/** * fsck.c * * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "fsck.h" char *tree_mark; uint32_t tree_mark_size = 256; static inline int f2fs_set_main_bitmap(struct f2fs_sb_info *sbi, u32 blk, int type) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct seg_entry *se; se = get_seg_entry(sbi, GET_SEGNO(sbi, blk)); if (se->type != type) { if (type == CURSEG_WARM_DATA) { if (se->type != CURSEG_COLD_DATA) { DBG(1, "Wrong segment type [0x%x] %x -> %x", GET_SEGNO(sbi, blk), se->type, CURSEG_WARM_DATA); se->type = CURSEG_WARM_DATA; } } else { DBG(1, "Wrong segment type [0x%x] %x -> %x", GET_SEGNO(sbi, blk), se->type, type); se->type = type; } } return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap); } static inline int f2fs_test_main_bitmap(struct f2fs_sb_info *sbi, u32 blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap); } static inline int f2fs_test_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap); } static int add_into_hard_link_list(struct f2fs_sb_info *sbi, u32 nid, u32 link_cnt) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL, *tmp = NULL, *prev = NULL; node = calloc(sizeof(struct hard_link_node), 1); ASSERT(node != NULL); node->nid = nid; node->links = link_cnt; node->next = NULL; if (fsck->hard_link_list_head == NULL) { fsck->hard_link_list_head = node; goto out; } tmp = fsck->hard_link_list_head; /* Find insertion position */ while (tmp && (nid < tmp->nid)) { ASSERT(tmp->nid != nid); prev = tmp; tmp = tmp->next; } if (tmp == fsck->hard_link_list_head) { node->next = tmp; fsck->hard_link_list_head = node; } else { prev->next = node; node->next = tmp; } out: DBG(2, "ino[0x%x] has hard links [0x%x]\n", nid, link_cnt); return 0; } static int find_and_dec_hard_link_list(struct f2fs_sb_info *sbi, u32 nid) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL, *prev = NULL; if (fsck->hard_link_list_head == NULL) return -EINVAL; node = fsck->hard_link_list_head; while (node && (nid < node->nid)) { prev = node; node = node->next; } if (node == NULL || (nid != node->nid)) return -EINVAL; /* Decrease link count */ node->links = node->links - 1; /* if link count becomes one, remove the node */ if (node->links == 1) { if (fsck->hard_link_list_head == node) fsck->hard_link_list_head = node->next; else prev->next = node->next; free(node); } return 0; } static int is_valid_ssa_node_blk(struct f2fs_sb_info *sbi, u32 nid, u32 blk_addr) { int ret = 0; struct f2fs_summary sum_entry; ret = get_sum_entry(sbi, blk_addr, &sum_entry); if (ret != SEG_TYPE_NODE && ret != SEG_TYPE_CUR_NODE) { ASSERT_MSG("Summary footer is not for node segment"); return -EINVAL; } if (le32_to_cpu(sum_entry.nid) != nid) { DBG(0, "nid [0x%x]\n", nid); DBG(0, "target blk_addr [0x%x]\n", blk_addr); DBG(0, "summary blk_addr [0x%x]\n", GET_SUM_BLKADDR(sbi, GET_SEGNO(sbi, blk_addr))); DBG(0, "seg no / offset [0x%x / 0x%x]\n", GET_SEGNO(sbi, blk_addr), OFFSET_IN_SEG(sbi, blk_addr)); DBG(0, "summary_entry.nid [0x%x]\n", le32_to_cpu(sum_entry.nid)); DBG(0, "--> node block's nid [0x%x]\n", nid); ASSERT_MSG("Invalid node seg summary\n"); return -EINVAL; } return 0; } static int is_valid_ssa_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr, u32 parent_nid, u16 idx_in_node, u8 version) { int ret = 0; struct f2fs_summary sum_entry; ret = get_sum_entry(sbi, blk_addr, &sum_entry); if (ret != SEG_TYPE_DATA && ret != SEG_TYPE_CUR_DATA) { ASSERT_MSG("Summary footer is not for data segment"); return -EINVAL; } if (le32_to_cpu(sum_entry.nid) != parent_nid || sum_entry.version != version || le16_to_cpu(sum_entry.ofs_in_node) != idx_in_node) { DBG(0, "summary_entry.nid [0x%x]\n", le32_to_cpu(sum_entry.nid)); DBG(0, "summary_entry.version [0x%x]\n", sum_entry.version); DBG(0, "summary_entry.ofs_in_node [0x%x]\n", le16_to_cpu(sum_entry.ofs_in_node)); DBG(0, "parent nid [0x%x]\n", parent_nid); DBG(0, "version from nat [0x%x]\n", version); DBG(0, "idx in parent node [0x%x]\n", idx_in_node); DBG(0, "Target data block addr [0x%x]\n", blk_addr); ASSERT_MSG("Invalid data seg summary\n"); return -EINVAL; } return 0; } static int __check_inode_mode(u32 nid, enum FILE_TYPE ftype, u32 mode) { if (ftype >= F2FS_FT_MAX) return 0; if (S_ISLNK(mode) && ftype != F2FS_FT_SYMLINK) goto err; if (S_ISREG(mode) && ftype != F2FS_FT_REG_FILE) goto err; if (S_ISDIR(mode) && ftype != F2FS_FT_DIR) goto err; if (S_ISCHR(mode) && ftype != F2FS_FT_CHRDEV) goto err; if (S_ISBLK(mode) && ftype != F2FS_FT_BLKDEV) goto err; if (S_ISFIFO(mode) && ftype != F2FS_FT_FIFO) goto err; if (S_ISSOCK(mode) && ftype != F2FS_FT_SOCK) goto err; return 0; err: ASSERT_MSG("mismatch i_mode [0x%x] [0x%x vs. 0x%x]", nid, ftype, mode); return -1; } static int sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_node *node_blk, enum FILE_TYPE ftype, enum NODE_TYPE ntype, struct node_info *ni, u8 *name) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); int ret; if (!IS_VALID_NID(sbi, nid)) { ASSERT_MSG("nid is not valid. [0x%x]", nid); return -EINVAL; } get_node_info(sbi, nid, ni); if (ni->blk_addr == NEW_ADDR) { ASSERT_MSG("nid is NEW_ADDR. [0x%x]", nid); return -EINVAL; } if (!IS_VALID_BLK_ADDR(sbi, ni->blk_addr)) { ASSERT_MSG("blkaddres is not valid. [0x%x]", ni->blk_addr); return -EINVAL; } if (is_valid_ssa_node_blk(sbi, nid, ni->blk_addr)) { ASSERT_MSG("summary node block is not valid. [0x%x]", nid); return -EINVAL; } ret = dev_read_block(node_blk, ni->blk_addr); ASSERT(ret >= 0); if (ntype == TYPE_INODE && node_blk->footer.nid != node_blk->footer.ino) { ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]", nid, le32_to_cpu(node_blk->footer.nid), le32_to_cpu(node_blk->footer.ino)); return -EINVAL; } if (ntype != TYPE_INODE && node_blk->footer.nid == node_blk->footer.ino) { ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]", nid, le32_to_cpu(node_blk->footer.nid), le32_to_cpu(node_blk->footer.ino)); return -EINVAL; } if (le32_to_cpu(node_blk->footer.nid) != nid) { ASSERT_MSG("nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]", nid, ni->blk_addr, le32_to_cpu(node_blk->footer.nid)); return -EINVAL; } if (ntype == TYPE_XATTR) { u32 flag = le32_to_cpu(node_blk->footer.flag); if ((flag >> OFFSET_BIT_SHIFT) != XATTR_NODE_OFFSET) { ASSERT_MSG("xnid[0x%x] has wrong ofs:[0x%x]", nid, flag); return -EINVAL; } } if ((ntype == TYPE_INODE && ftype == F2FS_FT_DIR) || (ntype == TYPE_XATTR && ftype == F2FS_FT_XATTR)) { /* not included '.' & '..' */ if (f2fs_test_main_bitmap(sbi, ni->blk_addr) != 0) { ASSERT_MSG("Duplicated node blk. nid[0x%x][0x%x]\n", nid, ni->blk_addr); return -EINVAL; } } if (ntype == TYPE_INODE && ftype == F2FS_FT_DIR) { u32 len = le32_to_cpu(node_blk->i.i_namelen); if (name && memcmp(name, node_blk->i.i_name, len)) { ASSERT_MSG("mismatch name [0x%x] [%s vs. %s]", nid, name, node_blk->i.i_name); return -EINVAL; } } if (ntype == TYPE_INODE && __check_inode_mode(nid, ftype, le32_to_cpu(node_blk->i.i_mode))) return -EINVAL; /* workaround to fix later */ if (ftype != F2FS_FT_ORPHAN || f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0) f2fs_clear_bit(nid, fsck->nat_area_bitmap); else ASSERT_MSG("orphan or xattr nid is duplicated [0x%x]\n", nid); if (f2fs_test_sit_bitmap(sbi, ni->blk_addr) == 0) ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", ni->blk_addr); if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) { fsck->chk.valid_blk_cnt++; fsck->chk.valid_node_cnt++; } return 0; } static int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino, u32 x_nid, u32 *blk_cnt) { struct f2fs_node *node_blk = NULL; struct node_info ni; int ret = 0; if (x_nid == 0x0) return 0; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); /* Sanity check */ if (sanity_check_nid(sbi, x_nid, node_blk, F2FS_FT_XATTR, TYPE_XATTR, &ni, NULL)) { ret = -EINVAL; goto out; } *blk_cnt = *blk_cnt + 1; f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE); DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid); out: free(node_blk); return ret; } int fsck_chk_node_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, u32 nid, u8 *name, enum FILE_TYPE ftype, enum NODE_TYPE ntype, u32 *blk_cnt) { struct node_info ni; struct f2fs_node *node_blk = NULL; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); if (sanity_check_nid(sbi, nid, node_blk, ftype, ntype, &ni, name)) goto err; if (ntype == TYPE_INODE) { fsck_chk_inode_blk(sbi, nid, ftype, node_blk, blk_cnt, &ni); } else { switch (ntype) { case TYPE_DIRECT_NODE: f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_WARM_NODE); fsck_chk_dnode_blk(sbi, inode, nid, ftype, node_blk, blk_cnt, &ni); break; case TYPE_INDIRECT_NODE: f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE); fsck_chk_idnode_blk(sbi, inode, ftype, node_blk, blk_cnt); break; case TYPE_DOUBLE_INDIRECT_NODE: f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE); fsck_chk_didnode_blk(sbi, inode, ftype, node_blk, blk_cnt); break; default: ASSERT(0); } } free(node_blk); return 0; err: free(node_blk); return -EINVAL; } /* start with valid nid and blkaddr */ void fsck_chk_inode_blk(struct f2fs_sb_info *sbi, u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct node_info *ni) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); u32 child_cnt = 0, child_files = 0; enum NODE_TYPE ntype; u32 i_links = le32_to_cpu(node_blk->i.i_links); u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks); unsigned int idx = 0; int need_fix = 0; int ret; if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) fsck->chk.valid_inode_cnt++; if (ftype == F2FS_FT_DIR) { f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_HOT_NODE); } else { if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) { f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_WARM_NODE); if (i_links > 1) { /* First time. Create new hard link node */ add_into_hard_link_list(sbi, nid, i_links); fsck->chk.multi_hard_link_files++; } } else { DBG(3, "[0x%x] has hard links [0x%x]\n", nid, i_links); if (find_and_dec_hard_link_list(sbi, nid)) { ASSERT_MSG("[0x%x] needs more i_links=0x%x", nid, i_links); if (config.fix_on) { node_blk->i.i_links = cpu_to_le32(i_links + 1); need_fix = 1; FIX_MSG("File: 0x%x " "i_links= 0x%x -> 0x%x", nid, i_links, i_links + 1); } goto check; } /* No need to go deep into the node */ return; } } if (fsck_chk_xattr_blk(sbi, nid, le32_to_cpu(node_blk->i.i_xattr_nid), blk_cnt) && config.fix_on) { node_blk->i.i_xattr_nid = 0; need_fix = 1; FIX_MSG("Remove xattr block: 0x%x, x_nid = 0x%x", nid, le32_to_cpu(node_blk->i.i_xattr_nid)); } if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV || ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK) goto check; if((node_blk->i.i_inline & F2FS_INLINE_DATA)) { if (le32_to_cpu(node_blk->i.i_addr[0]) != 0) { /* should fix this bug all the time */ FIX_MSG("inline_data has wrong 0'th block = %x", le32_to_cpu(node_blk->i.i_addr[0])); node_blk->i.i_addr[0] = 0; node_blk->i.i_blocks = cpu_to_le64(*blk_cnt); need_fix = 1; } if (!(node_blk->i.i_inline & F2FS_DATA_EXIST)) { char buf[MAX_INLINE_DATA]; memset(buf, 0, MAX_INLINE_DATA); if (memcmp(buf, &node_blk->i.i_addr[1], MAX_INLINE_DATA)) { FIX_MSG("inline_data has DATA_EXIST"); node_blk->i.i_inline |= F2FS_DATA_EXIST; need_fix = 1; } } DBG(3, "ino[0x%x] has inline data!\n", nid); goto check; } if((node_blk->i.i_inline & F2FS_INLINE_DENTRY)) { DBG(3, "ino[0x%x] has inline dentry!\n", nid); ret = fsck_chk_inline_dentries(sbi, node_blk, &child_cnt, &child_files); if (ret < 0) { /* should fix this bug all the time */ need_fix = 1; } goto check; } /* readahead node blocks */ for (idx = 0; idx < 5; idx++) { u32 nid = le32_to_cpu(node_blk->i.i_nid[idx]); if (nid != 0) { struct node_info ni; get_node_info(sbi, nid, &ni); if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) dev_reada_block(ni.blk_addr); } } /* check data blocks in inode */ for (idx = 0; idx < ADDRS_PER_INODE(&node_blk->i); idx++) { if (le32_to_cpu(node_blk->i.i_addr[idx]) != 0) { ret = fsck_chk_data_blk(sbi, le32_to_cpu(node_blk->i.i_addr[idx]), &child_cnt, &child_files, (i_blocks == *blk_cnt), ftype, nid, idx, ni->version); if (!ret) { *blk_cnt = *blk_cnt + 1; } else if (config.fix_on) { node_blk->i.i_addr[idx] = 0; need_fix = 1; FIX_MSG("[0x%x] i_addr[%d] = 0", nid, idx); } } } /* check node blocks in inode */ for (idx = 0; idx < 5; idx++) { if (idx == 0 || idx == 1) ntype = TYPE_DIRECT_NODE; else if (idx == 2 || idx == 3) ntype = TYPE_INDIRECT_NODE; else if (idx == 4) ntype = TYPE_DOUBLE_INDIRECT_NODE; else ASSERT(0); if (le32_to_cpu(node_blk->i.i_nid[idx]) != 0) { ret = fsck_chk_node_blk(sbi, &node_blk->i, le32_to_cpu(node_blk->i.i_nid[idx]), NULL, ftype, ntype, blk_cnt); if (!ret) { *blk_cnt = *blk_cnt + 1; } else if (config.fix_on) { node_blk->i.i_nid[idx] = 0; need_fix = 1; FIX_MSG("[0x%x] i_nid[%d] = 0", nid, idx); } } } check: if (ftype == F2FS_FT_DIR) DBG(1, "Directory Inode: 0x%x [%s] depth: %d has %d files\n\n", le32_to_cpu(node_blk->footer.ino), node_blk->i.i_name, le32_to_cpu(node_blk->i.i_current_depth), child_files); if (ftype == F2FS_FT_ORPHAN) DBG(1, "Orphan Inode: 0x%x [%s] i_blocks: %u\n\n", le32_to_cpu(node_blk->footer.ino), node_blk->i.i_name, (u32)i_blocks); if (i_blocks != *blk_cnt) { ASSERT_MSG("ino: 0x%x has i_blocks: %08"PRIx64", " "but has %u blocks", nid, i_blocks, *blk_cnt); if (config.fix_on) { node_blk->i.i_blocks = cpu_to_le64(*blk_cnt); need_fix = 1; FIX_MSG("[0x%x] i_blocks=0x%08"PRIx64" -> 0x%x", nid, i_blocks, *blk_cnt); } } if (ftype == F2FS_FT_DIR && i_links != child_cnt) { ASSERT_MSG("ino: 0x%x has i_links: %u but real links: %u", nid, i_links, child_cnt); if (config.fix_on) { node_blk->i.i_links = cpu_to_le32(child_cnt); need_fix = 1; FIX_MSG("Dir: 0x%x i_links= 0x%x -> 0x%x", nid, i_links, child_cnt); } } if (ftype == F2FS_FT_ORPHAN && i_links) ASSERT_MSG("ino: 0x%x is orphan inode, but has i_links: %u", nid, i_links); if (need_fix) { ret = dev_write_block(node_blk, ni->blk_addr); ASSERT(ret >= 0); } } int fsck_chk_dnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct node_info *ni) { int idx, ret; u32 child_cnt = 0, child_files = 0; int need_fix = 0; for (idx = 0; idx < ADDRS_PER_BLOCK; idx++) { if (le32_to_cpu(node_blk->dn.addr[idx]) == 0x0) continue; ret = fsck_chk_data_blk(sbi, le32_to_cpu(node_blk->dn.addr[idx]), &child_cnt, &child_files, le64_to_cpu(inode->i_blocks) == *blk_cnt, ftype, nid, idx, ni->version); if (!ret) { *blk_cnt = *blk_cnt + 1; } else if (config.fix_on) { node_blk->dn.addr[idx] = 0; need_fix = 1; FIX_MSG("[0x%x] dn.addr[%d] = 0", nid, idx); } } if (need_fix) { ret = dev_write_block(node_blk, ni->blk_addr); ASSERT(ret >= 0); } return 0; } int fsck_chk_idnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt) { int ret; int i = 0; for (i = 0 ; i < NIDS_PER_BLOCK; i++) { if (le32_to_cpu(node_blk->in.nid[i]) == 0x0) continue; ret = fsck_chk_node_blk(sbi, inode, le32_to_cpu(node_blk->in.nid[i]), NULL, ftype, TYPE_DIRECT_NODE, blk_cnt); if (!ret) *blk_cnt = *blk_cnt + 1; else if (ret == -EINVAL) printf("delete in.nid[i] = 0;\n"); } return 0; } int fsck_chk_didnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt) { int i = 0; int ret = 0; for (i = 0; i < NIDS_PER_BLOCK; i++) { if (le32_to_cpu(node_blk->in.nid[i]) == 0x0) continue; ret = fsck_chk_node_blk(sbi, inode, le32_to_cpu(node_blk->in.nid[i]), NULL, ftype, TYPE_INDIRECT_NODE, blk_cnt); if (!ret) *blk_cnt = *blk_cnt + 1; else if (ret == -EINVAL) printf("delete in.nid[i] = 0;\n"); } return 0; } static void print_dentry(__u32 depth, __u8 *name, unsigned long *bitmap, struct f2fs_dir_entry *dentry, int max, int idx, int last_blk) { int last_de = 0; int next_idx = 0; int name_len; unsigned int i; int bit_offset; if (config.dbg_lv != -1) return; name_len = le16_to_cpu(dentry[idx].name_len); next_idx = idx + (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN; bit_offset = find_next_bit(bitmap, max, next_idx); if (bit_offset >= max && last_blk) last_de = 1; if (tree_mark_size <= depth) { tree_mark_size *= 2; tree_mark = realloc(tree_mark, tree_mark_size); } if (last_de) tree_mark[depth] = '`'; else tree_mark[depth] = '|'; if (tree_mark[depth - 1] == '`') tree_mark[depth - 1] = ' '; for (i = 1; i < depth; i++) printf("%c ", tree_mark[i]); printf("%c-- %s 0x%x\n", last_de ? '`' : '|', name, le32_to_cpu(dentry[idx].ino)); } static int __chk_dentries(struct f2fs_sb_info *sbi, u32 *child_cnt, u32* child_files, unsigned long *bitmap, struct f2fs_dir_entry *dentry, __u8 (*filenames)[F2FS_SLOT_LEN], int max, int last_blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); enum FILE_TYPE ftype; int dentries = 0; u32 blk_cnt; u8 *name; u32 hash_code, ino; u16 name_len;; int ret = 0; int fixed = 0; int i; /* readahead inode blocks */ for (i = 0; i < max;) { if (test_bit(i, bitmap) == 0) { i++; continue; } ino = le32_to_cpu(dentry[i].ino); if (IS_VALID_NID(sbi, ino)) { struct node_info ni; get_node_info(sbi, ino, &ni); if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) dev_reada_block(ni.blk_addr); } name_len = le16_to_cpu(dentry[i].name_len); i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN; } for (i = 0; i < max;) { if (test_bit(i, bitmap) == 0) { i++; continue; } if (!IS_VALID_NID(sbi, le32_to_cpu(dentry[i].ino))) { DBG(1, "Bad dentry 0x%x with invalid NID/ino 0x%x", i, le32_to_cpu(dentry[i].ino)); if (config.fix_on) { FIX_MSG("Clear bad dentry 0x%x with bad ino 0x%x", i, le32_to_cpu(dentry[i].ino)); clear_bit(i, bitmap); i++; fixed = 1; continue; } } ftype = dentry[i].file_type; if ((ftype <= F2FS_FT_UNKNOWN || ftype > F2FS_FT_LAST_FILE_TYPE) && config.fix_on) { DBG(1, "Bad dentry 0x%x with unexpected ftype 0x%x", i, ftype); if (config.fix_on) { FIX_MSG("Clear bad dentry 0x%x with bad ftype 0x%x", i, ftype); clear_bit(i, bitmap); i++; fixed = 1; continue; } } name_len = le16_to_cpu(dentry[i].name_len); name = calloc(name_len + 1, 1); memcpy(name, filenames[i], name_len); hash_code = f2fs_dentry_hash((const unsigned char *)name, name_len); /* fix hash_code made by old buggy code */ if (le32_to_cpu(dentry[i].hash_code) != hash_code) { dentry[i].hash_code = hash_code; fixed = 1; FIX_MSG("hash_code[%d] of %s", i, name); } /* Becareful. 'dentry.file_type' is not imode. */ if (ftype == F2FS_FT_DIR) { *child_cnt = *child_cnt + 1; if ((name[0] == '.' && name_len == 1) || (name[0] == '.' && name[1] == '.' && name_len == 2)) { i++; free(name); continue; } } DBG(1, "[%3u]-[0x%x] name[%s] len[0x%x] ino[0x%x] type[0x%x]\n", fsck->dentry_depth, i, name, name_len, le32_to_cpu(dentry[i].ino), dentry[i].file_type); print_dentry(fsck->dentry_depth, name, bitmap, dentry, max, i, last_blk); blk_cnt = 1; ret = fsck_chk_node_blk(sbi, NULL, le32_to_cpu(dentry[i].ino), name, ftype, TYPE_INODE, &blk_cnt); if (ret && config.fix_on) { int j; int slots = (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN; for (j = 0; j < slots; j++) clear_bit(i + j, bitmap); FIX_MSG("Unlink [0x%x] - %s len[0x%x], type[0x%x]", le32_to_cpu(dentry[i].ino), name, name_len, dentry[i].file_type); i += slots; free(name); fixed = 1; continue; } i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN; dentries++; *child_files = *child_files + 1; free(name); } return fixed ? -1 : dentries; } int fsck_chk_inline_dentries(struct f2fs_sb_info *sbi, struct f2fs_node *node_blk, u32 *child_cnt, u32 *child_files) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_inline_dentry *de_blk; int dentries; de_blk = inline_data_addr(node_blk); ASSERT(de_blk != NULL); fsck->dentry_depth++; dentries = __chk_dentries(sbi, child_cnt, child_files, (unsigned long *)de_blk->dentry_bitmap, de_blk->dentry, de_blk->filename, NR_INLINE_DENTRY, 1); if (dentries < 0) { DBG(1, "[%3d] Inline Dentry Block Fixed hash_codes\n\n", fsck->dentry_depth); } else { DBG(1, "[%3d] Inline Dentry Block Done : " "dentries:%d in %d slots (len:%d)\n\n", fsck->dentry_depth, dentries, (int)NR_INLINE_DENTRY, F2FS_NAME_LEN); } fsck->dentry_depth--; return dentries; } int fsck_chk_dentry_blk(struct f2fs_sb_info *sbi, u32 blk_addr, u32 *child_cnt, u32 *child_files, int last_blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_dentry_block *de_blk; int dentries, ret; de_blk = (struct f2fs_dentry_block *)calloc(BLOCK_SZ, 1); ASSERT(de_blk != NULL); ret = dev_read_block(de_blk, blk_addr); ASSERT(ret >= 0); fsck->dentry_depth++; dentries = __chk_dentries(sbi, child_cnt, child_files, (unsigned long *)de_blk->dentry_bitmap, de_blk->dentry, de_blk->filename, NR_DENTRY_IN_BLOCK, last_blk); if (dentries < 0) { ret = dev_write_block(de_blk, blk_addr); ASSERT(ret >= 0); DBG(1, "[%3d] Dentry Block [0x%x] Fixed hash_codes\n\n", fsck->dentry_depth, blk_addr); } else { DBG(1, "[%3d] Dentry Block [0x%x] Done : " "dentries:%d in %d slots (len:%d)\n\n", fsck->dentry_depth, blk_addr, dentries, NR_DENTRY_IN_BLOCK, F2FS_NAME_LEN); } fsck->dentry_depth--; free(de_blk); return 0; } int fsck_chk_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr, u32 *child_cnt, u32 *child_files, int last_blk, enum FILE_TYPE ftype, u32 parent_nid, u16 idx_in_node, u8 ver) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); /* Is it reserved block? */ if (blk_addr == NEW_ADDR) { fsck->chk.valid_blk_cnt++; return 0; } if (!IS_VALID_BLK_ADDR(sbi, blk_addr)) { ASSERT_MSG("blkaddres is not valid. [0x%x]", blk_addr); return -EINVAL; } if (is_valid_ssa_data_blk(sbi, blk_addr, parent_nid, idx_in_node, ver)) { ASSERT_MSG("summary data block is not valid. [0x%x]", parent_nid); return -EINVAL; } if (f2fs_test_sit_bitmap(sbi, blk_addr) == 0) ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", blk_addr); if (f2fs_test_main_bitmap(sbi, blk_addr) != 0) ASSERT_MSG("Duplicated data [0x%x]. pnid[0x%x] idx[0x%x]", blk_addr, parent_nid, idx_in_node); fsck->chk.valid_blk_cnt++; if (ftype == F2FS_FT_DIR) { f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_HOT_DATA); return fsck_chk_dentry_blk(sbi, blk_addr, child_cnt, child_files, last_blk); } else { f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_WARM_DATA); } return 0; } void fsck_chk_orphan_node(struct f2fs_sb_info *sbi) { u32 blk_cnt = 0; block_t start_blk, orphan_blkaddr, i, j; struct f2fs_orphan_block *orphan_blk; struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); if (!is_set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG)) return; start_blk = __start_cp_addr(sbi) + 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); orphan_blkaddr = __start_sum_addr(sbi) - 1; orphan_blk = calloc(BLOCK_SZ, 1); for (i = 0; i < orphan_blkaddr; i++) { int ret = dev_read_block(orphan_blk, start_blk + i); ASSERT(ret >= 0); for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { nid_t ino = le32_to_cpu(orphan_blk->ino[j]); DBG(1, "[%3d] ino [0x%x]\n", i, ino); if (config.fix_on) { FIX_MSG("Discard orphan inodes: ino [0x%x]", ino); continue; } blk_cnt = 1; fsck_chk_node_blk(sbi, NULL, ino, NULL, F2FS_FT_ORPHAN, TYPE_INODE, &blk_cnt); } memset(orphan_blk, 0, BLOCK_SZ); } free(orphan_blk); } void fsck_init(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_sm_info *sm_i = SM_I(sbi); /* * We build three bitmap for main/sit/nat so that may check consistency * of filesystem. * 1. main_area_bitmap will be used to check whether all blocks of main * area is used or not. * 2. nat_area_bitmap has bitmap information of used nid in NAT. * 3. sit_area_bitmap has bitmap information of used main block. * At Last sequence, we compare main_area_bitmap with sit_area_bitmap. */ fsck->nr_main_blks = sm_i->main_segments << sbi->log_blocks_per_seg; fsck->main_area_bitmap_sz = (fsck->nr_main_blks + 7) / 8; fsck->main_area_bitmap = calloc(fsck->main_area_bitmap_sz, 1); ASSERT(fsck->main_area_bitmap != NULL); build_nat_area_bitmap(sbi); build_sit_area_bitmap(sbi); tree_mark = calloc(tree_mark_size, 1); ASSERT(tree_mark != NULL); } static void fix_nat_entries(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); u32 i; for (i = 0; i < fsck->nr_nat_entries; i++) if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) nullify_nat_entry(sbi, i); } static void fix_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_super_block *raw_sb = sbi->raw_super; struct f2fs_checkpoint *ckp = F2FS_CKPT(sbi); unsigned long long cp_blk_no; u32 i; int ret; u_int32_t crc = 0; ckp->ckpt_flags = cpu_to_le32(CP_UMOUNT_FLAG); ckp->cp_pack_total_block_count = cpu_to_le32(8 + le32_to_cpu(raw_sb->cp_payload)); ckp->cp_pack_start_sum = cpu_to_le32(1 + le32_to_cpu(raw_sb->cp_payload)); ckp->free_segment_count = cpu_to_le32(fsck->chk.free_segs); ckp->valid_block_count = cpu_to_le32(fsck->chk.valid_blk_cnt); ckp->valid_node_count = cpu_to_le32(fsck->chk.valid_node_cnt); ckp->valid_inode_count = cpu_to_le32(fsck->chk.valid_inode_cnt); crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp, CHECKSUM_OFFSET); *((__le32 *)((unsigned char *)ckp + CHECKSUM_OFFSET)) = cpu_to_le32(crc); cp_blk_no = le32_to_cpu(raw_sb->cp_blkaddr); if (sbi->cur_cp == 2) cp_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg); ret = dev_write_block(ckp, cp_blk_no++); ASSERT(ret >= 0); for (i = 0; i < le32_to_cpu(raw_sb->cp_payload); i++) { ret = dev_write_block(((unsigned char *)ckp) + i * F2FS_BLKSIZE, cp_blk_no++); ASSERT(ret >= 0); } for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); ret = dev_write_block(curseg->sum_blk, cp_blk_no++); ASSERT(ret >= 0); } ret = dev_write_block(ckp, cp_blk_no++); ASSERT(ret >= 0); } int check_curseg_offset(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); struct seg_entry *se; se = get_seg_entry(sbi, curseg->segno); if (f2fs_test_bit(curseg->next_blkoff, (const char *)se->cur_valid_map) == 1) { ASSERT_MSG("Next block offset is not free, type:%d", i); return -EINVAL; } } return 0; } int check_sit_types(struct f2fs_sb_info *sbi) { unsigned int i; int err = 0; for (i = 0; i < TOTAL_SEGS(sbi); i++) { struct seg_entry *se; se = get_seg_entry(sbi, i); if (se->orig_type != se->type) { if (se->orig_type == CURSEG_COLD_DATA) { se->type = se->orig_type; } else { FIX_MSG("Wrong segment type [0x%x] %x -> %x", i, se->orig_type, se->type); err = -EINVAL; } } } return err; } int fsck_verify(struct f2fs_sb_info *sbi) { unsigned int i = 0; int ret = 0; int force = 0; u32 nr_unref_nid = 0; struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL; printf("\n"); for (i = 0; i < fsck->nr_nat_entries; i++) { if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) { printf("NID[0x%x] is unreachable\n", i); nr_unref_nid++; } } if (fsck->hard_link_list_head != NULL) { node = fsck->hard_link_list_head; while (node) { printf("NID[0x%x] has [0x%x] more unreachable links\n", node->nid, node->links); node = node->next; } config.bug_on = 1; } printf("[FSCK] Unreachable nat entries "); if (nr_unref_nid == 0x0) { printf(" [Ok..] [0x%x]\n", nr_unref_nid); } else { printf(" [Fail] [0x%x]\n", nr_unref_nid); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] SIT valid block bitmap checking "); if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap, fsck->sit_area_bitmap_sz) == 0x0) { printf("[Ok..]\n"); } else { printf("[Fail]\n"); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] Hard link checking for regular file "); if (fsck->hard_link_list_head == NULL) { printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files); } else { printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] valid_block_count matching with CP "); if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) { printf(" [Ok..] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt); } else { printf(" [Fail] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] valid_node_count matcing with CP (de lookup) "); if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] valid_node_count matcing with CP (nat lookup) "); if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] valid_inode_count matched with CP "); if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] free segment_count matched with CP "); if (le32_to_cpu(F2FS_CKPT(sbi)->free_segment_count) == fsck->chk.sit_free_segs) { printf(" [Ok..] [0x%x]\n", fsck->chk.sit_free_segs); } else { printf(" [Fail] [0x%x]\n", fsck->chk.sit_free_segs); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] next block offset is free "); if (check_curseg_offset(sbi) == 0) { printf(" [Ok..]\n"); } else { printf(" [Fail]\n"); ret = EXIT_ERR_CODE; config.bug_on = 1; } printf("[FSCK] fixing SIT types\n"); if (check_sit_types(sbi) != 0) force = 1; printf("[FSCK] other corrupted bugs "); if (config.bug_on == 0) { printf(" [Ok..]\n"); } else { printf(" [Fail]\n"); ret = EXIT_ERR_CODE; } /* fix global metadata */ if (force || (config.bug_on && config.fix_on)) { fix_nat_entries(sbi); rewrite_sit_area_bitmap(sbi); fix_checkpoint(sbi); } return ret; } void fsck_free(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); if (fsck->main_area_bitmap) free(fsck->main_area_bitmap); if (fsck->nat_area_bitmap) free(fsck->nat_area_bitmap); if (fsck->sit_area_bitmap) free(fsck->sit_area_bitmap); if (tree_mark) free(tree_mark); }