third_party_f2fs-tools/mkfs/f2fs_format.c

995 lines
28 KiB
C
Raw Normal View History

/**
* f2fs_format.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define _LARGEFILE64_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <time.h>
#include <linux/fs.h>
#include <uuid/uuid.h>
#include "f2fs_fs.h"
#include "f2fs_format_utils.h"
extern struct f2fs_configuration config;
struct f2fs_super_block super_block;
static void mkfs_usage()
{
MSG(0, "\nUsage: mkfs.f2fs [options] device\n");
MSG(0, "[options]:\n");
MSG(0, " -a heap-based allocation [default:1]\n");
MSG(0, " -d debug level [default:0]\n");
MSG(0, " -e [extension list] e.g. \"mp3,gif,mov\"\n");
MSG(0, " -l label\n");
MSG(0, " -o overprovision ratio [default:5]\n");
MSG(0, " -s # of segments per section [default:1]\n");
MSG(0, " -z # of sections per zone [default:1]\n");
MSG(0, " -t 0: nodiscard, 1: discard [default:1]\n");
exit(1);
}
static void f2fs_parse_options(int argc, char *argv[])
{
static const char *option_string = "a:d:e:l:o:s:z:t:";
int32_t option=0;
while ((option = getopt(argc,argv,option_string)) != EOF) {
switch (option) {
case 'a':
config.heap = atoi(optarg);
if (config.heap == 0)
MSG(0, "Info: Disable heap-based policy\n");
break;
case 'd':
config.dbg_lv = atoi(optarg);
MSG(0, "Info: Debug level = %d\n", config.dbg_lv);
break;
case 'e':
config.extension_list = strdup(optarg);
MSG(0, "Info: Add new extension list\n");
break;
case 'l': /*v: volume label */
if (strlen(optarg) > 512) {
MSG(0, "Error: Volume Label should be less than\
512 characters\n");
mkfs_usage();
}
config.vol_label = optarg;
MSG(0, "Info: Label = %s\n", config.vol_label);
break;
case 'o':
config.overprovision = atoi(optarg);
MSG(0, "Info: Overprovision ratio = %u%%\n",
atoi(optarg));
break;
case 's':
config.segs_per_sec = atoi(optarg);
MSG(0, "Info: Segments per section = %d\n",
atoi(optarg));
break;
case 'z':
config.secs_per_zone = atoi(optarg);
MSG(0, "Info: Sections per zone = %d\n", atoi(optarg));
break;
case 't':
config.trim = atoi(optarg);
MSG(0, "Info: Trim is %s\n", config.trim ? "enabled": "disabled");
break;
default:
MSG(0, "\tError: Unknown option %c\n",option);
mkfs_usage();
break;
}
}
if ((optind + 1) != argc) {
MSG(0, "\tError: Device not specified\n");
mkfs_usage();
}
config.reserved_segments =
(2 * (100 / config.overprovision + 1) + 6)
* config.segs_per_sec;
config.device_name = argv[optind];
}
const char *media_ext_lists[] = {
"jpg",
"gif",
"png",
"avi",
"divx",
"mp4",
"mp3",
"3gp",
"wmv",
"wma",
"mpeg",
"mkv",
"mov",
"asx",
"asf",
"wmx",
"svi",
"wvx",
"wm",
"mpg",
"mpe",
"rm",
"ogg",
"jpeg",
"video",
"apk", /* for android system */
NULL
};
static void configure_extension_list(void)
{
const char **extlist = media_ext_lists;
char *ext_str = config.extension_list;
char *ue;
int name_len;
int i = 0;
super_block.extension_count = 0;
memset(super_block.extension_list, 0,
sizeof(super_block.extension_list));
while (*extlist) {
name_len = strlen(*extlist);
memcpy(super_block.extension_list[i++], *extlist, name_len);
extlist++;
}
super_block.extension_count = i;
if (!ext_str)
return;
/* add user ext list */
ue = strtok(ext_str, ",");
while (ue != NULL) {
name_len = strlen(ue);
memcpy(super_block.extension_list[i++], ue, name_len);
ue = strtok(NULL, ",");
if (i >= F2FS_MAX_EXTENSION)
break;
}
super_block.extension_count = i;
free(config.extension_list);
}
static int f2fs_prepare_super_block(void)
{
u_int32_t blk_size_bytes;
u_int32_t log_sectorsize, log_sectors_per_block;
u_int32_t log_blocksize, log_blks_per_seg;
u_int32_t segment_size_bytes, zone_size_bytes;
u_int32_t sit_segments;
u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
u_int32_t total_valid_blks_available;
u_int64_t zone_align_start_offset, diff, total_meta_segments;
u_int32_t sit_bitmap_size, max_nat_bitmap_size, max_nat_segments;
u_int32_t total_zones;
super_block.magic = cpu_to_le32(F2FS_SUPER_MAGIC);
super_block.major_ver = cpu_to_le16(F2FS_MAJOR_VERSION);
super_block.minor_ver = cpu_to_le16(F2FS_MINOR_VERSION);
log_sectorsize = log_base_2(config.sector_size);
log_sectors_per_block = log_base_2(config.sectors_per_blk);
log_blocksize = log_sectorsize + log_sectors_per_block;
log_blks_per_seg = log_base_2(config.blks_per_seg);
super_block.log_sectorsize = cpu_to_le32(log_sectorsize);
if (log_sectorsize < 0) {
MSG(1, "\tError: Failed to get the sector size: %u!\n",
config.sector_size);
return -1;
}
super_block.log_sectors_per_block = cpu_to_le32(log_sectors_per_block);
if (log_sectors_per_block < 0) {
MSG(1, "\tError: Failed to get sectors per block: %u!\n",
config.sectors_per_blk);
return -1;
}
super_block.log_blocksize = cpu_to_le32(log_blocksize);
super_block.log_blocks_per_seg = cpu_to_le32(log_blks_per_seg);
if (log_blks_per_seg < 0) {
MSG(1, "\tError: Failed to get block per segment: %u!\n",
config.blks_per_seg);
return -1;
}
super_block.segs_per_sec = cpu_to_le32(config.segs_per_sec);
super_block.secs_per_zone = cpu_to_le32(config.secs_per_zone);
blk_size_bytes = 1 << log_blocksize;
segment_size_bytes = blk_size_bytes * config.blks_per_seg;
zone_size_bytes =
blk_size_bytes * config.secs_per_zone *
config.segs_per_sec * config.blks_per_seg;
super_block.checksum_offset = 0;
super_block.block_count = cpu_to_le64(
(config.total_sectors * DEFAULT_SECTOR_SIZE) /
blk_size_bytes);
zone_align_start_offset =
(config.start_sector * DEFAULT_SECTOR_SIZE +
2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
config.start_sector * DEFAULT_SECTOR_SIZE;
if (config.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
MSG(1, "\tWARN: Align start sector number to the page unit\n");
MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
config.start_sector,
config.start_sector % DEFAULT_SECTORS_PER_BLOCK,
DEFAULT_SECTORS_PER_BLOCK);
}
super_block.segment_count = cpu_to_le32(
((config.total_sectors * DEFAULT_SECTOR_SIZE) -
zone_align_start_offset) / segment_size_bytes);
super_block.segment0_blkaddr =
cpu_to_le32(zone_align_start_offset / blk_size_bytes);
super_block.cp_blkaddr = super_block.segment0_blkaddr;
MSG(0, "Info: zone aligned segment0 blkaddr: %u\n",
le32_to_cpu(super_block.segment0_blkaddr));
super_block.segment_count_ckpt =
cpu_to_le32(F2FS_NUMBER_OF_CHECKPOINT_PACK);
super_block.sit_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.segment0_blkaddr) +
(le32_to_cpu(super_block.segment_count_ckpt) *
(1 << log_blks_per_seg)));
blocks_for_sit = (le32_to_cpu(super_block.segment_count) +
SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK;
sit_segments = (blocks_for_sit + config.blks_per_seg - 1)
/ config.blks_per_seg;
super_block.segment_count_sit = cpu_to_le32(sit_segments * 2);
super_block.nat_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.sit_blkaddr) +
(le32_to_cpu(super_block.segment_count_sit) *
config.blks_per_seg));
total_valid_blks_available = (le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) +
le32_to_cpu(super_block.segment_count_sit))) *
config.blks_per_seg;
blocks_for_nat = (total_valid_blks_available + NAT_ENTRY_PER_BLOCK - 1)
/ NAT_ENTRY_PER_BLOCK;
super_block.segment_count_nat = cpu_to_le32(
(blocks_for_nat + config.blks_per_seg - 1) /
config.blks_per_seg);
/*
* The number of node segments should not be exceeded a "Threshold".
* This number resizes NAT bitmap area in a CP page.
* So the threshold is determined not to overflow one CP page
*/
sit_bitmap_size = ((le32_to_cpu(super_block.segment_count_sit) / 2) <<
log_blks_per_seg) / 8;
max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1 -
sit_bitmap_size;
max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
if (le32_to_cpu(super_block.segment_count_nat) > max_nat_segments)
super_block.segment_count_nat = cpu_to_le32(max_nat_segments);
super_block.segment_count_nat = cpu_to_le32(
le32_to_cpu(super_block.segment_count_nat) * 2);
super_block.ssa_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.nat_blkaddr) +
le32_to_cpu(super_block.segment_count_nat) *
config.blks_per_seg);
total_valid_blks_available = (le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) +
le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat))) *
config.blks_per_seg;
blocks_for_ssa = total_valid_blks_available /
config.blks_per_seg + 1;
super_block.segment_count_ssa = cpu_to_le32(
(blocks_for_ssa + config.blks_per_seg - 1) /
config.blks_per_seg);
total_meta_segments = le32_to_cpu(super_block.segment_count_ckpt) +
le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat) +
le32_to_cpu(super_block.segment_count_ssa);
diff = total_meta_segments % (config.segs_per_sec *
config.secs_per_zone);
if (diff)
super_block.segment_count_ssa = cpu_to_le32(
le32_to_cpu(super_block.segment_count_ssa) +
(config.segs_per_sec * config.secs_per_zone -
diff));
super_block.main_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.ssa_blkaddr) +
(le32_to_cpu(super_block.segment_count_ssa) *
config.blks_per_seg));
super_block.segment_count_main = cpu_to_le32(
le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt)
+ le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat) +
le32_to_cpu(super_block.segment_count_ssa)));
super_block.section_count = cpu_to_le32(
le32_to_cpu(super_block.segment_count_main)
/ config.segs_per_sec);
super_block.segment_count_main = cpu_to_le32(
le32_to_cpu(super_block.section_count) *
config.segs_per_sec);
if ((le32_to_cpu(super_block.segment_count_main) - 2) <
config.reserved_segments) {
MSG(1, "\tError: Device size is not sufficient for F2FS volume,\
more segment needed =%u",
config.reserved_segments -
(le32_to_cpu(super_block.segment_count_main) - 2));
return -1;
}
uuid_generate(super_block.uuid);
ASCIIToUNICODE(super_block.volume_name, (u_int8_t *)config.vol_label);
super_block.node_ino = cpu_to_le32(1);
super_block.meta_ino = cpu_to_le32(2);
super_block.root_ino = cpu_to_le32(3);
total_zones = le32_to_cpu(super_block.segment_count_main) /
(config.segs_per_sec * config.secs_per_zone);
if (total_zones <= 6) {
MSG(1, "\tError: %d zones: Need more zones \
by shrinking zone size\n", total_zones);
return -1;
}
if (config.heap) {
config.cur_seg[CURSEG_HOT_NODE] = (total_zones - 1) *
config.segs_per_sec *
config.secs_per_zone +
((config.secs_per_zone - 1) *
config.segs_per_sec);
config.cur_seg[CURSEG_WARM_NODE] =
config.cur_seg[CURSEG_HOT_NODE] -
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_COLD_NODE] =
config.cur_seg[CURSEG_WARM_NODE] -
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_HOT_DATA] =
config.cur_seg[CURSEG_COLD_NODE] -
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_COLD_DATA] = 0;
config.cur_seg[CURSEG_WARM_DATA] =
config.cur_seg[CURSEG_COLD_DATA] +
config.segs_per_sec *
config.secs_per_zone;
} else {
config.cur_seg[CURSEG_HOT_NODE] = 0;
config.cur_seg[CURSEG_WARM_NODE] =
config.cur_seg[CURSEG_HOT_NODE] +
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_COLD_NODE] =
config.cur_seg[CURSEG_WARM_NODE] +
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_HOT_DATA] =
config.cur_seg[CURSEG_COLD_NODE] +
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_COLD_DATA] =
config.cur_seg[CURSEG_HOT_DATA] +
config.segs_per_sec *
config.secs_per_zone;
config.cur_seg[CURSEG_WARM_DATA] =
config.cur_seg[CURSEG_COLD_DATA] +
config.segs_per_sec *
config.secs_per_zone;
}
configure_extension_list();
return 0;
}
static int f2fs_init_sit_area(void)
{
u_int32_t blk_size, seg_size;
u_int32_t index = 0;
u_int64_t sit_seg_addr = 0;
u_int8_t *zero_buf = NULL;
blk_size = 1 << le32_to_cpu(super_block.log_blocksize);
seg_size = (1 << le32_to_cpu(super_block.log_blocks_per_seg)) *
blk_size;
zero_buf = calloc(sizeof(u_int8_t), seg_size);
if(zero_buf == NULL) {
MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
return -1;
}
sit_seg_addr = le32_to_cpu(super_block.sit_blkaddr);
sit_seg_addr *= blk_size;
for (index = 0;
index < (le32_to_cpu(super_block.segment_count_sit) / 2);
index++) {
if (dev_write(zero_buf, sit_seg_addr, seg_size)) {
MSG(1, "\tError: While zeroing out the sit area \
on disk!!!\n");
return -1;
}
sit_seg_addr += seg_size;
}
free(zero_buf);
return 0 ;
}
static int f2fs_init_nat_area(void)
{
u_int32_t blk_size, seg_size;
u_int32_t index = 0;
u_int64_t nat_seg_addr = 0;
u_int8_t *nat_buf = NULL;
blk_size = 1 << le32_to_cpu(super_block.log_blocksize);
seg_size = (1 << le32_to_cpu(super_block.log_blocks_per_seg)) *
blk_size;
nat_buf = calloc(sizeof(u_int8_t), seg_size);
if (nat_buf == NULL) {
MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
return -1;
}
nat_seg_addr = le32_to_cpu(super_block.nat_blkaddr);
nat_seg_addr *= blk_size;
for (index = 0;
index < (le32_to_cpu(super_block.segment_count_nat) / 2);
index++) {
if (dev_write(nat_buf, nat_seg_addr, seg_size)) {
MSG(1, "\tError: While zeroing out the nat area \
on disk!!!\n");
return -1;
}
nat_seg_addr = nat_seg_addr + (2 * seg_size);
}
free(nat_buf);
return 0 ;
}
static int f2fs_write_check_point_pack(void)
{
struct f2fs_checkpoint *ckp = NULL;
struct f2fs_summary_block *sum = NULL;
u_int32_t blk_size_bytes;
u_int64_t cp_seg_blk_offset = 0;
u_int32_t crc = 0;
int i;
ckp = calloc(F2FS_BLKSIZE, 1);
if (ckp == NULL) {
MSG(1, "\tError: Calloc Failed for f2fs_checkpoint!!!\n");
return -1;
}
sum = calloc(F2FS_BLKSIZE, 1);
if (sum == NULL) {
MSG(1, "\tError: Calloc Failed for summay_node!!!\n");
return -1;
}
/* 1. cp page 1 of checkpoint pack 1 */
ckp->checkpoint_ver = cpu_to_le64(1);
ckp->cur_node_segno[0] =
cpu_to_le32(config.cur_seg[CURSEG_HOT_NODE]);
ckp->cur_node_segno[1] =
cpu_to_le32(config.cur_seg[CURSEG_WARM_NODE]);
ckp->cur_node_segno[2] =
cpu_to_le32(config.cur_seg[CURSEG_COLD_NODE]);
ckp->cur_data_segno[0] =
cpu_to_le32(config.cur_seg[CURSEG_HOT_DATA]);
ckp->cur_data_segno[1] =
cpu_to_le32(config.cur_seg[CURSEG_WARM_DATA]);
ckp->cur_data_segno[2] =
cpu_to_le32(config.cur_seg[CURSEG_COLD_DATA]);
for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
ckp->cur_node_segno[i] = 0xffffffff;
ckp->cur_data_segno[i] = 0xffffffff;
}
ckp->cur_node_blkoff[0] = cpu_to_le16(1);
ckp->cur_data_blkoff[0] = cpu_to_le16(1);
ckp->valid_block_count = cpu_to_le64(2);
ckp->rsvd_segment_count = cpu_to_le32(config.reserved_segments);
ckp->overprov_segment_count = cpu_to_le32(
(le32_to_cpu(super_block.segment_count_main) -
le32_to_cpu(ckp->rsvd_segment_count)) *
config.overprovision / 100);
ckp->overprov_segment_count = cpu_to_le32(
le32_to_cpu(ckp->overprov_segment_count) +
le32_to_cpu(ckp->rsvd_segment_count));
/* main segments - reserved segments - (node + data segments) */
ckp->free_segment_count = cpu_to_le32(
le32_to_cpu(super_block.segment_count_main) - 6);
ckp->user_block_count = cpu_to_le64(
((le32_to_cpu(ckp->free_segment_count) + 6 -
le32_to_cpu(ckp->overprov_segment_count)) *
config.blks_per_seg));
ckp->cp_pack_total_block_count = cpu_to_le32(8);
ckp->ckpt_flags = cpu_to_le32(CP_UMOUNT_FLAG);
ckp->cp_pack_start_sum = cpu_to_le32(1);
ckp->valid_node_count = cpu_to_le32(1);
ckp->valid_inode_count = cpu_to_le32(1);
ckp->next_free_nid = cpu_to_le32(0xc00000);
ckp->sit_ver_bitmap_bytesize = cpu_to_le32(
((le32_to_cpu(super_block.segment_count_sit) / 2) <<
le32_to_cpu(super_block.log_blocks_per_seg)) / 8);
ckp->nat_ver_bitmap_bytesize = cpu_to_le32(
((le32_to_cpu(super_block.segment_count_nat) / 2) <<
le32_to_cpu(super_block.log_blocks_per_seg)) / 8);
ckp->checksum_offset = cpu_to_le32(CHECKSUM_OFFSET);
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp, CHECKSUM_OFFSET);
*((__le32 *)((unsigned char *)ckp + CHECKSUM_OFFSET)) =
cpu_to_le32(crc);
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
cp_seg_blk_offset = le32_to_cpu(super_block.segment0_blkaddr);
cp_seg_blk_offset *= blk_size_bytes;
if (dev_write(ckp, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the ckp to disk!!!\n");
return -1;
}
/* 2. Prepare and write Segment summary for data blocks */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
sum->entries[0].nid = super_block.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(sum, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 3. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(sum, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 4. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
/* inode sit for root */
sum->n_sits = cpu_to_le16(6);
sum->sit_j.entries[0].segno = ckp->cur_node_segno[0];
sum->sit_j.entries[0].se.vblocks = cpu_to_le16((CURSEG_HOT_NODE << 10) | 1);
f2fs_set_bit(0, (char *)sum->sit_j.entries[0].se.valid_map);
sum->sit_j.entries[1].segno = ckp->cur_node_segno[1];
sum->sit_j.entries[1].se.vblocks = cpu_to_le16((CURSEG_WARM_NODE << 10));
sum->sit_j.entries[2].segno = ckp->cur_node_segno[2];
sum->sit_j.entries[2].se.vblocks = cpu_to_le16((CURSEG_COLD_NODE << 10));
/* data sit for root */
sum->sit_j.entries[3].segno = ckp->cur_data_segno[0];
sum->sit_j.entries[3].se.vblocks = cpu_to_le16((CURSEG_HOT_DATA << 10) | 1);
f2fs_set_bit(0, (char *)sum->sit_j.entries[3].se.valid_map);
sum->sit_j.entries[4].segno = ckp->cur_data_segno[1];
sum->sit_j.entries[4].se.vblocks = cpu_to_le16((CURSEG_WARM_DATA << 10));
sum->sit_j.entries[5].segno = ckp->cur_data_segno[2];
sum->sit_j.entries[5].se.vblocks = cpu_to_le16((CURSEG_COLD_DATA << 10));
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(sum, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 5. Prepare and write Segment summary for node blocks */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
sum->entries[0].nid = super_block.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(sum, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 6. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(sum, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 7. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(sum, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
return -1;
}
/* 8. cp page2 */
cp_seg_blk_offset += blk_size_bytes;
if (dev_write(ckp, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the ckp to disk!!!\n");
return -1;
}
/* 9. cp page 1 of check point pack 2
* Initiatialize other checkpoint pack with version zero
*/
ckp->checkpoint_ver = 0;
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp, CHECKSUM_OFFSET);
*((__le32 *)((unsigned char *)ckp + CHECKSUM_OFFSET)) =
cpu_to_le32(crc);
cp_seg_blk_offset = (le32_to_cpu(super_block.segment0_blkaddr) +
config.blks_per_seg) *
blk_size_bytes;
if (dev_write(ckp, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the ckp to disk!!!\n");
return -1;
}
/* 10. cp page 2 of check point pack 2 */
cp_seg_blk_offset += blk_size_bytes * (le32_to_cpu(ckp->cp_pack_total_block_count) - 1);
if (dev_write(ckp, cp_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the ckp to disk!!!\n");
return -1;
}
free(sum) ;
free(ckp) ;
return 0;
}
static int f2fs_write_super_block(void)
{
int index;
u_int8_t *zero_buff;
zero_buff = calloc(F2FS_BLKSIZE, 1);
memcpy(zero_buff + F2FS_SUPER_OFFSET, &super_block,
sizeof(super_block));
for (index = 0; index < 2; index++) {
if (dev_write(zero_buff, index * F2FS_BLKSIZE, F2FS_BLKSIZE)) {
MSG(1, "\tError: While while writing supe_blk \
on disk!!! index : %d\n", index);
return -1;
}
}
free(zero_buff);
return 0;
}
static int f2fs_write_root_inode(void)
{
struct f2fs_node *raw_node = NULL;
u_int64_t blk_size_bytes, data_blk_nor;
u_int64_t main_area_node_seg_blk_offset = 0;
raw_node = calloc(F2FS_BLKSIZE, 1);
if (raw_node == NULL) {
MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
return -1;
}
raw_node->footer.nid = super_block.root_ino;
raw_node->footer.ino = super_block.root_ino;
raw_node->footer.cp_ver = cpu_to_le64(1);
raw_node->footer.next_blkaddr = cpu_to_le32(
le32_to_cpu(super_block.main_blkaddr) +
config.cur_seg[CURSEG_HOT_NODE] *
config.blks_per_seg + 1);
raw_node->i.i_mode = cpu_to_le16(0x41ed);
raw_node->i.i_links = cpu_to_le32(2);
raw_node->i.i_uid = cpu_to_le32(getuid());
raw_node->i.i_gid = cpu_to_le32(getgid());
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
raw_node->i.i_blocks = cpu_to_le64(2);
raw_node->i.i_atime = cpu_to_le32(time(NULL));
raw_node->i.i_atime_nsec = 0;
raw_node->i.i_ctime = cpu_to_le32(time(NULL));
raw_node->i.i_ctime_nsec = 0;
raw_node->i.i_mtime = cpu_to_le32(time(NULL));
raw_node->i.i_mtime_nsec = 0;
raw_node->i.i_generation = 0;
raw_node->i.i_xattr_nid = 0;
raw_node->i.i_flags = 0;
raw_node->i.i_current_depth = cpu_to_le32(1);
raw_node->i.i_dir_level = DEF_DIR_LEVEL;
data_blk_nor = le32_to_cpu(super_block.main_blkaddr) +
config.cur_seg[CURSEG_HOT_DATA] * config.blks_per_seg;
raw_node->i.i_addr[0] = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.fofs = 0;
raw_node->i.i_ext.blk_addr = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.len = cpu_to_le32(1);
main_area_node_seg_blk_offset = le32_to_cpu(super_block.main_blkaddr);
main_area_node_seg_blk_offset += config.cur_seg[CURSEG_HOT_NODE] *
config.blks_per_seg;
main_area_node_seg_blk_offset *= blk_size_bytes;
if (dev_write(raw_node, main_area_node_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
return -1;
}
memset(raw_node, 0xff, sizeof(struct f2fs_node));
/* avoid power-off-recovery based on roll-forward policy */
main_area_node_seg_blk_offset = le32_to_cpu(super_block.main_blkaddr);
main_area_node_seg_blk_offset += config.cur_seg[CURSEG_WARM_NODE] *
config.blks_per_seg;
main_area_node_seg_blk_offset *= blk_size_bytes;
if (dev_write(raw_node, main_area_node_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
return -1;
}
free(raw_node);
return 0;
}
static int f2fs_update_nat_root(void)
{
struct f2fs_nat_block *nat_blk = NULL;
u_int64_t blk_size_bytes, nat_seg_blk_offset = 0;
nat_blk = calloc(F2FS_BLKSIZE, 1);
if(nat_blk == NULL) {
MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
return -1;
}
/* update root */
nat_blk->entries[le32_to_cpu(super_block.root_ino)].block_addr = cpu_to_le32(
le32_to_cpu(super_block.main_blkaddr) +
config.cur_seg[CURSEG_HOT_NODE] * config.blks_per_seg);
nat_blk->entries[le32_to_cpu(super_block.root_ino)].ino = super_block.root_ino;
/* update node nat */
nat_blk->entries[le32_to_cpu(super_block.node_ino)].block_addr = cpu_to_le32(1);
nat_blk->entries[le32_to_cpu(super_block.node_ino)].ino = super_block.node_ino;
/* update meta nat */
nat_blk->entries[le32_to_cpu(super_block.meta_ino)].block_addr = cpu_to_le32(1);
nat_blk->entries[le32_to_cpu(super_block.meta_ino)].ino = super_block.meta_ino;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
nat_seg_blk_offset = le32_to_cpu(super_block.nat_blkaddr);
nat_seg_blk_offset *= blk_size_bytes;
if (dev_write(nat_blk, nat_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
return -1;
}
free(nat_blk);
return 0;
}
static int f2fs_add_default_dentry_root(void)
{
struct f2fs_dentry_block *dent_blk = NULL;
u_int64_t blk_size_bytes, data_blk_offset = 0;
dent_blk = calloc(F2FS_BLKSIZE, 1);
if(dent_blk == NULL) {
MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
return -1;
}
dent_blk->dentry[0].hash_code = 0;
dent_blk->dentry[0].ino = super_block.root_ino;
dent_blk->dentry[0].name_len = cpu_to_le16(1);
dent_blk->dentry[0].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[0], ".", 1);
dent_blk->dentry[1].hash_code = 0;
dent_blk->dentry[1].ino = super_block.root_ino;
dent_blk->dentry[1].name_len = cpu_to_le16(2);
dent_blk->dentry[1].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[1], "..", 2);
/* bitmap for . and .. */
dent_blk->dentry_bitmap[0] = (1 << 1) | (1 << 0);
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
data_blk_offset = le32_to_cpu(super_block.main_blkaddr);
data_blk_offset += config.cur_seg[CURSEG_HOT_DATA] *
config.blks_per_seg;
data_blk_offset *= blk_size_bytes;
if (dev_write(dent_blk, data_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
return -1;
}
free(dent_blk);
return 0;
}
static int f2fs_create_root_dir(void)
{
int err = 0;
err = f2fs_write_root_inode();
if (err < 0) {
MSG(1, "\tError: Failed to write root inode!!!\n");
goto exit;
}
err = f2fs_update_nat_root();
if (err < 0) {
MSG(1, "\tError: Failed to update NAT for root!!!\n");
goto exit;
}
err = f2fs_add_default_dentry_root();
if (err < 0) {
MSG(1, "\tError: Failed to add default dentries for root!!!\n");
goto exit;
}
exit:
if (err)
MSG(1, "\tError: Could not create the root directory!!!\n");
return err;
}
static int f2fs_format_device(void)
{
int err = 0;
err= f2fs_prepare_super_block();
if (err < 0) {
MSG(0, "\tError: Failed to prepare a super block!!!\n");
goto exit;
}
err = f2fs_trim_device();
if (err < 0) {
MSG(0, "\tError: Failed to trim whole device!!!\n");
goto exit;
}
err = f2fs_init_sit_area();
if (err < 0) {
MSG(0, "\tError: Failed to Initialise the SIT AREA!!!\n");
goto exit;
}
err = f2fs_init_nat_area();
if (err < 0) {
MSG(0, "\tError: Failed to Initialise the NAT AREA!!!\n");
goto exit;
}
err = f2fs_create_root_dir();
if (err < 0) {
MSG(0, "\tError: Failed to create the root directory!!!\n");
goto exit;
}
err = f2fs_write_check_point_pack();
if (err < 0) {
MSG(0, "\tError: Failed to write the check point pack!!!\n");
goto exit;
}
err = f2fs_write_super_block();
if (err < 0) {
MSG(0, "\tError: Failed to write the Super Block!!!\n");
goto exit;
}
exit:
if (err)
MSG(0, "\tError: Could not format the device!!!\n");
f2fs_finalize_device();
return err;
}
int main(int argc, char *argv[])
{
MSG(0, "\n\tF2FS-tools: mkfs.f2fs Ver: %s (%s)\n\n",
F2FS_TOOLS_VERSION,
F2FS_TOOLS_DATE);
f2fs_init_configuration(&config);
f2fs_parse_options(argc, argv);
if (f2fs_dev_is_umounted(&config) < 0)
return -1;
if (f2fs_get_device_info(&config) < 0)
return -1;
if (f2fs_format_device() < 0)
return -1;
MSG(0, "Info: format successful\n");
return 0;
}