third_party_f2fs-tools/mkfs/f2fs_format.c

1306 lines
36 KiB
C
Raw Normal View History

/**
* f2fs_format.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define _LARGEFILE64_SOURCE
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <mntent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <linux/hdreg.h>
#include <time.h>
#include <linux/fs.h>
#include <uuid/uuid.h>
#include "f2fs_fs.h"
struct f2fs_global_parameters f2fs_params;
struct f2fs_super_block super_block;
/**
* @brief This function will change a given string from ASCII to UNICODE
* @param out_buf Output UNICODE string
* @param in_buf Input ASCII string
* @return None
*/
void ASCIIToUNICODE(u_int16_t *out_buf, u_int8_t *in_buf)
{
u_int8_t *pchTempPtr = in_buf;
u_int16_t *pwTempPtr = out_buf;
while (*pchTempPtr != '\0') {
/* Copy the string elements character by character
* to the output string with typecasting the source.
*/
*pwTempPtr = (u_int16_t)*pchTempPtr;
pchTempPtr++;
pwTempPtr++;
}
*pwTempPtr = '\0';
return;
}
/**
* @brief This function will ntitlize f2fs global paramenters
* @param None
* @return None
*/
static void f2fs_init_global_parameters(void)
{
f2fs_params.sector_size = DEFAULT_SECTOR_SIZE;
f2fs_params.sectors_per_blk = DEFAULT_SECTORS_PER_BLOCK;
f2fs_params.blks_per_seg = DEFAULT_BLOCKS_PER_SEGMENT;
f2fs_params.reserved_segments = 48; /* calculated by overprovision ratio */
f2fs_params.overprovision = 5;
f2fs_params.segs_per_sec = 1;
f2fs_params.secs_per_zone = 1;
f2fs_params.heap = 1;
memset(f2fs_params.vol_label, 0, sizeof(f2fs_params.vol_label));
f2fs_params.vol_label[0] = 'F';
f2fs_params.vol_label[1] = '2';
f2fs_params.vol_label[2] = 'F';
f2fs_params.vol_label[3] = 'S';
f2fs_params.vol_label[4] = '\0';
f2fs_params.device_name = NULL;
}
static inline int f2fs_set_bit(unsigned int nr, unsigned char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr |= mask;
return ret;
}
/**
* @brief This function calculates log base 2 of given number
* @param num an integer number
* @return an int log base 2 of given number
*/
static int8_t log_base_2(u_int32_t num)
{
int8_t ret = 0;
if (num <= 0 || (num & (num - 1)) != 0) {
return -1;
}
while (num >>= 1) {
ret++;
}
return ret;
}
/**
* @brief This function shows error if user gives wrong parameters
* @param None
* @return None
*/
static void f2fs_usage(void)
{
fprintf(stderr, "Usage: f2fs_format [options] device\n");
fprintf(stderr, "[options]\n");
fprintf(stderr, "-l label\n");
fprintf(stderr, "-a heap-based allocation [default:1]\n");
fprintf(stderr, "-o overprovision ratio [default:5]\n");
fprintf(stderr, "-s # of segments per section [default:1]\n");
fprintf(stderr, "-z # of sections per zone [default:1]\n");
fprintf(stderr, "-e [extension list] e.g. \"mp3,gif,mov\"\n");
exit(1);
}
/**
* @brief This function calculates log base 2 of given number
* @param argc number of arguments
* @param argv an array of arguments
* @return None
*/
static void f2fs_parse_options(int argc, char *argv[])
{
static const char *option_string = "l:o:z:a:s:e:";
int32_t option=0;
while ((option = getopt(argc,argv,option_string)) != EOF) {
switch (option) {
case 'l': /*v: volume label */
if (strlen(optarg) > 512) {
printf("Error: Volume Label should be less than \
512 characters\n");
f2fs_usage();
}
sprintf((char *)f2fs_params.vol_label, "%s", optarg);
break;
case 'o':
f2fs_params.overprovision = atoi(optarg);
printf("Info: Overprovision ratio = %u%%\n", atoi(optarg));
break;
case 's':
f2fs_params.segs_per_sec = atoi(optarg);
printf("Info: segments per section = %d\n", atoi(optarg));
break;
case 'a':
f2fs_params.heap = atoi(optarg);
if (f2fs_params.heap == 0)
printf("Info: Allocate without heap-based policy\n");
break;
case 'z':
f2fs_params.secs_per_zone = atoi(optarg);
printf("Info: sections per zone = %d\n", atoi(optarg));
break;
case 'e':
f2fs_params.extension_list = strdup(optarg);
break;
default:
printf("Error: Unknown option %c\n",option);
f2fs_usage();
break;
}
}
if ((optind + 1) != argc) {
printf("Error: Device not specified\n");
f2fs_usage();
}
f2fs_params.reserved_segments =
(2 * (100 / f2fs_params.overprovision + 1) + 6)
* f2fs_params.segs_per_sec;
f2fs_params.device_name = argv[optind];
}
/**
* @brief Routine to check if the device is already mounted
* @param None
* @return 0 if device is not mounted
* -1 if already mounted
*/
static int8_t f2fs_is_device_mounted()
{
FILE *file;
struct mntent *mnt; /* mntent structure to retrieve mount info */
if ((file = setmntent(MOUNTED, "r")) == NULL)
return 0;
while ((mnt = getmntent(file)) != NULL) {
if (!strcmp(f2fs_params.device_name, mnt->mnt_fsname)) {
printf("Error: %s is already mounted\n",
f2fs_params.device_name);
return -1;
}
}
endmntent(file);
return 0;
}
/**
* @brief Get device info - sector size, number of sectors etc
* @param None
* @return 0 if successfully got device info
*/
static int8_t f2fs_get_device_info()
{
int32_t fd = 0;
int32_t sector_size;
struct stat stat_buf;
struct hd_geometry geom;
fd = open(f2fs_params.device_name, O_RDWR);
if (fd < 0) {
printf("\n\tError: Failed to open the device!!!\n");
return -1;
}
f2fs_params.fd = fd;
if (fstat(fd, &stat_buf) < 0 ) {
printf("\n\tError: Failed to get the device stat!!!\n");
return -1;
}
if (S_ISREG(stat_buf.st_mode)) {
f2fs_params.total_sectors = stat_buf.st_size /
f2fs_params.sector_size;
}
else if (S_ISBLK(stat_buf.st_mode)) {
if (ioctl(fd, BLKSSZGET, &sector_size) < 0 )
printf("\n\tError: Cannot get the sector size!!! \
Using the default Sector Size\n");
else {
if (f2fs_params.sector_size < sector_size) {
printf("\n\tError: Cannot set the sector size to: %d"
" as the device does not support"
"\nSetting the sector size to : %d\n",
f2fs_params.sector_size, sector_size);
f2fs_params.sector_size = sector_size;
f2fs_params.sectors_per_blk = PAGE_SIZE / sector_size;
}
}
if (ioctl(fd, BLKGETSIZE, &f2fs_params.total_sectors) < 0) {
printf("\n\tError: Cannot get the device size\n");
return -1;
}
if (ioctl(fd, HDIO_GETGEO, &geom) < 0)
f2fs_params.start_sector = 0;
else
f2fs_params.start_sector = geom.start;
}
else {
printf("\n\n\tError: Volume type is not supported!!!\n");
return -1;
}
printf("Info: sector size = %u\n", f2fs_params.sector_size);
printf("Info: total sectors = %"PRIu64" (in 512bytes)\n",
f2fs_params.total_sectors);
if (f2fs_params.total_sectors <
(F2FS_MIN_VOLUME_SIZE / DEFAULT_SECTOR_SIZE)) {
printf("Error: Min volume size supported is %d\n",
F2FS_MIN_VOLUME_SIZE);
return -1;
}
return 0;
}
const char *media_ext_lists[] = {
"jpg",
"gif",
"png",
"avi",
"divx",
"mp4",
"mp3",
"3gp",
"wmv",
"wma",
"mpeg",
"mkv",
"mov",
"asx",
"asf",
"wmx",
"svi",
"wvx",
"wm",
"mpg",
"mpe",
"rm",
"ogg",
NULL
};
static void configure_extension_list(void)
{
const char **extlist = media_ext_lists;
char *ext_str = f2fs_params.extension_list;
char *ue;
int name_len;
int i = 0;
super_block.extension_count = 0;
memset(super_block.extension_list, 0,
sizeof(super_block.extension_list));
while (*extlist) {
name_len = strlen(*extlist);
memcpy(super_block.extension_list[i++], *extlist, name_len);
extlist++;
}
super_block.extension_count = i - 1;
if (!ext_str)
return;
/* add user ext list */
ue = strtok(ext_str, ",");
while (ue != NULL) {
name_len = strlen(ue);
memcpy(super_block.extension_list[i++], ue, name_len);
ue = strtok(NULL, ",");
if (i > F2FS_MAX_EXTENSION)
break;
}
super_block.extension_count = i - 1;
free(f2fs_params.extension_list);
}
/**
* @brief It writes buffer to disk or storage meant to be formatted
* with F2FS.
* @param fd File descriptor for device
* @param buf buffer to be written
* @param offset where to bw written on the device
* @param length length of the device
* @return 0 if success
*/
static int writetodisk(int32_t fd, void *buf, u_int64_t offset, size_t length)
{
if (lseek64(fd, offset, SEEK_SET) < 0) {
printf("\n\tError: While lseek to the derised location!!!\n");
return -1;
}
if (write(fd, buf, length) < 0) {
printf("\n\tError: While writing data to the disk!!! Error Num : \
%d\n", errno);
return -1;
}
return 0;
}
/**
* @brief It initialize F2FS super block
* @param None
* @return None
*/
static int f2fs_prepare_super_block(void)
{
u_int32_t blk_size_bytes;
u_int32_t log_sectorsize, log_sectors_per_block;
u_int32_t log_blocksize, log_blks_per_seg;
u_int32_t segment_size_bytes, zone_size_bytes;
u_int32_t sit_segments;
u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
u_int32_t total_valid_blks_available;
u_int64_t zone_align_start_offset, diff, total_meta_segments;
u_int32_t sit_bitmap_size, max_nat_bitmap_size, max_nat_segments;
u_int32_t total_zones;
super_block.magic = cpu_to_le32(F2FS_SUPER_MAGIC);
super_block.major_ver = cpu_to_le16(F2FS_MAJOR_VERSION);
super_block.minor_ver = cpu_to_le16(F2FS_MINOR_VERSION);
log_sectorsize = log_base_2(f2fs_params.sector_size);
log_sectors_per_block = log_base_2(f2fs_params.sectors_per_blk);
log_blocksize = log_sectorsize + log_sectors_per_block;
log_blks_per_seg = log_base_2(f2fs_params.blks_per_seg);
super_block.log_sectorsize = cpu_to_le32(log_sectorsize);
if (log_sectorsize < 0) {
printf("\n\tError: Failed to get the sector size: %u!\n",
f2fs_params.sector_size);
return -1;
}
super_block.log_sectors_per_block = cpu_to_le32(log_sectors_per_block);
if (log_sectors_per_block < 0) {
printf("\n\tError: Failed to get sectors per block: %u!\n",
f2fs_params.sectors_per_blk);
return -1;
}
super_block.log_blocksize = cpu_to_le32(log_blocksize);
super_block.log_blocks_per_seg = cpu_to_le32(log_blks_per_seg);
if (log_blks_per_seg < 0) {
printf("\n\tError: Failed to get block per segment: %u!\n",
f2fs_params.blks_per_seg);
return -1;
}
super_block.segs_per_sec = cpu_to_le32(f2fs_params.segs_per_sec);
super_block.secs_per_zone = cpu_to_le32(f2fs_params.secs_per_zone);
blk_size_bytes = 1 << log_blocksize;
segment_size_bytes = blk_size_bytes * f2fs_params.blks_per_seg;
zone_size_bytes =
blk_size_bytes * f2fs_params.secs_per_zone *
f2fs_params.segs_per_sec * f2fs_params.blks_per_seg;
super_block.checksum_offset = 0;
super_block.block_count = cpu_to_le64(
(f2fs_params.total_sectors * DEFAULT_SECTOR_SIZE) /
blk_size_bytes);
zone_align_start_offset =
(f2fs_params.start_sector * DEFAULT_SECTOR_SIZE +
2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
f2fs_params.start_sector * DEFAULT_SECTOR_SIZE;
if (f2fs_params.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
printf("WARN: Align start sector number in a unit of pages\n");
printf("\ti.e., start sector: %d, ofs:%d (sectors per page: %d)\n",
f2fs_params.start_sector,
f2fs_params.start_sector % DEFAULT_SECTORS_PER_BLOCK,
DEFAULT_SECTORS_PER_BLOCK);
}
super_block.segment_count = cpu_to_le32(
((f2fs_params.total_sectors * DEFAULT_SECTOR_SIZE) -
zone_align_start_offset) / segment_size_bytes);
super_block.segment0_blkaddr =
cpu_to_le32(zone_align_start_offset / blk_size_bytes);
super_block.cp_blkaddr = super_block.segment0_blkaddr;
printf("Info: zone aligned segment0 blkaddr: %u\n",
le32_to_cpu(super_block.segment0_blkaddr));
super_block.segment_count_ckpt =
cpu_to_le32(F2FS_NUMBER_OF_CHECKPOINT_PACK);
super_block.sit_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.segment0_blkaddr) +
(le32_to_cpu(super_block.segment_count_ckpt) *
(1 << log_blks_per_seg)));
blocks_for_sit = (le32_to_cpu(super_block.segment_count) +
SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK;
sit_segments = (blocks_for_sit + f2fs_params.blks_per_seg - 1)
/ f2fs_params.blks_per_seg;
super_block.segment_count_sit = cpu_to_le32(sit_segments * 2);
super_block.nat_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.sit_blkaddr) +
(le32_to_cpu(super_block.segment_count_sit) *
f2fs_params.blks_per_seg));
total_valid_blks_available = (le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) +
le32_to_cpu(super_block.segment_count_sit))) *
f2fs_params.blks_per_seg;
blocks_for_nat = (total_valid_blks_available + NAT_ENTRY_PER_BLOCK - 1)
/ NAT_ENTRY_PER_BLOCK;
super_block.segment_count_nat = cpu_to_le32(
(blocks_for_nat + f2fs_params.blks_per_seg - 1) /
f2fs_params.blks_per_seg);
/*
* The number of node segments should not be exceeded a "Threshold".
* This number resizes NAT bitmap area in a CP page.
* So the threshold is determined not to overflow one CP page
*/
sit_bitmap_size = ((le32_to_cpu(super_block.segment_count_sit) / 2) <<
log_blks_per_seg) / 8;
max_nat_bitmap_size = 4096 - sizeof(struct f2fs_checkpoint) + 1 -
sit_bitmap_size;
max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
if (le32_to_cpu(super_block.segment_count_nat) > max_nat_segments)
super_block.segment_count_nat = cpu_to_le32(max_nat_segments);
super_block.segment_count_nat = cpu_to_le32(
le32_to_cpu(super_block.segment_count_nat) * 2);
super_block.ssa_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.nat_blkaddr) +
le32_to_cpu(super_block.segment_count_nat) *
f2fs_params.blks_per_seg);
total_valid_blks_available = (le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) +
le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat))) *
f2fs_params.blks_per_seg;
blocks_for_ssa = total_valid_blks_available /
f2fs_params.blks_per_seg + 1;
super_block.segment_count_ssa = cpu_to_le32(
(blocks_for_ssa + f2fs_params.blks_per_seg - 1) /
f2fs_params.blks_per_seg);
total_meta_segments = le32_to_cpu(super_block.segment_count_ckpt) +
le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat) +
le32_to_cpu(super_block.segment_count_ssa);
diff = total_meta_segments % (f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone);
if (diff)
super_block.segment_count_ssa = cpu_to_le32(
le32_to_cpu(super_block.segment_count_ssa) +
(f2fs_params.segs_per_sec * f2fs_params.secs_per_zone -
diff));
super_block.main_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.ssa_blkaddr) +
(le32_to_cpu(super_block.segment_count_ssa) *
f2fs_params.blks_per_seg));
super_block.segment_count_main = cpu_to_le32(
le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt)
+ le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat) +
le32_to_cpu(super_block.segment_count_ssa)));
super_block.section_count = cpu_to_le32(
le32_to_cpu(super_block.segment_count_main)
/ f2fs_params.segs_per_sec);
super_block.segment_count_main = cpu_to_le32(
le32_to_cpu(super_block.section_count) *
f2fs_params.segs_per_sec);
if ((le32_to_cpu(super_block.segment_count_main) - 2) <
f2fs_params.reserved_segments) {
printf("Error: Device size is not sufficient for F2FS volume, \
more segment needed =%u",
f2fs_params.reserved_segments -
(le32_to_cpu(super_block.segment_count_main) - 2));
return -1;
}
uuid_generate(super_block.uuid);
ASCIIToUNICODE(super_block.volume_name, f2fs_params.vol_label);
super_block.node_ino = cpu_to_le32(1);
super_block.meta_ino = cpu_to_le32(2);
super_block.root_ino = cpu_to_le32(3);
total_zones = ((le32_to_cpu(super_block.segment_count_main) - 1) /
f2fs_params.segs_per_sec) /
f2fs_params.secs_per_zone;
if (total_zones <= 6) {
printf("\n\tError: %d zones: Need more zones \
by shrinking zone size\n", total_zones);
return -1;
}
if (f2fs_params.heap) {
f2fs_params.cur_seg[CURSEG_HOT_NODE] = (total_zones - 1) *
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone +
((f2fs_params.secs_per_zone - 1) *
f2fs_params.segs_per_sec);
f2fs_params.cur_seg[CURSEG_WARM_NODE] =
f2fs_params.cur_seg[CURSEG_HOT_NODE] -
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_NODE] =
f2fs_params.cur_seg[CURSEG_WARM_NODE] -
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_HOT_DATA] =
f2fs_params.cur_seg[CURSEG_COLD_NODE] -
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_DATA] = 0;
f2fs_params.cur_seg[CURSEG_WARM_DATA] =
f2fs_params.cur_seg[CURSEG_COLD_DATA] +
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
} else {
f2fs_params.cur_seg[CURSEG_HOT_NODE] = 0;
f2fs_params.cur_seg[CURSEG_WARM_NODE] =
f2fs_params.cur_seg[CURSEG_HOT_NODE] +
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_NODE] =
f2fs_params.cur_seg[CURSEG_WARM_NODE] +
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_HOT_DATA] =
f2fs_params.cur_seg[CURSEG_COLD_NODE] +
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_DATA] =
f2fs_params.cur_seg[CURSEG_HOT_DATA] +
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_WARM_DATA] =
f2fs_params.cur_seg[CURSEG_COLD_DATA] +
f2fs_params.segs_per_sec *
f2fs_params.secs_per_zone;
}
configure_extension_list();
return 0;
}
/**
* @brief It initialize SIT Data structure
* @param None
* @return 0 if success
*/
static int8_t f2fs_init_sit_area(void)
{
u_int32_t blk_size_bytes;
u_int32_t seg_size_bytes;
u_int32_t index = 0;
u_int64_t sit_seg_blk_offset = 0;
u_int8_t *zero_buf = NULL;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
seg_size_bytes = (1 << le32_to_cpu(super_block.log_blocks_per_seg)) *
blk_size_bytes;
zero_buf = calloc(sizeof(u_int8_t), seg_size_bytes);
if(zero_buf == NULL) {
printf("\n\tError: Calloc Failed for sit_zero_buf!!!\n");
return -1;
}
sit_seg_blk_offset = le32_to_cpu(super_block.sit_blkaddr) *
blk_size_bytes;
for (index = 0;
index < (le32_to_cpu(super_block.segment_count_sit) / 2);
index++) {
if (writetodisk(f2fs_params.fd, zero_buf, sit_seg_blk_offset,
seg_size_bytes) < 0) {
printf("\n\tError: While zeroing out the sit area \
on disk!!!\n");
return -1;
}
sit_seg_blk_offset = sit_seg_blk_offset + seg_size_bytes;
}
free(zero_buf);
return 0 ;
}
/**
* @brief It initialize NAT Area
* @param None
* @return 0 if success
*/
static int8_t f2fs_init_nat_area(void)
{
u_int32_t blk_size_bytes;
u_int32_t seg_size_bytes;
u_int32_t index = 0;
u_int64_t nat_seg_blk_offset = 0;
u_int8_t *nat_buf = NULL;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
seg_size_bytes = (1 << le32_to_cpu(super_block.log_blocks_per_seg)) *
blk_size_bytes;
nat_buf = calloc(sizeof(u_int8_t), seg_size_bytes);
if (nat_buf == NULL) {
printf("\n\tError: Calloc Failed for nat_zero_blk!!!\n");
return -1;
}
nat_seg_blk_offset = le32_to_cpu(super_block.nat_blkaddr);
nat_seg_blk_offset *= blk_size_bytes;
for (index = 0;
index < (le32_to_cpu(super_block.segment_count_nat) / 2);
index++) {
if (writetodisk(f2fs_params.fd, nat_buf, nat_seg_blk_offset,
seg_size_bytes) < 0) {
printf("\n\tError: While zeroing out the nat area \
on disk!!!\n");
return -1;
}
nat_seg_blk_offset = nat_seg_blk_offset + (2 * seg_size_bytes);
}
free(nat_buf);
return 0 ;
}
#define CRCPOLY_LE 0xedb88320
unsigned int f2fs_cal_crc32(unsigned int crc, void *buff, unsigned int len)
{
int i;
unsigned char *p = (unsigned char *)buff;
while (len--) {
crc ^= *p++;
for (i = 0; i < 8; i++)
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
}
return crc;
}
/**
* @brief It writes check poiint pack on Check point Area
* @param None
* @return 0 if succes
*/
static int8_t f2fs_write_check_point_pack(void)
{
struct f2fs_checkpoint *ckp = NULL;
struct f2fs_summary_block *sum = NULL;
u_int32_t blk_size_bytes;
u_int64_t cp_seg_blk_offset = 0;
u_int32_t crc = 0;
int i;
ckp = calloc(F2FS_CP_BLOCK_SIZE, 1);
if (ckp == NULL) {
printf("\n\tError: Calloc Failed for f2fs_checkpoint!!!\n");
return -1;
}
sum = calloc(sizeof(struct f2fs_summary_block), 1);
if (sum == NULL) {
printf("\n\tError: Calloc Failed for summay_node!!!\n");
return -1;
}
/* 1. cp page 1 of checkpoint pack 1 */
ckp->checkpoint_ver = 1;
ckp->cur_node_segno[0] =
cpu_to_le32(f2fs_params.cur_seg[CURSEG_HOT_NODE]);
ckp->cur_node_segno[1] =
cpu_to_le32(f2fs_params.cur_seg[CURSEG_WARM_NODE]);
ckp->cur_node_segno[2] =
cpu_to_le32(f2fs_params.cur_seg[CURSEG_COLD_NODE]);
ckp->cur_data_segno[0] =
cpu_to_le32(f2fs_params.cur_seg[CURSEG_HOT_DATA]);
ckp->cur_data_segno[1] =
cpu_to_le32(f2fs_params.cur_seg[CURSEG_WARM_DATA]);
ckp->cur_data_segno[2] =
cpu_to_le32(f2fs_params.cur_seg[CURSEG_COLD_DATA]);
for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
ckp->cur_node_segno[i] = 0xffffffff;
ckp->cur_data_segno[i] = 0xffffffff;
}
ckp->cur_node_blkoff[0] = cpu_to_le16(1);
ckp->cur_data_blkoff[0] = cpu_to_le16(1);
ckp->valid_block_count = cpu_to_le64(2);
ckp->rsvd_segment_count = cpu_to_le32(f2fs_params.reserved_segments);
ckp->overprov_segment_count = cpu_to_le32(
(le32_to_cpu(super_block.segment_count_main) -
le32_to_cpu(ckp->rsvd_segment_count)) *
f2fs_params.overprovision / 100);
ckp->overprov_segment_count = cpu_to_le32(
le32_to_cpu(ckp->overprov_segment_count) +
le32_to_cpu(ckp->rsvd_segment_count));
/* main segments - reserved segments - (node + data segments) */
ckp->free_segment_count = cpu_to_le32(
le32_to_cpu(super_block.segment_count_main) - 6);
ckp->user_block_count = cpu_to_le64(
((le32_to_cpu(ckp->free_segment_count) + 6 -
le32_to_cpu(ckp->overprov_segment_count)) *
f2fs_params.blks_per_seg));
ckp->cp_pack_total_block_count = cpu_to_le32(8);
ckp->ckpt_flags |= CP_UMOUNT_FLAG;
ckp->cp_pack_start_sum = cpu_to_le32(1);
ckp->valid_node_count = cpu_to_le32(1);
ckp->valid_inode_count = cpu_to_le32(1);
ckp->next_free_nid = cpu_to_le32(
le32_to_cpu(super_block.root_ino) + 1);
ckp->sit_ver_bitmap_bytesize = cpu_to_le32(
((le32_to_cpu(super_block.segment_count_sit) / 2) <<
le32_to_cpu(super_block.log_blocks_per_seg)) / 8);
ckp->nat_ver_bitmap_bytesize = cpu_to_le32(
((le32_to_cpu(super_block.segment_count_nat) / 2) <<
le32_to_cpu(super_block.log_blocks_per_seg)) / 8);
ckp->checksum_offset = cpu_to_le32(4092);
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp,
le32_to_cpu(ckp->checksum_offset));
*((u_int32_t *)((unsigned char *)ckp +
le32_to_cpu(ckp->checksum_offset))) = crc;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
cp_seg_blk_offset = le32_to_cpu(super_block.segment0_blkaddr);
cp_seg_blk_offset *= blk_size_bytes;
if (writetodisk(f2fs_params.fd, ckp, cp_seg_blk_offset,
F2FS_CP_BLOCK_SIZE) < 0) {
printf("\n\tError: While writing the ckp to disk!!!\n");
return -1;
}
/* 2. Prepare and write Segment summary for data blocks */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
sum->entries[0].nid = super_block.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, sum, cp_seg_blk_offset,
sizeof(struct f2fs_summary_block)) < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 3. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, sum, cp_seg_blk_offset,
sizeof(struct f2fs_summary_block)) < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 4. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
/* inode sit for root */
sum->n_sits = cpu_to_le16(6);
sum->sit_j.entries[0].segno = ckp->cur_node_segno[0];
sum->sit_j.entries[0].se.vblocks = cpu_to_le16((CURSEG_HOT_NODE << 10) | 1);
f2fs_set_bit(0, sum->sit_j.entries[0].se.valid_map);
sum->sit_j.entries[1].segno = ckp->cur_node_segno[1];
sum->sit_j.entries[1].se.vblocks = cpu_to_le16((CURSEG_WARM_NODE << 10));
sum->sit_j.entries[2].segno = ckp->cur_node_segno[2];
sum->sit_j.entries[2].se.vblocks = cpu_to_le16((CURSEG_COLD_NODE << 10));
/* data sit for root */
sum->sit_j.entries[3].segno = ckp->cur_data_segno[0];
sum->sit_j.entries[3].se.vblocks = cpu_to_le16((CURSEG_HOT_DATA << 10) | 1);
f2fs_set_bit(0, sum->sit_j.entries[3].se.valid_map);
sum->sit_j.entries[4].segno = ckp->cur_data_segno[1];
sum->sit_j.entries[4].se.vblocks = cpu_to_le16((CURSEG_WARM_DATA << 10));
sum->sit_j.entries[5].segno = ckp->cur_data_segno[2];
sum->sit_j.entries[5].se.vblocks = cpu_to_le16((CURSEG_COLD_DATA << 10));
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, sum, cp_seg_blk_offset,
sizeof(struct f2fs_summary_block)) < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 5. Prepare and write Segment summary for node blocks */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
sum->entries[0].nid = super_block.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, sum, cp_seg_blk_offset,
sizeof(struct f2fs_summary_block)) < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 6. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, sum, cp_seg_blk_offset,
sizeof(struct f2fs_summary_block)) < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 7. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, sum, cp_seg_blk_offset,
sizeof(struct f2fs_summary_block)) < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 8. cp page2 */
cp_seg_blk_offset += blk_size_bytes;
if (writetodisk(f2fs_params.fd, ckp, cp_seg_blk_offset,
F2FS_CP_BLOCK_SIZE) < 0) {
printf("\n\tError: While writing the ckp to disk!!!\n");
return -1;
}
/* 9. cp page 1 of check point pack 2
* Initiatialize other checkpoint pack with version zero
*/
ckp->checkpoint_ver = 0;
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp,
le32_to_cpu(ckp->checksum_offset));
*((u_int32_t *)((unsigned char *)ckp +
le32_to_cpu(ckp->checksum_offset))) = crc;
cp_seg_blk_offset = (le32_to_cpu(super_block.segment0_blkaddr) +
f2fs_params.blks_per_seg) *
blk_size_bytes;
if (writetodisk(f2fs_params.fd, ckp,
cp_seg_blk_offset, F2FS_CP_BLOCK_SIZE) < 0) {
printf("\n\tError: While writing the ckp to disk!!!\n");
return -1;
}
free(sum) ;
free(ckp) ;
return 0;
}
/**
* @brief It writes super block on device
* @param None
* @return 0 if success
*/
static int8_t f2fs_write_super_block(void)
{
u_int32_t index = 0;
u_int8_t *zero_buff;
zero_buff = calloc(F2FS_BLKSIZE, 1);
memcpy(zero_buff + F2FS_SUPER_OFFSET, &super_block,
sizeof(super_block));
for (index = 0; index < 2; index++) {
if (writetodisk(f2fs_params.fd, zero_buff,
index * F2FS_BLKSIZE, F2FS_BLKSIZE) < 0) {
printf("\n\tError: While while writing supe_blk \
on disk!!! index : %d\n", index);
return -1;
}
}
free(zero_buff);
return 0;
}
/**
* @brief It initializes and writes root inode on device.
* @param None
* @return 0 if success
*/
static int8_t f2fs_write_root_inode(void)
{
struct f2fs_node *raw_node = NULL;
u_int64_t blk_size_bytes, data_blk_nor;
u_int64_t main_area_node_seg_blk_offset = 0;
raw_node = calloc(sizeof(struct f2fs_node), 1);
if (raw_node == NULL) {
printf("\n\tError: Calloc Failed for raw_node!!!\n");
return -1;
}
raw_node->footer.nid = super_block.root_ino;
raw_node->footer.ino = super_block.root_ino;
raw_node->footer.cp_ver = cpu_to_le64(1);
raw_node->footer.next_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_NODE] *
f2fs_params.blks_per_seg + 1);
raw_node->i.i_mode = cpu_to_le16(0x41ed);
raw_node->i.i_links = cpu_to_le32(2);
raw_node->i.i_uid = cpu_to_le32(getuid());
raw_node->i.i_gid = cpu_to_le32(getgid());
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
raw_node->i.i_blocks = cpu_to_le64(2);
raw_node->i.i_atime = cpu_to_le32(time(NULL));
raw_node->i.i_atime_nsec = 0;
raw_node->i.i_ctime = cpu_to_le32(time(NULL));
raw_node->i.i_ctime_nsec = 0;
raw_node->i.i_mtime = cpu_to_le32(time(NULL));
raw_node->i.i_mtime_nsec = 0;
raw_node->i.i_generation = 0;
raw_node->i.i_xattr_nid = 0;
raw_node->i.i_flags = 0;
raw_node->i.i_current_depth = cpu_to_le32(1);
data_blk_nor = le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_DATA] * f2fs_params.blks_per_seg;
raw_node->i.i_addr[0] = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.fofs = 0;
raw_node->i.i_ext.blk_addr = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.len = cpu_to_le32(1);
main_area_node_seg_blk_offset = le32_to_cpu(super_block.main_blkaddr);
main_area_node_seg_blk_offset += f2fs_params.cur_seg[CURSEG_HOT_NODE] *
f2fs_params.blks_per_seg;
main_area_node_seg_blk_offset *= blk_size_bytes;
if (writetodisk(f2fs_params.fd, raw_node, main_area_node_seg_blk_offset,
sizeof(struct f2fs_node)) < 0) {
printf("\n\tError: While writing the raw_node to disk!!!\n");
return -1;
}
memset(raw_node, 0xff, sizeof(struct f2fs_node));
if (writetodisk(f2fs_params.fd, raw_node,
main_area_node_seg_blk_offset + 4096,
sizeof(struct f2fs_node)) < 0) {
printf("\n\tError: While writing the raw_node to disk!!!\n");
return -1;
}
free(raw_node);
return 0;
}
/**
* @brief It updates NAT for root Inode
* @param None
* @return 0 if success
*/
static int8_t f2fs_update_nat_root(void)
{
struct f2fs_nat_block *nat_blk = NULL;
u_int64_t blk_size_bytes, nat_seg_blk_offset = 0;
nat_blk = calloc(sizeof(struct f2fs_nat_block), 1);
if(nat_blk == NULL) {
printf("\n\tError: Calloc Failed for nat_blk!!!\n");
return -1;
}
/* update root */
nat_blk->entries[super_block.root_ino].block_addr = cpu_to_le32(
le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_NODE] * f2fs_params.blks_per_seg);
nat_blk->entries[super_block.root_ino].ino = super_block.root_ino;
/* update node nat */
nat_blk->entries[super_block.node_ino].block_addr = cpu_to_le32(1);
nat_blk->entries[super_block.node_ino].ino = super_block.node_ino;
/* update meta nat */
nat_blk->entries[super_block.meta_ino].block_addr = cpu_to_le32(1);
nat_blk->entries[super_block.meta_ino].ino = super_block.meta_ino;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
nat_seg_blk_offset = le32_to_cpu(super_block.nat_blkaddr);
nat_seg_blk_offset *= blk_size_bytes;
if (writetodisk(f2fs_params.fd, nat_blk, nat_seg_blk_offset,
sizeof(struct f2fs_nat_block)) < 0) {
printf("\n\tError: While writing the nat_blk set0 to disk!!!\n");
return -1;
}
free(nat_blk);
return 0;
}
/**
* @brief It updates default dentries in Root Inode
* @param None
* @return 0 if success
*/
static int8_t f2fs_add_default_dentry_root(void)
{
struct f2fs_dentry_block *dent_blk = NULL;
u_int64_t blk_size_bytes, data_blk_offset = 0;
dent_blk = calloc(sizeof(struct f2fs_dentry_block), 1);
if(dent_blk == NULL) {
printf("\n\tError: Calloc Failed for dent_blk!!!\n");
return -1;
}
dent_blk->dentry[0].hash_code = 0;
dent_blk->dentry[0].ino = super_block.root_ino;
dent_blk->dentry[0].name_len = cpu_to_le16(1);
dent_blk->dentry[0].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[0], ".", 1);
dent_blk->dentry[1].hash_code = 0;
dent_blk->dentry[1].ino = super_block.root_ino;
dent_blk->dentry[1].name_len = cpu_to_le16(2);
dent_blk->dentry[1].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[1], "..", 2);
/* bitmap for . and .. */
dent_blk->dentry_bitmap[0] = (1 << 1) | (1 << 0);
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
data_blk_offset = le32_to_cpu(super_block.main_blkaddr);
data_blk_offset += f2fs_params.cur_seg[CURSEG_HOT_DATA] *
f2fs_params.blks_per_seg;
data_blk_offset *= blk_size_bytes;
if (writetodisk(f2fs_params.fd, dent_blk, data_blk_offset,
sizeof(struct f2fs_dentry_block)) < 0) {
printf("\n\tError: While writing the dentry_blk to disk!!!\n");
return -1;
}
free(dent_blk);
return 0;
}
/**
* @brief It creates root directory on device.
* @param None
* @return 0 if success
*/
static int8_t f2fs_create_root_dir(void)
{
int8_t err = 0;
err = f2fs_write_root_inode();
if (err < 0) {
printf("\n\tError: Failed to write root inode!!!\n");
goto exit;
}
err = f2fs_update_nat_root();
if (err < 0) {
printf("\n\tError: Failed to update NAT for root!!!\n");
goto exit;
}
err = f2fs_add_default_dentry_root();
if (err < 0) {
printf("\n\tError: Failed to add default dentries for root!!!\n");
goto exit;
}
exit:
if (err)
printf("\n\tError: Could not create the root directory!!!\n");
return err;
}
int f2fs_trim_device()
{
unsigned long long range[2];
struct stat stat_buf;
range[0] = 0;
range[1] = f2fs_params.total_sectors * DEFAULT_SECTOR_SIZE;
if (fstat(f2fs_params.fd, &stat_buf) < 0 ) {
printf("\n\tError: Failed to get the device stat!!!\n");
return -1;
}
if (S_ISREG(stat_buf.st_mode))
return 0;
else if (S_ISBLK(stat_buf.st_mode)) {
if (ioctl(f2fs_params.fd, BLKDISCARD, &range) < 0)
printf("Info: This device doesn't support TRIM\n");
} else
return -1;
return 0;
}
/**
* @brief It s a routine to fromat device with F2FS on-disk layout
* @param None
* @return 0 if success
*/
static int8_t f2fs_format_device(void)
{
int8_t err = 0;
err= f2fs_prepare_super_block();
if (err < 0)
goto exit;
err = f2fs_trim_device();
if (err < 0) {
printf("\n\tError: Failed to trim whole device!!!\n");
goto exit;
}
err = f2fs_init_sit_area();
if (err < 0) {
printf("\n\tError: Failed to Initialise the SIT AREA!!!\n");
goto exit;
}
err = f2fs_init_nat_area();
if (err < 0) {
printf("\n\tError: Failed to Initialise the NAT AREA!!!\n");
goto exit;
}
err = f2fs_create_root_dir();
if (err < 0) {
printf("\n\tError: Failed to create the root directory!!!\n");
goto exit;
}
err = f2fs_write_check_point_pack();
if (err < 0) {
printf("\n\tError: Failed to write the check point pack!!!\n");
goto exit;
}
err = f2fs_write_super_block();
if (err < 0) {
printf("\n\tError: Failed to write the Super Block!!!\n");
goto exit;
}
exit:
if (err)
printf("\n\tError: Could not format the device!!!\n");
/*
* We should call fsync() to flush out all the dirty pages
* in the block device page cache.
*/
if (fsync(f2fs_params.fd) < 0)
printf("\n\tError: Could not conduct fsync!!!\n");
if (close(f2fs_params.fd) < 0)
printf("\n\tError: Failed to close device file!!!\n");
return err;
}
/**
* @brief main function of F2Fs utility
* @param argc count of argument
* @param argv array of arguments
* @return 0 if success
*/
int main(int argc, char *argv[])
{
printf("\nF2FS-tools: Ver: %s (%s)\n",
F2FS_TOOLS_VERSION,
F2FS_TOOLS_DATE);
f2fs_init_global_parameters();
f2fs_parse_options(argc, argv);
if (f2fs_is_device_mounted() < 0)
return -1;
if (f2fs_get_device_info() < 0)
return -1;
if (f2fs_format_device() < 0)
return -1;
printf("Info: format successful\n");
return 0;
}