context - reliably execute the routine with user context
* @fn: the function to execute
* @ew: guaranteed storage for the execute work structure (must
* be available when the work executes)
*
* Executes the function immediately if process context is available,
* otherwise schedules the function for delayed execution.
*
* Returns: 0 - function was executed
* 1 - function was scheduled for execution
*/
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
{
if (!in_interrupt()) {
fn(&ew->work);
return 0;
}
INIT_WORK(&ew->work, fn);
schedule_work(&ew->work);
return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);
int keventd_up(void)
{
return keventd_wq != NULL;
}
int current_is_keventd(void)
{
struct cpu_workqueue_struct *cwq;
int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
int ret = 0;
BUG_ON(!keventd_wq);
cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
if (current == cwq->thread)
ret = 1;
return ret;
}
static struct cpu_workqueue_struct *
init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
{
struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
cwq->wq = wq;
spin_lock_init(&cwq->lock);
INIT_LIST_HEAD(&cwq->worklist);
init_waitqueue_head(&cwq->more_work);
return cwq;
}
static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
{
struct workqueue_struct *wq = cwq->wq;
const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
struct task_struct *p;
p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
/*
* Nobody can add the work_struct to this cwq,
* if (caller is __create_workqueue)
* nobody should see this wq
* else // caller is CPU_UP_PREPARE
* cpu is not on cpu_online_map
* so we can abort safely.
*/
if (IS_ERR(p))
return PTR_ERR(p);
cwq->thread = p;
return 0;
}
static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
{
struct task_struct *p = cwq->thread;
if (p != NULL) {
if (cpu >= 0)
kthread_bind(p, cpu);
wake_up_process(p);
}
}
struct workqueue_struct *__create_workqueue_key(const char *name,
int singlethread,
int freezeable,
struct lock_class_key *key)
{
struct workqueue_struct *wq;
struct cpu_workqueue_struct *cwq;
int err = 0, cpu;
wq = kzalloc(sizeof(*wq), GFP_KERNEL);
if (!wq)
return NULL;
wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
if (!wq->cpu_wq) {
kfree(wq);
return NULL;
}
wq->name = name;
lockdep_init_map(&wq->lockdep_map, name, key, 0);
wq->singlethread = singlethread;
wq->freezeable = freezeable;
INIT_LIST_HEAD(&wq->list);
if (singlethread) {
cwq = init_cpu_workqueue(wq, singlethread_cpu);
err = create_workqueue_thread(cwq, singlethread_cpu);
start_workqueue_thread(cwq, -1);
} else {
mutex_lock(&workqueue_mutex);
list_add(&wq->list, &workqueues);
for_each_possible_cpu(cpu) {
cwq = init_cpu_workqueue(wq, cpu);
if (err || !cpu_online(cpu))
continue;
err = create_workqueue_thread(cwq, cpu);
start_workqueue_thread(cwq, cpu);
}
mutex_unlock(&workqueue_mutex);
}
if (err) {
destroy_workqueue(wq);
wq = NULL;
}
return wq;
}
EXPORT_SYMBOL_GPL(__create_workqueue_key);
static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
{
/*
* Our caller is either destroy_workqueue() or CPU_DEAD,
* workqueue_mutex protects cwq->thread
*/
if (cwq->thread == NULL)
return;
lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
flush_cpu_workqueue(cwq);
/*
* If the caller is CPU_DEAD and cwq->worklist was not empty,
* a concurrent flush_workqueue() can insert a barrier after us.
* However, in that case run_workqueue() won't return and check
* kthread_should_stop() until it flushes all work_struct's.
* When ->worklist becomes empty it is safe to exit because no
* more work_structs can be queued on this cwq: flush_workqueue
* checks list_empty(), and a "normal" queue_work() can't use
* a dead CPU.
*/
kthread_stop(cwq->thread);
cwq->thread = NULL;
}
/**
* destroy_workqueue - safely terminate a workqueue
* @wq: target workqueue
*
* Safely destroy a workqueue. All work currently pending will be done first.
*/
void destroy_workqueue(struct workqueue_struct *wq)
{
const cpumask_t *cpu_map = wq_cpu_map(wq);
struct cpu_workqueue_struct *cwq;
int cpu;
mutex_lock(&workqueue_mutex);
list_del(&wq->list);
mutex_unlock(&workqueue_mutex);
for_each_cpu_mask(cpu, *cpu_map) {
cwq = per_cpu_ptr(wq->cpu_wq, cpu);
cleanup_workqueue_thread(cwq, cpu);
}
free_percpu(wq->cpu_wq);
kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);
static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct cpu_workqueue_struct *cwq;
struct workqueue_struct *wq;
action &= ~CPU_TASKS_FROZEN;
switch (action) {
case CPU_LOCK_ACQUIRE:
mutex_lock(&workqueue_mutex);
return NOTIFY_OK;
case CPU_LOCK_RELEASE:
mutex_unlock(&workqueue_mutex);
return NOTIFY_OK;
case CPU_UP_PREPARE:
cpu_set(cpu, cpu_populated_map);
}
list_for_each_entry(wq, &workqueues, list) {
cwq = per_cpu_ptr(wq->cpu_wq, cpu);
switch (action) {
case CPU_UP_PREPARE:
if (!create_workqueue_thread(cwq, cpu))
break;
printk(KERN_ERR "workqueue for %i failed\n", cpu);
return NOTIFY_BAD;
case CPU_ONLINE:
start_workqueue_thread(cwq, cpu);
break;
case CPU_UP_CANCELED:
start_workqueue_thread(cwq, -1);
case CPU_DEAD:
cleanup_workqueue_thread(cwq, cpu);
break;
}
}
return NOTIFY_OK;
}
void __init init_workqueues(void)
{
cpu_populated_map = cpu_online_map;
singlethread_cpu = first_cpu(cpu_possible_map);
cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
hotcpu_notifier(workqueue_cpu_callback, 0);
keventd_wq = create_workqueue("events");
BUG_ON(!keventd_wq);
}