third_party_benchmark/test/benchmark_test.cc

153 lines
3.9 KiB
C++
Raw Normal View History

#include "benchmark/benchmark.h"
#include <math.h>
#include <stdint.h>
2014-01-07 21:14:41 +00:00
#include <iostream>
#include <limits>
#include <list>
#include <map>
2014-08-04 10:38:37 +00:00
#include <mutex>
#include <set>
#include <sstream>
#include <vector>
namespace {
int ATTRIBUTE_NOINLINE Factorial(uint32_t n) {
return (n == 1) ? 1 : n * Factorial(n - 1);
}
double CalculatePi(int depth) {
double pi = 0.0;
for (int i = 0; i < depth; ++i) {
double numerator = static_cast<double>(((i % 2) * 2) - 1);
double denominator = static_cast<double>((2 * i) - 1);
pi += numerator / denominator;
}
return (pi - 1.0) * 4;
}
std::set<int> ConstructRandomSet(int size) {
std::set<int> s;
for (int i = 0; i < size; ++i)
s.insert(i);
return s;
}
2014-08-04 10:38:37 +00:00
std::mutex test_vector_mu;
2014-01-07 21:14:41 +00:00
std::vector<int>* test_vector = nullptr;
} // end namespace
#ifdef DEBUG
static void BM_Factorial(benchmark::State& state) {
int fac_42 = 0;
while (state.KeepRunning())
fac_42 = Factorial(8);
// Prevent compiler optimizations
CHECK(fac_42 != std::numeric_limits<int>::max());
}
BENCHMARK(BM_Factorial);
#endif
static void BM_CalculatePiRange(benchmark::State& state) {
double pi = 0.0;
while (state.KeepRunning())
pi = CalculatePi(state.range_x());
std::stringstream ss;
ss << pi;
state.SetLabel(ss.str());
}
BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);
2014-01-07 21:14:41 +00:00
static void BM_CalculatePi(benchmark::State& state) {
static const int depth = 1024;
double pi ATTRIBUTE_UNUSED = 0.0;
while (state.KeepRunning()) {
pi = CalculatePi(depth);
}
}
BENCHMARK(BM_CalculatePi)->Threads(8);
BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32);
BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
2014-01-07 21:14:41 +00:00
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
std::set<int> data = ConstructRandomSet(state.range_x());
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
data.insert(rand());
}
state.SetItemsProcessed(state.iterations() * state.range_y());
state.SetBytesProcessed(state.iterations() * state.range_y() * sizeof(int));
}
BENCHMARK(BM_SetInsert)->RangePair(1<<10,8<<10, 1,10);
template<typename Q>
static void BM_Sequential(benchmark::State& state) {
typename Q::value_type v = 42;
while (state.KeepRunning()) {
Q q;
for (int i = state.range_x(); --i; )
q.push_back(v);
}
const int64_t items_processed =
static_cast<int64_t>(state.iterations()) * state.range_x();
state.SetItemsProcessed(items_processed);
state.SetBytesProcessed(items_processed * sizeof(v));
}
BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>)->Range(1 << 0, 1 << 10);
BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10);
static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range_x(), '-');
std::string s2(state.range_x(), '-');
int r = 0;
while (state.KeepRunning())
r |= s1.compare(s2);
// Prevent compiler optimizations
CHECK(r != std::numeric_limits<int>::max());
}
BENCHMARK(BM_StringCompare)->Range(1, 1<<20);
static void BM_SetupTeardown(benchmark::State& state) {
2014-01-07 21:14:41 +00:00
if (state.thread_index == 0) {
// No need to lock test_vector_mu here as this is running single-threaded.
test_vector = new std::vector<int>();
2014-01-07 21:14:41 +00:00
}
int i = 0;
while (state.KeepRunning()) {
2014-08-04 10:38:37 +00:00
std::lock_guard<std::mutex> l(test_vector_mu);
2014-01-07 21:14:41 +00:00
if (i%2 == 0)
test_vector->push_back(i);
else
test_vector->pop_back();
++i;
}
if (state.thread_index == 0) {
delete test_vector;
}
}
2014-01-07 21:14:41 +00:00
BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
static void BM_LongTest(benchmark::State& state) {
double tracker = 0.0;
while (state.KeepRunning())
for (int i = 0; i < state.range_x(); ++i)
tracker += i;
CHECK(tracker != 0.0);
}
BENCHMARK(BM_LongTest)->Range(1<<16,1<<28);
int main(int argc, const char* argv[]) {
benchmark::Initialize(&argc, argv);
CHECK(Factorial(8) == 40320);
CHECK(CalculatePi(1) == 0.0);
benchmark::RunSpecifiedBenchmarks();
}