third_party_f2fs-tools/fsck/f2fs.h

638 lines
18 KiB
C
Raw Normal View History

f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
/**
* f2fs.h
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _F2FS_H_
#define _F2FS_H_
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
fsck: Find free zones instead of blocks to assign to current segments When fsck needs to assign a new area to a curreng segment, it calls find_next_free_block() function to find a new block to assign. For zoned block devices, fsck checks write pointer consistency with current segments' positions. In case a curseg is inconsistent with the write pointer of the zone it points to, fsck should assign not a new free block but a new free zone/section with write pointer at the zone start, so that next write to the current segment succeeds without error. To extend find_next_free_block() function's capability to find not only a block but also a zone/section, add new_sec flag to find_next_free_block() function. When new_sec flag is true, skip check for each block's availability so that the check is done with unit of section. Note that it is ensured that one zone has one section for f2fs on zoned block devices. Then the logic to find a new free section is good to find a new free zone. When fsck target devices have ZONED_HM model, set new_sec flag true to call find_next_free_block() from move_curseg_info(). Set curseg's alloc_type not SSR but LFS for the devices with ZONED_HM model, because SSR block allocation is not allowed for zoned block devices. Also skip relocate_curseg_offset() for the devices with ZONED_HM model for the same reason. Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-11-28 07:59:26 +00:00
#include <stdbool.h>
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#ifdef HAVE_MNTENT_H
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#include <mntent.h>
#endif
#ifdef HAVE_MACH_TIME_H
#include <mach/mach_time.h>
#endif
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <assert.h>
#include "f2fs_fs.h"
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define EXIT_ERR_CODE (-1)
#define ver_after(a, b) (typecheck(unsigned long long, a) && \
typecheck(unsigned long long, b) && \
((long long)((a) - (b)) > 0))
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#define container_of(ptr, type, member) ({ \
const typeof(((type *)0)->member) * __mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type, member)); })
struct list_head {
struct list_head *next, *prev;
};
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member)
#define list_for_each_entry(pos, head, member) \
for (pos = list_first_entry(head, typeof(*pos), member); \
&pos->member != (head); \
pos = list_next_entry(pos, member))
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_first_entry(head, typeof(*pos), member), \
n = list_next_entry(pos, member); \
&pos->member != (head); \
pos = n, n = list_next_entry(n, member))
/*
* indicate meta/data type
*/
enum {
META_CP,
META_NAT,
META_SIT,
META_SSA,
META_MAX,
META_POR,
};
#define MAX_RA_BLOCKS 64
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
enum {
NAT_BITMAP,
SIT_BITMAP
};
struct node_info {
nid_t nid;
nid_t ino;
u32 blk_addr;
unsigned char version;
};
struct f2fs_nm_info {
block_t nat_blkaddr;
block_t nat_blocks;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
nid_t max_nid;
nid_t init_scan_nid;
nid_t next_scan_nid;
unsigned int nat_cnt;
unsigned int fcnt;
char *nat_bitmap;
int bitmap_size;
char *nid_bitmap;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
};
struct seg_entry {
unsigned short valid_blocks; /* # of valid blocks */
unsigned short ckpt_valid_blocks; /* # of valid blocks last cp, for recovered data/node */
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
unsigned char *cur_valid_map; /* validity bitmap of blocks */
unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp, for recovered data/node */
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
unsigned char type; /* segment type like CURSEG_XXX_TYPE */
unsigned char orig_type; /* segment type like CURSEG_XXX_TYPE */
unsigned char ckpt_type; /* segment type like CURSEG_XXX_TYPE , for recovered data/node */
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
unsigned long long mtime; /* modification time of the segment */
int dirty;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
};
struct sec_entry {
unsigned int valid_blocks; /* # of valid blocks in a section */
};
struct sit_info {
block_t sit_base_addr; /* start block address of SIT area */
block_t sit_blocks; /* # of blocks used by SIT area */
block_t written_valid_blocks; /* # of valid blocks in main area */
unsigned char *bitmap; /* all bitmaps pointer */
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
char *sit_bitmap; /* SIT bitmap pointer */
unsigned int bitmap_size; /* SIT bitmap size */
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
unsigned int dirty_sentries; /* # of dirty sentries */
unsigned int sents_per_block; /* # of SIT entries per block */
struct seg_entry *sentries; /* SIT segment-level cache */
struct sec_entry *sec_entries; /* SIT section-level cache */
unsigned long long elapsed_time; /* elapsed time after mount */
unsigned long long mounted_time; /* mount time */
unsigned long long min_mtime; /* min. modification time */
unsigned long long max_mtime; /* max. modification time */
};
struct curseg_info {
struct f2fs_summary_block *sum_blk; /* cached summary block */
unsigned char alloc_type; /* current allocation type */
unsigned int segno; /* current segment number */
unsigned short next_blkoff; /* next block offset to write */
unsigned int zone; /* current zone number */
unsigned int next_segno; /* preallocated segment */
};
struct f2fs_sm_info {
struct sit_info *sit_info;
struct curseg_info *curseg_array;
block_t seg0_blkaddr;
block_t main_blkaddr;
block_t ssa_blkaddr;
unsigned int segment_count;
unsigned int main_segments;
unsigned int reserved_segments;
unsigned int ovp_segments;
};
struct f2fs_dentry_ptr {
struct inode *inode;
u8 *bitmap;
struct f2fs_dir_entry *dentry;
__u8 (*filename)[F2FS_SLOT_LEN];
int max;
int nr_bitmap;
};
struct dentry {
char *path;
char *full_path;
const u8 *name;
int len;
char *link;
unsigned long size;
u8 file_type;
u16 mode;
u16 uid;
u16 gid;
u32 *inode;
u32 mtime;
char *secon;
uint64_t capabilities;
nid_t ino;
nid_t pino;
};
/* different from dnode_of_data in kernel */
struct dnode_of_data {
struct f2fs_node *inode_blk; /* inode page */
struct f2fs_node *node_blk; /* cached direct node page */
nid_t nid;
unsigned int ofs_in_node;
block_t data_blkaddr;
block_t node_blkaddr;
int idirty, ndirty;
};
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
struct f2fs_sb_info {
struct f2fs_fsck *fsck;
struct f2fs_super_block *raw_super;
struct f2fs_nm_info *nm_info;
struct f2fs_sm_info *sm_info;
struct f2fs_checkpoint *ckpt;
int cur_cp;
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
struct list_head orphan_inode_list;
unsigned int n_orphans;
/* basic file system units */
unsigned int log_sectors_per_block; /* log2 sectors per block */
unsigned int log_blocksize; /* log2 block size */
unsigned int blocksize; /* block size */
unsigned int root_ino_num; /* root inode number*/
unsigned int node_ino_num; /* node inode number*/
unsigned int meta_ino_num; /* meta inode number*/
unsigned int log_blocks_per_seg; /* log2 blocks per segment */
unsigned int blocks_per_seg; /* blocks per segment */
unsigned int segs_per_sec; /* segments per section */
unsigned int secs_per_zone; /* sections per zone */
unsigned int total_sections; /* total section count */
unsigned int total_node_count; /* total node block count */
unsigned int total_valid_node_count; /* valid node block count */
unsigned int total_valid_inode_count; /* valid inode count */
int active_logs; /* # of active logs */
block_t user_block_count; /* # of user blocks */
block_t total_valid_block_count; /* # of valid blocks */
block_t alloc_valid_block_count; /* # of allocated blocks */
block_t last_valid_block_count; /* for recovery */
u32 s_next_generation; /* for NFS support */
unsigned int cur_victim_sec; /* current victim section num */
u32 free_segments;
int cp_backuped; /* backup valid checkpoint */
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
};
static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
return (struct f2fs_super_block *)(sbi->raw_super);
}
static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_checkpoint *)(sbi->ckpt);
}
static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi)
{
return (struct f2fs_fsck *)(sbi->fsck);
}
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_nm_info *)(sbi->nm_info);
}
static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_sm_info *)(sbi->sm_info);
}
static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
return (struct sit_info *)(SM_I(sbi)->sit_info);
}
static inline void *inline_data_addr(struct f2fs_node *node_blk)
{
int ofs = get_extra_isize(node_blk) + DEF_INLINE_RESERVED_SIZE;
return (void *)&(node_blk->i.i_addr[ofs]);
}
static inline unsigned int ofs_of_node(struct f2fs_node *node_blk)
{
unsigned flag = le32_to_cpu(node_blk->footer.flag);
return flag >> OFFSET_BIT_SHIFT;
}
static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
return le64_to_cpu(cp->checkpoint_ver);
}
static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
{
size_t crc_offset = le32_to_cpu(cp->checksum_offset);
return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
}
static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
return ckpt_flags & f ? 1 : 0;
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
/* return NAT or SIT bitmap */
if (flag == NAT_BITMAP)
return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
else if (flag == SIT_BITMAP)
return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
return 0;
}
static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
int offset;
if (is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG)) {
f2fs-tools: relocate chksum_offset for large_nat_bitmap feature For large_nat_bitmap feature, there is a design flaw: Previous: struct f2fs_checkpoint layout: +--------------------------+ 0x0000 | checkpoint_ver | | ...... | | checksum_offset |------+ | ...... | | | sit_nat_version_bitmap[] |<-----|-------+ | ...... | | | | checksum_value |<-----+ | +--------------------------+ 0x1000 | | | nat_bitmap + sit_bitmap | payload blocks | | | | | +--------------------------|<-------------+ Obviously, if nat_bitmap size + sit_bitmap size is larger than MAX_BITMAP_SIZE_IN_CKPT, nat_bitmap or sit_bitmap may overlap checkpoint checksum's position, once checkpoint() is triggered from kernel, nat or sit bitmap will be damaged by checksum field. In order to fix this, let's relocate checksum_value's position to the head of sit_nat_version_bitmap as below, then nat/sit bitmap and chksum value update will become safe. After: struct f2fs_checkpoint layout: +--------------------------+ 0x0000 | checkpoint_ver | | ...... | | checksum_offset |------+ | ...... | | | sit_nat_version_bitmap[] |<-----+ | ...... |<-------------+ | | | +--------------------------+ 0x1000 | | | nat_bitmap + sit_bitmap | payload blocks | | | | | +--------------------------|<-------------+ Related report and discussion: https://sourceforge.net/p/linux-f2fs/mailman/message/36642346/ In addition, during writing checkpoint, if large_nat_bitmap feature is enabled, we need to set CP_LARGE_NAT_BITMAP_FLAG flag in checkpoint. Reported-by: Park Ju Hyung <qkrwngud825@gmail.com> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-05-14 09:33:40 +00:00
unsigned int chksum_size = 0;
offset = (flag == SIT_BITMAP) ?
le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
f2fs-tools: relocate chksum_offset for large_nat_bitmap feature For large_nat_bitmap feature, there is a design flaw: Previous: struct f2fs_checkpoint layout: +--------------------------+ 0x0000 | checkpoint_ver | | ...... | | checksum_offset |------+ | ...... | | | sit_nat_version_bitmap[] |<-----|-------+ | ...... | | | | checksum_value |<-----+ | +--------------------------+ 0x1000 | | | nat_bitmap + sit_bitmap | payload blocks | | | | | +--------------------------|<-------------+ Obviously, if nat_bitmap size + sit_bitmap size is larger than MAX_BITMAP_SIZE_IN_CKPT, nat_bitmap or sit_bitmap may overlap checkpoint checksum's position, once checkpoint() is triggered from kernel, nat or sit bitmap will be damaged by checksum field. In order to fix this, let's relocate checksum_value's position to the head of sit_nat_version_bitmap as below, then nat/sit bitmap and chksum value update will become safe. After: struct f2fs_checkpoint layout: +--------------------------+ 0x0000 | checkpoint_ver | | ...... | | checksum_offset |------+ | ...... | | | sit_nat_version_bitmap[] |<-----+ | ...... |<-------------+ | | | +--------------------------+ 0x1000 | | | nat_bitmap + sit_bitmap | payload blocks | | | | | +--------------------------|<-------------+ Related report and discussion: https://sourceforge.net/p/linux-f2fs/mailman/message/36642346/ In addition, during writing checkpoint, if large_nat_bitmap feature is enabled, we need to set CP_LARGE_NAT_BITMAP_FLAG flag in checkpoint. Reported-by: Park Ju Hyung <qkrwngud825@gmail.com> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-05-14 09:33:40 +00:00
if (le32_to_cpu(ckpt->checksum_offset) ==
CP_MIN_CHKSUM_OFFSET)
chksum_size = sizeof(__le32);
return &ckpt->sit_nat_version_bitmap + offset + chksum_size;
}
if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
if (flag == NAT_BITMAP)
return &ckpt->sit_nat_version_bitmap;
else
return ((char *)ckpt + F2FS_BLKSIZE);
} else {
offset = (flag == NAT_BITMAP) ?
le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
return &ckpt->sit_nat_version_bitmap + offset;
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
}
static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
if (sbi->cur_cp == 2)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline block_t __end_block_addr(struct f2fs_sb_info *sbi)
{
block_t end = SM_I(sbi)->main_blkaddr;
return end + le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
#define IS_DATASEG(t) \
((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
(t == CURSEG_WARM_DATA))
#define IS_NODESEG(t) \
((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
(t == CURSEG_WARM_NODE))
#define MAIN_BLKADDR(sbi) \
(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
#define SEG0_BLKADDR(sbi) \
(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define GET_SUM_BLKADDR(sbi, segno) \
((sbi->sm_info->ssa_blkaddr) + segno)
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
((blk_addr) - SM_I(sbi)->seg0_blkaddr)
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
fsck: Check write pointer consistency of open zones On sudden f2fs shutdown, write pointers of zoned block devices can go further but f2fs meta data keeps current segments at positions before the write operations. After remounting the f2fs, this inconsistency causes write operations not at write pointers and "Unaligned write command" error is reported. To avoid the error, have f2fs.fsck check consistency of write pointers of open zones that current segments point to. Compare each current segment's position and the write pointer position of the open zone. If inconsistency is found and 'fix_on' flag is set, assign a new zone to the current segment and check the newly assigned zone has write pointer at the zone start. Leave the original zone as is to keep data recorded in it. To care about fsync data, refer each seg_entry's ckpt_valid_map to get the last valid block in the zone. If the last valid block is beyond the current segments position, fsync data exits in the zone. In case fsync data exists, do not assign a new zone to the current segment not to lose the fsync data. It is expected that the kernel replay the fsync data and fix the write pointer inconsistency at mount time. Also check consistency between write pointer of the zone the current segment points to with valid block maps of the zone. If the last valid block is beyond the write pointer position, report to indicate a bug. If 'fix_on' flag is set, assign a new zone to the current segment. When inconsistencies are found, turn on 'bug_on' flag in fsck_verify() to ask users to fix them or not. When inconsistencies get fixed, turn on 'force' flag in fsck_verify() to enforce fixes in following checks. This check and fix is done twice. The first is done at the beginning of do_fsck() function so that other fixes can reflect the current segment modification. The second is done in fsck_verify() to reflect updated meta data by other fixes. Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-11-28 07:59:29 +00:00
#define GET_SEC_FROM_SEG(sbi, segno) \
((segno) / (sbi)->segs_per_sec)
#define GET_SEG_FROM_SEC(sbi, secno) \
((secno) * (sbi)->segs_per_sec)
#define FREE_I_START_SEGNO(sbi) \
GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define GET_R2L_SEGNO(sbi, segno) (segno + FREE_I_START_SEGNO(sbi))
#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
#define START_BLOCK(sbi, segno) (SM_I(sbi)->main_blkaddr + \
((segno) << sbi->log_blocks_per_seg))
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define NEXT_FREE_BLKADDR(sbi, curseg) \
(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
#define SIT_BLK_CNT(sbi) \
((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
- (base + 1) + type;
}
/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
struct list_head list; /* list head */
nid_t ino; /* inode number */
block_t blkaddr; /* block address locating the last fsync */
block_t last_dentry; /* block address locating the last dentry */
};
#define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
#define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
#define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
#define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
#define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define SIT_ENTRY_OFFSET(sit_i, segno) \
((segno) % sit_i->sents_per_block)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define SIT_BLOCK_OFFSET(sit_i, segno) \
((segno) / SIT_ENTRY_PER_BLOCK)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
static inline bool IS_VALID_NID(struct f2fs_sb_info *sbi, u32 nid)
{
return (nid < (NAT_ENTRY_PER_BLOCK *
le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_nat)
<< (sbi->log_blocks_per_seg - 1)));
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline bool IS_VALID_BLK_ADDR(struct f2fs_sb_info *sbi, u32 addr)
{
if (addr == NULL_ADDR || addr == NEW_ADDR)
return 1;
if (addr >= le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count) ||
addr < SM_I(sbi)->main_blkaddr) {
DBG(1, "block addr [0x%x]\n", addr);
return 0;
}
/* next block offset will be checked at the end of fsck. */
return 1;
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline int IS_CUR_SEGNO(struct f2fs_sb_info *sbi, u32 segno)
{
int i;
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (segno == curseg->segno)
return 1;
}
return 0;
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr)
{
ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr);
return blk_addr - SM_I(sbi)->main_blkaddr;
}
static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr)
{
return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
>> sbi->log_blocks_per_seg);
}
static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr)
{
return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
% (1 << sbi->log_blocks_per_seg));
}
static inline void node_info_from_raw_nat(struct node_info *ni,
struct f2fs_nat_entry *raw_nat)
{
ni->ino = le32_to_cpu(raw_nat->ino);
ni->blk_addr = le32_to_cpu(raw_nat->block_addr);
ni->version = raw_nat->version;
}
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
unsigned int ofs_in_node, unsigned char version)
{
sum->nid = cpu_to_le32(nid);
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
sum->version = version;
}
#define S_SHIFT 12
static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
[S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
[S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
};
static inline int map_de_type(umode_t mode)
{
return f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
}
static inline void *inline_xattr_addr(struct f2fs_inode *inode)
{
return (void *)&(inode->i_addr[DEF_ADDRS_PER_INODE -
get_inline_xattr_addrs(inode)]);
}
static inline int inline_xattr_size(struct f2fs_inode *inode)
{
return get_inline_xattr_addrs(inode) * sizeof(__le32);
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne);
#define IS_SUM_NODE_SEG(footer) (footer.entry_type == SUM_TYPE_NODE)
#define IS_SUM_DATA_SEG(footer) (footer.entry_type == SUM_TYPE_DATA)
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
static inline unsigned int dir_buckets(unsigned int level, int dir_level)
{
if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
return 1 << (level + dir_level);
else
return MAX_DIR_BUCKETS;
}
static inline unsigned int bucket_blocks(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
static inline unsigned long dir_block_index(unsigned int level,
int dir_level, unsigned int idx)
{
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
bidx += idx * bucket_blocks(level);
return bidx;
}
static inline int is_dot_dotdot(const unsigned char *name, const int len)
{
if (len == 1 && name[0] == '.')
return 1;
if (len == 2 && name[0] == '.' && name[1] == '.')
return 1;
return 0;
}
static inline int get_encoding(struct f2fs_sb_info *sbi)
{
return le16_to_cpu(F2FS_RAW_SUPER(sbi)->s_encoding);
}
f2fs-tools: add fsck.f2fs and dump.f2fs fsck.f2fs checks file system consistency, but does not repair a broken file system yet. dump.f2fs shows the information of a specific inode and makes dump file of SSA and SIT. f2fs checks file system consistency as follows: o When data about used area and its metadata are identical, f2fs is considered consistent. To verify such consistency, we use three bitmaps: nat_area_bitmap, sit_area_bitmap, and main_area_bitmap. First, each bit in nat_area_bitmap corresponds to a nid in NAT. Second, each bit in sit_area_bitmap corresponds to a valid block in a segment. This bitmap is same to the total valid_map of f2fs_sit_entries in SIT. Last, each bit in main_area_bitmap corresponds to a block in main area except meta area. After a consistency check of each block, we set or clear the corresponding bit of each bitmap. From the root node, we start consistency check. The verified information varies according to block type. 1. NODE - Read information of node block from NAT - Check if block address is allocated using node info. - Check if the type of f2fs_summary related to nid in SSA is NODE. - Update the corresponding bit in nat_area_bitmap. - Update the corresponding bit in sit_area_bitmap. - Set the corresponding bit in main_area_bitmap to 1. - Then, read node block. According to its attribute, explore inode/direct node/indirect node/double indirect node recursively. - If it is an inode block, we also check its xattr and hard link. 2. DATA - Check if the type of f2fs_summary related to nid in SSA is DATA. - Set the corresponding bits of sit_area_bitmap and main_area_bitmap to visited - If it is a dentry block, traverse each dentries that may be regular file or directory. At this time, it will check inode block again. Finally, we verify whether - every nat_area_bitmap is visited - any unreachable hard link exists - values of sit_area_bitmap and main_area_bitmap are identical - total_valid_block_count/node_count/inode_count are correct Usage: o fsck.f2fs # fsck.f2fs /dev/sdx options: -d debug level [default:0] o dump.f2fs # dump.f2fs -i [ino] /dev/sdx # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) options: -d debug level [default:0] -i inode no (hex) -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] Note: To use dump.f2fs, please run make install or ln -s fsck.f2fs dump.f2fs Signed-off-by: Changman Lee <cm224.lee@samsung.com> Signed-off-by: Byoung Geun Kim <bgbg.kim@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-07-04 08:11:32 +00:00
#endif /* _F2FS_H_ */