third_party_f2fs-tools/lib/libf2fs.c

1399 lines
31 KiB
C
Raw Permalink Normal View History

/**
* libf2fs.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Dual licensed under the GPL or LGPL version 2 licenses.
*/
#ifndef _LARGEFILE64_SOURCE
#define _LARGEFILE64_SOURCE
#endif
#define _FILE_OFFSET_BITS 64
#include <f2fs_fs.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <libgen.h>
#ifdef HAVE_MNTENT_H
#include <mntent.h>
#endif
#include <time.h>
#include <sys/stat.h>
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#ifdef HAVE_SYS_SYSMACROS_H
#include <sys/sysmacros.h>
#endif
#ifdef HAVE_SYS_UTSNAME_H
#include <sys/utsname.h>
#endif
#ifdef HAVE_SCSI_SG_H
#include <scsi/sg.h>
#endif
#ifdef HAVE_LINUX_HDREG_H
#include <linux/hdreg.h>
#endif
#ifdef HAVE_LINUX_LIMITS_H
#include <linux/limits.h>
#endif
/* SCSI command for standard inquiry*/
#define MODELINQUIRY 0x12,0x00,0x00,0x00,0x4A,0x00
#ifndef _WIN32 /* O_BINARY is windows-specific flag */
#define O_BINARY 0
#else
/* On Windows, wchar_t is 8 bit sized and it causes compilation errors. */
#define wchar_t int
#endif
/*
* UTF conversion codes are Copied from exfat tools.
*/
static const char *utf8_to_wchar(const char *input, wchar_t *wc,
size_t insize)
{
if ((input[0] & 0x80) == 0 && insize >= 1) {
*wc = (wchar_t) input[0];
return input + 1;
}
if ((input[0] & 0xe0) == 0xc0 && insize >= 2) {
*wc = (((wchar_t) input[0] & 0x1f) << 6) |
((wchar_t) input[1] & 0x3f);
return input + 2;
}
if ((input[0] & 0xf0) == 0xe0 && insize >= 3) {
*wc = (((wchar_t) input[0] & 0x0f) << 12) |
(((wchar_t) input[1] & 0x3f) << 6) |
((wchar_t) input[2] & 0x3f);
return input + 3;
}
if ((input[0] & 0xf8) == 0xf0 && insize >= 4) {
*wc = (((wchar_t) input[0] & 0x07) << 18) |
(((wchar_t) input[1] & 0x3f) << 12) |
(((wchar_t) input[2] & 0x3f) << 6) |
((wchar_t) input[3] & 0x3f);
return input + 4;
}
if ((input[0] & 0xfc) == 0xf8 && insize >= 5) {
*wc = (((wchar_t) input[0] & 0x03) << 24) |
(((wchar_t) input[1] & 0x3f) << 18) |
(((wchar_t) input[2] & 0x3f) << 12) |
(((wchar_t) input[3] & 0x3f) << 6) |
((wchar_t) input[4] & 0x3f);
return input + 5;
}
if ((input[0] & 0xfe) == 0xfc && insize >= 6) {
*wc = (((wchar_t) input[0] & 0x01) << 30) |
(((wchar_t) input[1] & 0x3f) << 24) |
(((wchar_t) input[2] & 0x3f) << 18) |
(((wchar_t) input[3] & 0x3f) << 12) |
(((wchar_t) input[4] & 0x3f) << 6) |
((wchar_t) input[5] & 0x3f);
return input + 6;
}
return NULL;
}
static uint16_t *wchar_to_utf16(uint16_t *output, wchar_t wc, size_t outsize)
{
if (wc <= 0xffff) {
if (outsize == 0)
return NULL;
output[0] = cpu_to_le16(wc);
return output + 1;
}
if (outsize < 2)
return NULL;
wc -= 0x10000;
output[0] = cpu_to_le16(0xd800 | ((wc >> 10) & 0x3ff));
output[1] = cpu_to_le16(0xdc00 | (wc & 0x3ff));
return output + 2;
}
int utf8_to_utf16(uint16_t *output, const char *input, size_t outsize,
size_t insize)
{
const char *inp = input;
uint16_t *outp = output;
wchar_t wc;
while ((size_t)(inp - input) < insize && *inp) {
inp = utf8_to_wchar(inp, &wc, insize - (inp - input));
if (inp == NULL) {
DBG(0, "illegal UTF-8 sequence\n");
return -EILSEQ;
}
outp = wchar_to_utf16(outp, wc, outsize - (outp - output));
if (outp == NULL) {
DBG(0, "name is too long\n");
return -ENAMETOOLONG;
}
}
*outp = cpu_to_le16(0);
return 0;
}
static const uint16_t *utf16_to_wchar(const uint16_t *input, wchar_t *wc,
size_t insize)
{
if ((le16_to_cpu(input[0]) & 0xfc00) == 0xd800) {
if (insize < 2 || (le16_to_cpu(input[1]) & 0xfc00) != 0xdc00)
return NULL;
*wc = ((wchar_t) (le16_to_cpu(input[0]) & 0x3ff) << 10);
*wc |= (le16_to_cpu(input[1]) & 0x3ff);
*wc += 0x10000;
return input + 2;
} else {
*wc = le16_to_cpu(*input);
return input + 1;
}
}
static char *wchar_to_utf8(char *output, wchar_t wc, size_t outsize)
{
if (wc <= 0x7f) {
if (outsize < 1)
return NULL;
*output++ = (char) wc;
} else if (wc <= 0x7ff) {
if (outsize < 2)
return NULL;
*output++ = 0xc0 | (wc >> 6);
*output++ = 0x80 | (wc & 0x3f);
} else if (wc <= 0xffff) {
if (outsize < 3)
return NULL;
*output++ = 0xe0 | (wc >> 12);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
} else if (wc <= 0x1fffff) {
if (outsize < 4)
return NULL;
*output++ = 0xf0 | (wc >> 18);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
} else if (wc <= 0x3ffffff) {
if (outsize < 5)
return NULL;
*output++ = 0xf8 | (wc >> 24);
*output++ = 0x80 | ((wc >> 18) & 0x3f);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
} else if (wc <= 0x7fffffff) {
if (outsize < 6)
return NULL;
*output++ = 0xfc | (wc >> 30);
*output++ = 0x80 | ((wc >> 24) & 0x3f);
*output++ = 0x80 | ((wc >> 18) & 0x3f);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
} else
return NULL;
return output;
}
int utf16_to_utf8(char *output, const uint16_t *input, size_t outsize,
size_t insize)
{
const uint16_t *inp = input;
char *outp = output;
wchar_t wc;
while ((size_t)(inp - input) < insize && le16_to_cpu(*inp)) {
inp = utf16_to_wchar(inp, &wc, insize - (inp - input));
if (inp == NULL) {
DBG(0, "illegal UTF-16 sequence\n");
return -EILSEQ;
}
outp = wchar_to_utf8(outp, wc, outsize - (outp - output));
if (outp == NULL) {
DBG(0, "name is too long\n");
return -ENAMETOOLONG;
}
}
*outp = '\0';
return 0;
}
int log_base_2(uint32_t num)
{
int ret = 0;
if (num <= 0 || (num & (num - 1)) != 0)
return -1;
while (num >>= 1)
ret++;
return ret;
}
/*
* f2fs bit operations
*/
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static const int bits_in_byte[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
};
int get_bits_in_byte(unsigned char n)
{
return bits_in_byte[n];
}
int test_and_set_bit_le(u32 nr, u8 *addr)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
{
int mask, retval;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
addr += nr >> 3;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
mask = 1 << ((nr & 0x07));
retval = mask & *addr;
*addr |= mask;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
return retval;
}
int test_and_clear_bit_le(u32 nr, u8 *addr)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
{
int mask, retval;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
addr += nr >> 3;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
mask = 1 << ((nr & 0x07));
retval = mask & *addr;
*addr &= ~mask;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
return retval;
}
int test_bit_le(u32 nr, const u8 *addr)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
{
return ((1 << (nr & 7)) & (addr[nr >> 3]));
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
}
int f2fs_test_bit(unsigned int nr, const char *p)
{
int mask;
char *addr = (char *)p;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
return (mask & *addr) != 0;
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
int f2fs_set_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr |= mask;
return ret;
}
int f2fs_clear_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr &= ~mask;
return ret;
}
static inline u64 __ffs(u8 word)
{
int num = 0;
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
/* Copied from linux/lib/find_bit.c */
#define BITMAP_FIRST_BYTE_MASK(start) (0xff << ((start) & (BITS_PER_BYTE - 1)))
static u64 _find_next_bit_le(const u8 *addr, u64 nbits, u64 start, char invert)
{
u8 tmp;
if (!nbits || start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_BYTE] ^ invert;
/* Handle 1st word. */
tmp &= BITMAP_FIRST_BYTE_MASK(start);
start = round_down(start, BITS_PER_BYTE);
while (!tmp) {
start += BITS_PER_BYTE;
if (start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_BYTE] ^ invert;
}
return min(start + __ffs(tmp), nbits);
}
u64 find_next_bit_le(const u8 *addr, u64 size, u64 offset)
{
return _find_next_bit_le(addr, size, offset, 0);
}
u64 find_next_zero_bit_le(const u8 *addr, u64 size, u64 offset)
{
return _find_next_bit_le(addr, size, offset, 0xff);
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
/*
* Hashing code adapted from ext3
*/
#define DELTA 0x9E3779B9
static void TEA_transform(unsigned int buf[4], unsigned int const in[])
{
__u32 sum = 0;
__u32 b0 = buf[0], b1 = buf[1];
__u32 a = in[0], b = in[1], c = in[2], d = in[3];
int n = 16;
do {
sum += DELTA;
b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b);
b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d);
} while (--n);
buf[0] += b0;
buf[1] += b1;
}
static void str2hashbuf(const unsigned char *msg, int len,
unsigned int *buf, int num)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
{
unsigned pad, val;
int i;
pad = (__u32)len | ((__u32)len << 8);
pad |= pad << 16;
val = pad;
if (len > num * 4)
len = num * 4;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
val = pad;
val = msg[i] + (val << 8);
if ((i % 4) == 3) {
*buf++ = val;
val = pad;
num--;
}
}
if (--num >= 0)
*buf++ = val;
while (--num >= 0)
*buf++ = pad;
}
/**
* Return hash value of directory entry
* @param name dentry name
* @param len name lenth
* @return return on success hash value, errno on failure
*/
static f2fs_hash_t __f2fs_dentry_hash(const unsigned char *name, int len)/* Need update */
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
{
__u32 hash;
f2fs_hash_t f2fs_hash;
const unsigned char *p;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
__u32 in[8], buf[4];
/* special hash codes for special dentries */
if ((len <= 2) && (name[0] == '.') &&
(name[1] == '.' || name[1] == '\0'))
return 0;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
/* Initialize the default seed for the hash checksum functions */
buf[0] = 0x67452301;
buf[1] = 0xefcdab89;
buf[2] = 0x98badcfe;
buf[3] = 0x10325476;
p = name;
while (1) {
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
str2hashbuf(p, len, in, 4);
TEA_transform(buf, in);
p += 16;
if (len <= 16)
break;
len -= 16;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
}
hash = buf[0];
f2fs_hash = cpu_to_le32(hash & ~F2FS_HASH_COL_BIT);
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
return f2fs_hash;
}
f2fs_hash_t f2fs_dentry_hash(int encoding, int casefolded,
const unsigned char *name, int len)
{
const struct f2fs_nls_table *table = f2fs_load_nls_table(encoding);
int r, dlen;
unsigned char *buff;
if (len && casefolded) {
buff = malloc(sizeof(char) * PATH_MAX);
if (!buff)
return -ENOMEM;
dlen = table->ops->casefold(table, name, len, buff, PATH_MAX);
if (dlen < 0) {
free(buff);
goto opaque_seq;
}
r = __f2fs_dentry_hash(buff, dlen);
free(buff);
return r;
}
opaque_seq:
return __f2fs_dentry_hash(name, len);
}
unsigned int addrs_per_inode(struct f2fs_inode *i)
{
unsigned int addrs = CUR_ADDRS_PER_INODE(i) - get_inline_xattr_addrs(i);
if (!LINUX_S_ISREG(le16_to_cpu(i->i_mode)) ||
!(le32_to_cpu(i->i_flags) & F2FS_COMPR_FL))
return addrs;
return ALIGN_DOWN(addrs, 1 << i->i_log_cluster_size);
}
unsigned int addrs_per_block(struct f2fs_inode *i)
{
if (!LINUX_S_ISREG(le16_to_cpu(i->i_mode)) ||
!(le32_to_cpu(i->i_flags) & F2FS_COMPR_FL))
return DEF_ADDRS_PER_BLOCK;
return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1 << i->i_log_cluster_size);
}
unsigned int f2fs_max_file_offset(struct f2fs_inode *i)
{
if (!LINUX_S_ISREG(le16_to_cpu(i->i_mode)) ||
!(le32_to_cpu(i->i_flags) & F2FS_COMPR_FL))
return le64_to_cpu(i->i_size);
return ALIGN_UP(le64_to_cpu(i->i_size), 1 << i->i_log_cluster_size);
}
/*
* CRC32
*/
#define CRCPOLY_LE 0xedb88320
uint32_t f2fs_cal_crc32(uint32_t crc, void *buf, int len)
{
int i;
unsigned char *p = (unsigned char *)buf;
while (len--) {
crc ^= *p++;
for (i = 0; i < 8; i++)
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
}
return crc;
}
int f2fs_crc_valid(uint32_t blk_crc, void *buf, int len)
{
uint32_t cal_crc = 0;
cal_crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, buf, len);
if (cal_crc != blk_crc) {
DBG(0,"CRC validation failed: cal_crc = %u, "
"blk_crc = %u buff_size = 0x%x\n",
cal_crc, blk_crc, len);
return -1;
}
return 0;
}
__u32 f2fs_inode_chksum(struct f2fs_node *node)
{
struct f2fs_inode *ri = &node->i;
__le32 ino = node->footer.ino;
__le32 gen = ri->i_generation;
__u32 chksum, chksum_seed;
__u32 dummy_cs = 0;
unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum);
unsigned int cs_size = sizeof(dummy_cs);
chksum = f2fs_cal_crc32(c.chksum_seed, (__u8 *)&ino,
sizeof(ino));
chksum_seed = f2fs_cal_crc32(chksum, (__u8 *)&gen, sizeof(gen));
chksum = f2fs_cal_crc32(chksum_seed, (__u8 *)ri, offset);
chksum = f2fs_cal_crc32(chksum, (__u8 *)&dummy_cs, cs_size);
offset += cs_size;
chksum = f2fs_cal_crc32(chksum, (__u8 *)ri + offset,
F2FS_BLKSIZE - offset);
return chksum;
}
__u32 f2fs_checkpoint_chksum(struct f2fs_checkpoint *cp)
{
unsigned int chksum_ofs = le32_to_cpu(cp->checksum_offset);
__u32 chksum;
chksum = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, chksum_ofs);
if (chksum_ofs < CP_CHKSUM_OFFSET) {
chksum_ofs += sizeof(chksum);
chksum = f2fs_cal_crc32(chksum, (__u8 *)cp + chksum_ofs,
F2FS_BLKSIZE - chksum_ofs);
}
return chksum;
}
int write_inode(struct f2fs_node *inode, u64 blkaddr)
{
if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
inode->i.i_inode_checksum =
cpu_to_le32(f2fs_inode_chksum(inode));
return dev_write_block(inode, blkaddr);
}
/*
* try to identify the root device
*/
char *get_rootdev()
{
#if defined(_WIN32) || defined(WITH_ANDROID)
return NULL;
#else
struct stat sb;
int fd, ret;
char buf[PATH_MAX + 1];
char *uevent, *ptr;
char *rootdev;
if (stat("/", &sb) == -1)
return NULL;
snprintf(buf, PATH_MAX, "/sys/dev/block/%u:%u/uevent",
major(sb.st_dev), minor(sb.st_dev));
fd = open(buf, O_RDONLY);
if (fd < 0)
return NULL;
ret = lseek(fd, (off_t)0, SEEK_END);
(void)lseek(fd, (off_t)0, SEEK_SET);
if (ret == -1) {
close(fd);
return NULL;
}
uevent = malloc(ret + 1);
ASSERT(uevent);
uevent[ret] = '\0';
ret = read(fd, uevent, ret);
close(fd);
ptr = strstr(uevent, "DEVNAME");
if (!ptr)
goto out_free;
ret = sscanf(ptr, "DEVNAME=%s\n", buf);
if (strlen(buf) == 0)
goto out_free;
ret = strlen(buf) + 5;
rootdev = malloc(ret + 1);
if (!rootdev)
goto out_free;
rootdev[ret] = '\0';
snprintf(rootdev, ret + 1, "/dev/%s", buf);
free(uevent);
return rootdev;
out_free:
free(uevent);
return NULL;
#endif
}
/*
* device information
*/
void f2fs_init_configuration(void)
{
int i;
memset(&c, 0, sizeof(struct f2fs_configuration));
c.ndevs = 1;
c.sectors_per_blk = DEFAULT_SECTORS_PER_BLOCK;
c.blks_per_seg = DEFAULT_BLOCKS_PER_SEGMENT;
c.wanted_total_sectors = -1;
c.wanted_sector_size = -1;
#ifndef WITH_ANDROID
c.preserve_limits = 1;
c.no_kernel_check = 1;
#else
c.no_kernel_check = 0;
#endif
for (i = 0; i < MAX_DEVICES; i++) {
c.devices[i].fd = -1;
c.devices[i].sector_size = DEFAULT_SECTOR_SIZE;
c.devices[i].end_blkaddr = -1;
c.devices[i].zoned_model = F2FS_ZONED_NONE;
}
/* calculated by overprovision ratio */
c.segs_per_sec = 1;
c.secs_per_zone = 1;
c.segs_per_zone = 1;
c.vol_label = "";
c.trim = 1;
c.kd = -1;
c.fixed_time = -1;
c.s_encoding = 0;
c.s_encoding_flags = 0;
/* default root owner */
c.root_uid = getuid();
c.root_gid = getgid();
}
int f2fs_dev_is_writable(void)
{
return !c.ro || c.force;
}
#ifdef HAVE_SETMNTENT
static int is_mounted(const char *mpt, const char *device)
{
FILE *file = NULL;
struct mntent *mnt = NULL;
file = setmntent(mpt, "r");
if (file == NULL)
return 0;
while ((mnt = getmntent(file)) != NULL) {
if (!strcmp(device, mnt->mnt_fsname)) {
#ifdef MNTOPT_RO
if (hasmntopt(mnt, MNTOPT_RO))
c.ro = 1;
#endif
break;
}
}
endmntent(file);
return mnt ? 1 : 0;
}
#endif
int f2fs_dev_is_umounted(char *path)
{
#ifdef _WIN32
return 0;
#else
struct stat *st_buf;
int is_rootdev = 0;
int ret = 0;
char *rootdev_name = get_rootdev();
if (rootdev_name) {
if (!strcmp(path, rootdev_name))
is_rootdev = 1;
free(rootdev_name);
}
/*
* try with /proc/mounts fist to detect RDONLY.
* f2fs_stop_checkpoint makes RO in /proc/mounts while RW in /etc/mtab.
*/
#ifdef __linux__
ret = is_mounted("/proc/mounts", path);
if (ret) {
MSG(0, "Info: Mounted device!\n");
return -1;
}
#endif
#if defined(MOUNTED) || defined(_PATH_MOUNTED)
#ifndef MOUNTED
#define MOUNTED _PATH_MOUNTED
#endif
ret = is_mounted(MOUNTED, path);
if (ret) {
MSG(0, "Info: Mounted device!\n");
return -1;
}
#endif
/*
* If we are supposed to operate on the root device, then
* also check the mounts for '/dev/root', which sometimes
* functions as an alias for the root device.
*/
if (is_rootdev) {
#ifdef __linux__
ret = is_mounted("/proc/mounts", "/dev/root");
if (ret) {
MSG(0, "Info: Mounted device!\n");
return -1;
}
#endif
}
/*
* If f2fs is umounted with -l, the process can still use
* the file system. In this case, we should not format.
*/
st_buf = malloc(sizeof(struct stat));
ASSERT(st_buf);
if (stat(path, st_buf) == 0 && S_ISBLK(st_buf->st_mode)) {
int fd = open(path, O_RDONLY | O_EXCL);
if (fd >= 0) {
close(fd);
} else if (errno == EBUSY) {
MSG(0, "\tError: In use by the system!\n");
free(st_buf);
return -1;
}
}
free(st_buf);
return ret;
#endif
}
int f2fs_devs_are_umounted(void)
{
int i;
for (i = 0; i < c.ndevs; i++)
if (f2fs_dev_is_umounted((char *)c.devices[i].path))
return -1;
return 0;
}
void get_kernel_version(__u8 *version)
{
int i;
for (i = 0; i < VERSION_NAME_LEN; i++) {
if (version[i] == '\n')
break;
}
memset(version + i, 0, VERSION_LEN + 1 - i);
}
void get_kernel_uname_version(__u8 *version)
{
#ifdef HAVE_SYS_UTSNAME_H
struct utsname buf;
memset(version, 0, VERSION_LEN);
if (uname(&buf))
return;
#if defined(WITH_KERNEL_VERSION)
snprintf((char *)version,
VERSION_NAME_LEN, "%s %s", buf.release, buf.version);
#else
snprintf((char *)version,
VERSION_NAME_LEN, "%s", buf.release);
#endif
#else
memset(version, 0, VERSION_LEN);
#endif
}
#if defined(__linux__) && defined(_IO) && !defined(BLKGETSIZE)
#define BLKGETSIZE _IO(0x12,96)
#endif
#if defined(__linux__) && defined(_IOR) && !defined(BLKGETSIZE64)
#define BLKGETSIZE64 _IOR(0x12,114, size_t)
#endif
#if defined(__linux__) && defined(_IO) && !defined(BLKSSZGET)
#define BLKSSZGET _IO(0x12,104)
#endif
#if defined(__APPLE__)
#include <sys/disk.h>
#define BLKGETSIZE DKIOCGETBLOCKCOUNT
#define BLKSSZGET DKIOCGETBLOCKCOUNT
#endif /* APPLE_DARWIN */
#ifndef _WIN32
static int open_check_fs(char *path, int flag)
{
if (c.func != DUMP && (c.func != FSCK || c.fix_on || c.auto_fix))
return -1;
/* allow to open ro */
return open(path, O_RDONLY | flag);
}
static int is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
int get_device_info(int i)
{
int32_t fd = 0;
uint32_t sector_size;
#ifndef BLKGETSIZE64
uint32_t total_sectors;
#endif
struct stat *stat_buf;
#ifdef HDIO_GETGIO
struct hd_geometry geom;
#endif
#ifdef __linux__
sg_io_hdr_t io_hdr;
unsigned char reply_buffer[96] = {0};
unsigned char model_inq[6] = {MODELINQUIRY};
#endif
struct device_info *dev = c.devices + i;
if (c.sparse_mode) {
fd = open(dev->path, O_RDWR | O_CREAT | O_BINARY, 0644);
if (fd < 0) {
fd = open_check_fs(dev->path, O_BINARY);
if (fd < 0) {
MSG(0, "\tError: Failed to open a sparse file!\n");
return -1;
}
}
}
stat_buf = malloc(sizeof(struct stat));
ASSERT(stat_buf);
if (!c.sparse_mode) {
if (stat(dev->path, stat_buf) < 0 ) {
MSG(0, "\tError: Failed to get the device stat!\n");
free(stat_buf);
return -1;
}
if (S_ISBLK(stat_buf->st_mode) &&
!c.force && c.func != DUMP && !c.dry_run) {
fd = open(dev->path, O_RDWR | O_EXCL);
if (fd < 0)
fd = open_check_fs(dev->path, O_EXCL);
} else {
fd = open(dev->path, O_RDWR);
if (fd < 0)
fd = open_check_fs(dev->path, 0);
}
}
if (fd < 0) {
MSG(0, "\tError: Failed to open the device!\n");
free(stat_buf);
return -1;
}
dev->fd = fd;
if (c.sparse_mode) {
if (f2fs_init_sparse_file()) {
free(stat_buf);
return -1;
}
}
if (c.kd == -1) {
#if !defined(WITH_ANDROID) && defined(__linux__)
c.kd = open("/proc/version", O_RDONLY);
#endif
if (c.kd < 0) {
MSG(0, "Info: not exist /proc/version!\n");
c.kd = -2;
}
}
if (c.sparse_mode) {
dev->total_sectors = c.device_size / dev->sector_size;
} else if (S_ISREG(stat_buf->st_mode)) {
dev->total_sectors = stat_buf->st_size / dev->sector_size;
} else if (S_ISBLK(stat_buf->st_mode)) {
#ifdef BLKSSZGET
if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
MSG(0, "\tError: Using the default sector size\n");
else if (dev->sector_size < sector_size)
dev->sector_size = sector_size;
#endif
#ifdef BLKGETSIZE64
if (ioctl(fd, BLKGETSIZE64, &dev->total_sectors) < 0) {
MSG(0, "\tError: Cannot get the device size\n");
free(stat_buf);
return -1;
}
#else
if (ioctl(fd, BLKGETSIZE, &total_sectors) < 0) {
MSG(0, "\tError: Cannot get the device size\n");
free(stat_buf);
return -1;
}
dev->total_sectors = total_sectors;
#endif
dev->total_sectors /= dev->sector_size;
if (i == 0) {
#ifdef HDIO_GETGIO
if (ioctl(fd, HDIO_GETGEO, &geom) < 0)
c.start_sector = 0;
else
c.start_sector = geom.start;
#else
c.start_sector = 0;
#endif
}
#ifdef __linux__
/* Send INQUIRY command */
memset(&io_hdr, 0, sizeof(sg_io_hdr_t));
io_hdr.interface_id = 'S';
io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
io_hdr.dxfer_len = sizeof(reply_buffer);
io_hdr.dxferp = reply_buffer;
io_hdr.cmd_len = sizeof(model_inq);
io_hdr.cmdp = model_inq;
io_hdr.timeout = 1000;
if (!ioctl(fd, SG_IO, &io_hdr)) {
MSG(0, "Info: [%s] Disk Model: %.16s\n",
dev->path, reply_buffer+16);
}
#endif
} else {
MSG(0, "\tError: Volume type is not supported!!!\n");
free(stat_buf);
return -1;
}
if (!c.sector_size) {
c.sector_size = dev->sector_size;
c.sectors_per_blk = F2FS_BLKSIZE / c.sector_size;
} else if (c.sector_size != c.devices[i].sector_size) {
MSG(0, "\tError: Different sector sizes!!!\n");
free(stat_buf);
return -1;
}
#ifdef __linux__
if (S_ISBLK(stat_buf->st_mode)) {
if (f2fs_get_zoned_model(i) < 0) {
free(stat_buf);
return -1;
}
}
if (dev->zoned_model != F2FS_ZONED_NONE) {
/* Get the number of blocks per zones */
if (f2fs_get_zone_blocks(i)) {
MSG(0, "\tError: Failed to get number of blocks per zone\n");
free(stat_buf);
return -1;
}
if (!is_power_of_2(dev->zone_size)) {
MSG(0, "\tError: zoned: illegal zone size %lu (not a power of 2)\n",
dev->zone_size);
free(stat_buf);
return -1;
}
/*
* Check zone configuration: for the first disk of a
* multi-device volume, conventional zones are needed.
*/
if (f2fs_check_zones(i)) {
MSG(0, "\tError: Failed to check zone configuration\n");
free(stat_buf);
return -1;
}
MSG(0, "Info: Host-%s zoned block device:\n",
(dev->zoned_model == F2FS_ZONED_HA) ?
"aware" : "managed");
MSG(0, " %u zones, %lu zone size(bytes), %u randomly writeable zones\n",
dev->nr_zones, dev->zone_size,
dev->nr_rnd_zones);
MSG(0, " %lu blocks per zone\n",
dev->zone_blocks);
}
#endif
/* adjust wanted_total_sectors */
if (c.wanted_total_sectors != -1) {
MSG(0, "Info: wanted sectors = %"PRIu64" (in %"PRIu64" bytes)\n",
c.wanted_total_sectors, c.wanted_sector_size);
if (c.wanted_sector_size == -1) {
c.wanted_sector_size = dev->sector_size;
} else if (dev->sector_size != c.wanted_sector_size) {
c.wanted_total_sectors *= c.wanted_sector_size;
c.wanted_total_sectors /= dev->sector_size;
}
}
c.total_sectors += dev->total_sectors;
free(stat_buf);
return 0;
}
#else
#include "windows.h"
#include "winioctl.h"
#if (_WIN32_WINNT >= 0x0500)
#define HAVE_GET_FILE_SIZE_EX 1
#endif
static int win_get_device_size(const char *file, uint64_t *device_size)
{
HANDLE dev;
PARTITION_INFORMATION pi;
DISK_GEOMETRY gi;
DWORD retbytes;
#ifdef HAVE_GET_FILE_SIZE_EX
LARGE_INTEGER filesize;
#else
DWORD filesize;
#endif /* HAVE_GET_FILE_SIZE_EX */
dev = CreateFile(file, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE ,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (dev == INVALID_HANDLE_VALUE)
return EBADF;
if (DeviceIoControl(dev, IOCTL_DISK_GET_PARTITION_INFO,
&pi, sizeof(PARTITION_INFORMATION),
&pi, sizeof(PARTITION_INFORMATION),
&retbytes, NULL)) {
*device_size = pi.PartitionLength.QuadPart;
} else if (DeviceIoControl(dev, IOCTL_DISK_GET_DRIVE_GEOMETRY,
&gi, sizeof(DISK_GEOMETRY),
&gi, sizeof(DISK_GEOMETRY),
&retbytes, NULL)) {
*device_size = gi.BytesPerSector *
gi.SectorsPerTrack *
gi.TracksPerCylinder *
gi.Cylinders.QuadPart;
#ifdef HAVE_GET_FILE_SIZE_EX
} else if (GetFileSizeEx(dev, &filesize)) {
*device_size = filesize.QuadPart;
}
#else
} else {
filesize = GetFileSize(dev, NULL);
if (INVALID_FILE_SIZE != filesize)
return -1;
*device_size = filesize;
}
#endif /* HAVE_GET_FILE_SIZE_EX */
CloseHandle(dev);
return 0;
}
int get_device_info(int i)
{
struct device_info *dev = c.devices + i;
uint64_t device_size = 0;
int32_t fd = 0;
/* Block device target is not supported on Windows. */
if (!c.sparse_mode) {
if (win_get_device_size(dev->path, &device_size)) {
MSG(0, "\tError: Failed to get device size!\n");
return -1;
}
} else {
device_size = c.device_size;
}
if (c.sparse_mode) {
fd = open((char *)dev->path, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
} else {
fd = open((char *)dev->path, O_RDWR | O_BINARY);
}
if (fd < 0) {
MSG(0, "\tError: Failed to open the device!\n");
return -1;
}
dev->fd = fd;
dev->total_sectors = device_size / dev->sector_size;
c.start_sector = 0;
c.sector_size = dev->sector_size;
c.sectors_per_blk = F2FS_BLKSIZE / c.sector_size;
c.total_sectors += dev->total_sectors;
if (c.sparse_mode && f2fs_init_sparse_file())
return -1;
return 0;
}
#endif
int f2fs_get_device_info(void)
{
int i;
for (i = 0; i < c.ndevs; i++)
if (get_device_info(i))
return -1;
mkfs.f2fs: wipe other FS magics given -f commit 1603a3d1de98031b4c2d020999d50e7a34b731ad category: bugfix issue: #I6VAS0 CVE: NA Signed-off-by: DongSenhao <dongsenhao2@huawei.com> --------------------------------------- This patch fixes the below stale magic info. $ mkfs.btrfs -f test.img btrfs-progs v5.10.1 See http://btrfs.wiki.kernel.org for more information. Label: (null) UUID: 941d2db7-3ece-4090-8b22-c4ea548b5dae Node size: 16384 Sector size: 4096 Filesystem size: 1.00GiB Block group profiles: Data: single 8.00MiB Metadata: DUP 51.19MiB System: DUP 8.00MiB SSD detected: no Incompat features: extref, skinny-metadata Runtime features: Checksum: crc32c Number of devices: 1 Devices: ID SIZE PATH 1 1.00GiB test.img $ hexdump -s 0x10000 -n 128 -C test.img 00010000 81 29 94 0a 00 00 00 00 00 00 00 00 00 00 00 00 |.)..............| 00010010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00010020 94 1d 2d b7 3e ce 40 90 8b 22 c4 ea 54 8b 5d ae |..-.>.@.."..T.].| 00010030 00 00 01 00 00 00 00 00 01 00 00 00 00 00 00 00 |................| 00010040 5f 42 48 52 66 53 5f 4d 05 00 00 00 00 00 00 00 |_BHRfS_M........| 00010050 00 40 d2 01 00 00 00 00 00 40 50 01 00 00 00 00 |.@.......@P.....| 00010060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00010070 00 00 00 40 00 00 00 00 00 00 02 00 00 00 00 00 |...@............| 00010080 $ mkfs.f2fs -t 0 -f test.img F2FS-tools: mkfs.f2fs Ver: 1.14.0 (2020-12-28) Info: Disable heap-based policy Info: Debug level = 0 Info: Trim is disabled Info: Segments per section = 1 Info: Sections per zone = 1 Info: sector size = 512 Info: total sectors = 2097152 (1024 MB) Info: zone aligned segment0 blkaddr: 512 Info: format version with "Linux version 5.10.46-4rodete1-amd64 (glinux-team@google.com) (gcc-10 (Debian 10.2.1-6+build2) 10.2.1 20210110, GNU ld (GNU Binutils for Debian) 2.35.2) #1 SMP Debian 5.10.46-4rodete1 (2021-08-20)" Info: Overprovision ratio = 6.360% Info: Overprovision segments = 68 (GC reserved = 39) Info: format successful $hexdump -s 0x10000 -n 128 -C test.img 00010000 c2 8a c8 26 00 00 00 00 00 00 00 00 00 00 00 00 |...&............| 00010010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00010020 92 ab 3f c6 b7 82 49 5e 93 23 e8 c9 e9 45 7d ac |..?...I^.#...E}.| 00010030 00 00 01 00 00 00 00 00 01 00 00 00 00 00 00 00 |................| 00010040 5f 42 48 52 66 53 5f 4d 05 00 00 00 00 00 00 00 |_BHRfS_M........| 00010050 00 40 d2 01 00 00 00 00 00 40 50 01 00 00 00 00 |.@.......@P.....| 00010060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00010070 00 00 00 40 00 00 00 00 00 00 02 00 00 00 00 00 |...@............| 00010080 --- After this patch --- $ mkfs.f2fs -t 0 -f test.img F2FS-tools: mkfs.f2fs Ver: 1.14.0 (2020-12-28) Info: Disable heap-based policy Info: Debug level = 0 Info: Trim is disabled test.img appears to contain an existing filesystem (btrfs). Info: Segments per section = 1 Info: Sections per zone = 1 Info: sector size = 512 Info: total sectors = 2097152 (1024 MB) Info: zone aligned segment0 blkaddr: 512 Info: format version with "Linux version 5.10.46-4rodete1-amd64 (glinux-team@google.com) (gcc-10 (Debian 10.2.1-6+build2) 10.2.1 20210110, GNU ld (GNU Binutils for Debian) 2.35.2) #1 SMP Debian 5.10.46-4rodete1 (2021-08-20)" Info: Overprovision ratio = 6.360% Info: Overprovision segments = 68 (GC reserved = 39) Info: format successful $ hexdump -s 0x10000 -n 128 -C test.img 00010000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| * 00010080 Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: dongsenhao <dongsenhao2@huawei.com>
2021-09-10 22:38:11 +00:00
return 0;
}
int f2fs_get_f2fs_info(void)
{
int i;
if (c.wanted_total_sectors < c.total_sectors) {
MSG(0, "Info: total device sectors = %"PRIu64" (in %u bytes)\n",
c.total_sectors, c.sector_size);
c.total_sectors = c.wanted_total_sectors;
c.devices[0].total_sectors = c.total_sectors;
}
if (c.total_sectors * c.sector_size >
(uint64_t)F2FS_MAX_SEGMENT * 2 * 1024 * 1024) {
MSG(0, "\tError: F2FS can support 16TB at most!!!\n");
return -1;
}
/*
* Check device types and determine the final volume operation mode:
* - If all devices are regular block devices, default operation.
* - If at least one HM device is found, operate in HM mode (BLKZONED
* feature will be enabled by mkfs).
* - If an HA device is found, let mkfs decide based on the -m option
* setting by the user.
*/
c.zoned_model = F2FS_ZONED_NONE;
for (i = 0; i < c.ndevs; i++) {
switch (c.devices[i].zoned_model) {
case F2FS_ZONED_NONE:
continue;
case F2FS_ZONED_HM:
c.zoned_model = F2FS_ZONED_HM;
break;
case F2FS_ZONED_HA:
if (c.zoned_model != F2FS_ZONED_HM)
c.zoned_model = F2FS_ZONED_HA;
break;
}
}
if (c.zoned_model != F2FS_ZONED_NONE) {
/*
* For zoned model, the zones sizes of all zoned devices must
* be equal.
*/
for (i = 0; i < c.ndevs; i++) {
if (c.devices[i].zoned_model == F2FS_ZONED_NONE)
continue;
if (c.zone_blocks &&
c.zone_blocks != c.devices[i].zone_blocks) {
MSG(0, "\tError: zones of different size are "
"not supported\n");
return -1;
}
c.zone_blocks = c.devices[i].zone_blocks;
}
/*
* Align sections to the device zone size and align F2FS zones
* to the device zones. For F2FS_ZONED_HA model without the
* BLKZONED feature set at format time, this is only an
* optimization as sequential writes will not be enforced.
*/
c.segs_per_sec = c.zone_blocks / DEFAULT_BLOCKS_PER_SEGMENT;
c.secs_per_zone = 1;
} else {
if(c.zoned_mode != 0) {
MSG(0, "\n Error: %s may not be a zoned block device \n",
c.devices[0].path);
return -1;
}
}
c.segs_per_zone = c.segs_per_sec * c.secs_per_zone;
if (c.func != MKFS)
return 0;
MSG(0, "Info: Segments per section = %d\n", c.segs_per_sec);
MSG(0, "Info: Sections per zone = %d\n", c.secs_per_zone);
MSG(0, "Info: sector size = %u\n", c.sector_size);
MSG(0, "Info: total sectors = %"PRIu64" (%"PRIu64" MB)\n",
c.total_sectors, (c.total_sectors *
(c.sector_size >> 9)) >> 11);
return 0;
}
unsigned int calc_extra_isize(void)
{
unsigned int size = offsetof(struct f2fs_inode, i_projid);
if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR))
size = offsetof(struct f2fs_inode, i_projid);
if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
size = offsetof(struct f2fs_inode, i_inode_checksum);
if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
size = offsetof(struct f2fs_inode, i_crtime);
if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME))
size = offsetof(struct f2fs_inode, i_compr_blocks);
if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION))
size = offsetof(struct f2fs_inode, i_extra_end);
return size - F2FS_EXTRA_ISIZE_OFFSET;
}
#define ARRAY_SIZE(array) \
(sizeof(array) / sizeof(array[0]))
static const struct {
char *name;
__u16 encoding_magic;
__u16 default_flags;
} f2fs_encoding_map[] = {
{
.encoding_magic = F2FS_ENC_UTF8_12_1,
.name = "utf8",
.default_flags = 0,
},
};
static const struct enc_flags {
__u16 flag;
char *param;
} encoding_flags[] = {
{ F2FS_ENC_STRICT_MODE_FL, "strict" },
};
/* Return a positive number < 0xff indicating the encoding magic number
* or a negative value indicating error. */
int f2fs_str2encoding(const char *string)
{
int i;
for (i = 0 ; i < ARRAY_SIZE(f2fs_encoding_map); i++)
if (!strcmp(string, f2fs_encoding_map[i].name))
return f2fs_encoding_map[i].encoding_magic;
return -EINVAL;
}
char *f2fs_encoding2str(const int encoding)
{
int i;
for (i = 0 ; i < ARRAY_SIZE(f2fs_encoding_map); i++)
if (f2fs_encoding_map[i].encoding_magic == encoding)
return f2fs_encoding_map[i].name;
return NULL;
}
int f2fs_get_encoding_flags(int encoding)
{
int i;
for (i = 0 ; i < ARRAY_SIZE(f2fs_encoding_map); i++)
if (f2fs_encoding_map[i].encoding_magic == encoding)
return f2fs_encoding_map[encoding].default_flags;
return 0;
}
int f2fs_str2encoding_flags(char **param, __u16 *flags)
{
char *f = strtok(*param, ",");
const struct enc_flags *fl;
int i, neg = 0;
while (f) {
neg = 0;
if (!strncmp("no", f, 2)) {
neg = 1;
f += 2;
}
for (i = 0; i < ARRAY_SIZE(encoding_flags); i++) {
fl = &encoding_flags[i];
if (!strcmp(fl->param, f)) {
if (neg) {
MSG(0, "Sub %s\n", fl->param);
*flags &= ~fl->flag;
} else {
MSG(0, "Add %s\n", fl->param);
*flags |= fl->flag;
}
goto next_flag;
}
}
*param = f;
return -EINVAL;
next_flag:
f = strtok(NULL, ":");
}
return 0;
}