third_party_f2fs-tools/fsck/fsck.c
nieben 24003db3f4 Cancel disk model print and unref nid scan
Signed-off-by: nieben <nieben1@huawei.com>

Change-Id: I3817dbcdef565842b6eb13c2a6b973b8d61e9c0e
2024-10-09 19:12:37 +08:00

3419 lines
87 KiB
C

/**
* fsck.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "fsck.h"
#include "xattr.h"
#include "quotaio.h"
#include <time.h>
char *tree_mark;
uint32_t tree_mark_size = 256;
int f2fs_set_main_bitmap(struct f2fs_sb_info *sbi, u32 blk, int type)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct seg_entry *se;
int fix = 0;
se = get_seg_entry(sbi, GET_SEGNO(sbi, blk));
if (se->type >= NO_CHECK_TYPE)
fix = 1;
else if (IS_DATASEG(se->type) != IS_DATASEG(type))
fix = 1;
/* just check data and node types */
if (fix) {
DBG(1, "Wrong segment type [0x%x] %x -> %x",
GET_SEGNO(sbi, blk), se->type, type);
se->type = type;
}
return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap);
}
static inline int f2fs_test_main_bitmap(struct f2fs_sb_info *sbi, u32 blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk),
fsck->main_area_bitmap);
}
static inline int f2fs_clear_main_bitmap(struct f2fs_sb_info *sbi, u32 blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
return f2fs_clear_bit(BLKOFF_FROM_MAIN(sbi, blk),
fsck->main_area_bitmap);
}
static inline int f2fs_test_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap);
}
int f2fs_set_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap);
}
static int add_into_hard_link_list(struct f2fs_sb_info *sbi,
u32 nid, u32 link_cnt)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL, *tmp = NULL, *prev = NULL;
node = calloc(sizeof(struct hard_link_node), 1);
ASSERT(node != NULL);
node->nid = nid;
node->links = link_cnt;
node->actual_links = 1;
node->next = NULL;
if (fsck->hard_link_list_head == NULL) {
fsck->hard_link_list_head = node;
goto out;
}
tmp = fsck->hard_link_list_head;
/* Find insertion position */
while (tmp && (nid < tmp->nid)) {
ASSERT(tmp->nid != nid);
prev = tmp;
tmp = tmp->next;
}
if (tmp == fsck->hard_link_list_head) {
node->next = tmp;
fsck->hard_link_list_head = node;
} else {
prev->next = node;
node->next = tmp;
}
out:
DBG(2, "ino[0x%x] has hard links [0x%x]\n", nid, link_cnt);
return 0;
}
static int find_and_dec_hard_link_list(struct f2fs_sb_info *sbi, u32 nid)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL, *prev = NULL;
if (fsck->hard_link_list_head == NULL)
return -EINVAL;
node = fsck->hard_link_list_head;
while (node && (nid < node->nid)) {
prev = node;
node = node->next;
}
if (node == NULL || (nid != node->nid))
return -EINVAL;
/* Decrease link count */
node->links = node->links - 1;
node->actual_links++;
/* if link count becomes one, remove the node */
if (node->links == 1) {
if (fsck->hard_link_list_head == node)
fsck->hard_link_list_head = node->next;
else
prev->next = node->next;
free(node);
}
return 0;
}
static int is_valid_ssa_node_blk(struct f2fs_sb_info *sbi, u32 nid,
u32 blk_addr)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_summary_block *sum_blk;
struct f2fs_summary *sum_entry;
struct seg_entry * se;
u32 segno, offset;
int need_fix = 0, ret = 0;
int type;
if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO))
return 0;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
sum_blk = get_sum_block(sbi, segno, &type);
if (type != SEG_TYPE_NODE && type != SEG_TYPE_CUR_NODE) {
/* can't fix current summary, then drop the block */
if (!c.fix_on || type < 0) {
ASSERT_MSG("Summary footer is not for node segment");
ret = -EINVAL;
goto out;
}
need_fix = 1;
se = get_seg_entry(sbi, segno);
if(IS_NODESEG(se->type)) {
FIX_MSG("Summary footer indicates a node segment: 0x%x", segno);
sum_blk->footer.entry_type = SUM_TYPE_NODE;
} else {
ret = -EINVAL;
goto out;
}
}
sum_entry = &(sum_blk->entries[offset]);
if (le32_to_cpu(sum_entry->nid) != nid) {
if (!c.fix_on || type < 0) {
DBG(0, "nid [0x%x]\n", nid);
DBG(0, "target blk_addr [0x%x]\n", blk_addr);
DBG(0, "summary blk_addr [0x%x]\n",
GET_SUM_BLKADDR(sbi,
GET_SEGNO(sbi, blk_addr)));
DBG(0, "seg no / offset [0x%x / 0x%x]\n",
GET_SEGNO(sbi, blk_addr),
OFFSET_IN_SEG(sbi, blk_addr));
DBG(0, "summary_entry.nid [0x%x]\n",
le32_to_cpu(sum_entry->nid));
DBG(0, "--> node block's nid [0x%x]\n", nid);
ASSERT_MSG("Invalid node seg summary\n");
ret = -EINVAL;
} else {
FIX_MSG("Set node summary 0x%x -> [0x%x] [0x%x]",
segno, nid, blk_addr);
sum_entry->nid = cpu_to_le32(nid);
need_fix = 1;
}
}
if (need_fix && f2fs_dev_is_writable()) {
u64 ssa_blk;
int ret2;
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
ret2 = dev_write_block(sum_blk, ssa_blk);
ASSERT(ret2 >= 0);
}
out:
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX)
free(sum_blk);
return ret;
}
static int is_valid_summary(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
u32 blk_addr)
{
u16 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
u32 nid = le32_to_cpu(sum->nid);
struct f2fs_node *node_blk = NULL;
__le32 target_blk_addr;
struct node_info ni;
int ret = 0;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
if (!IS_VALID_NID(sbi, nid))
goto out;
get_node_info(sbi, nid, &ni);
if (!IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
goto out;
/* read node_block */
ret = dev_read_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
if (le32_to_cpu(node_blk->footer.nid) != nid)
goto out;
/* check its block address */
if (node_blk->footer.nid == node_blk->footer.ino) {
int ofs = get_extra_isize(node_blk);
if (ofs + ofs_in_node >= DEF_ADDRS_PER_INODE)
goto out;
target_blk_addr = node_blk->i.i_addr[ofs + ofs_in_node];
} else {
if (ofs_in_node >= DEF_ADDRS_PER_BLOCK)
goto out;
target_blk_addr = node_blk->dn.addr[ofs_in_node];
}
if (blk_addr == le32_to_cpu(target_blk_addr))
ret = 1;
out:
free(node_blk);
return ret;
}
static int is_valid_ssa_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr,
u32 parent_nid, u16 idx_in_node, u8 version)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_summary_block *sum_blk;
struct f2fs_summary *sum_entry;
struct seg_entry * se;
u32 segno, offset;
int need_fix = 0, ret = 0;
int type;
if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO))
return 0;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
sum_blk = get_sum_block(sbi, segno, &type);
if (type != SEG_TYPE_DATA && type != SEG_TYPE_CUR_DATA) {
/* can't fix current summary, then drop the block */
if (!c.fix_on || type < 0) {
ASSERT_MSG("Summary footer is not for data segment");
ret = -EINVAL;
goto out;
}
need_fix = 1;
se = get_seg_entry(sbi, segno);
if (IS_DATASEG(se->type)) {
FIX_MSG("Summary footer indicates a data segment: 0x%x", segno);
sum_blk->footer.entry_type = SUM_TYPE_DATA;
} else {
ret = -EINVAL;
goto out;
}
}
sum_entry = &(sum_blk->entries[offset]);
if (le32_to_cpu(sum_entry->nid) != parent_nid ||
sum_entry->version != version ||
le16_to_cpu(sum_entry->ofs_in_node) != idx_in_node) {
if (!c.fix_on || type < 0) {
DBG(0, "summary_entry.nid [0x%x]\n",
le32_to_cpu(sum_entry->nid));
DBG(0, "summary_entry.version [0x%x]\n",
sum_entry->version);
DBG(0, "summary_entry.ofs_in_node [0x%x]\n",
le16_to_cpu(sum_entry->ofs_in_node));
DBG(0, "parent nid [0x%x]\n",
parent_nid);
DBG(0, "version from nat [0x%x]\n", version);
DBG(0, "idx in parent node [0x%x]\n",
idx_in_node);
DBG(0, "Target data block addr [0x%x]\n", blk_addr);
ASSERT_MSG("Invalid data seg summary\n");
ret = -EINVAL;
} else if (is_valid_summary(sbi, sum_entry, blk_addr)) {
/* delete wrong index */
ret = -EINVAL;
} else {
FIX_MSG("Set data summary 0x%x -> [0x%x] [0x%x] [0x%x]",
segno, parent_nid, version, idx_in_node);
sum_entry->nid = cpu_to_le32(parent_nid);
sum_entry->version = version;
sum_entry->ofs_in_node = cpu_to_le16(idx_in_node);
need_fix = 1;
}
}
if (need_fix && f2fs_dev_is_writable()) {
u64 ssa_blk;
int ret2;
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
ret2 = dev_write_block(sum_blk, ssa_blk);
ASSERT(ret2 >= 0);
}
out:
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX)
free(sum_blk);
return ret;
}
static int __check_inode_mode(u32 nid, enum FILE_TYPE ftype, u16 mode)
{
if (ftype >= F2FS_FT_MAX)
return 0;
/* f2fs_iget will return -EIO if mode is not valid file type */
if (!S_ISLNK(mode) && !S_ISREG(mode) && !S_ISDIR(mode) &&
!S_ISCHR(mode) && !S_ISBLK(mode) && !S_ISFIFO(mode) &&
!S_ISSOCK(mode)) {
ASSERT_MSG("inode [0x%x] unknown file type i_mode [0x%x]",
nid, mode);
return -1;
}
if (S_ISLNK(mode) && ftype != F2FS_FT_SYMLINK)
goto err;
if (S_ISREG(mode) && ftype != F2FS_FT_REG_FILE)
goto err;
if (S_ISDIR(mode) && ftype != F2FS_FT_DIR)
goto err;
if (S_ISCHR(mode) && ftype != F2FS_FT_CHRDEV)
goto err;
if (S_ISBLK(mode) && ftype != F2FS_FT_BLKDEV)
goto err;
if (S_ISFIFO(mode) && ftype != F2FS_FT_FIFO)
goto err;
if (S_ISSOCK(mode) && ftype != F2FS_FT_SOCK)
goto err;
return 0;
err:
ASSERT_MSG("inode [0x%x] mismatch i_mode [0x%x vs. 0x%x]",
nid, ftype, mode);
return -1;
}
static int sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid,
struct f2fs_node *node_blk,
enum FILE_TYPE ftype, enum NODE_TYPE ntype,
struct node_info *ni)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
int ret;
if (!IS_VALID_NID(sbi, nid)) {
ASSERT_MSG("nid is not valid. [0x%x]", nid);
return -EINVAL;
}
get_node_info(sbi, nid, ni);
if (ni->ino == 0) {
ASSERT_MSG("nid[0x%x] ino is 0", nid);
return -EINVAL;
}
if (ni->blk_addr == NEW_ADDR) {
ASSERT_MSG("nid is NEW_ADDR. [0x%x]", nid);
return -EINVAL;
}
if (!IS_VALID_BLK_ADDR(sbi, ni->blk_addr)) {
ASSERT_MSG("blkaddress is not valid. [0x%x]", ni->blk_addr);
return -EINVAL;
}
ret = dev_read_block(node_blk, ni->blk_addr);
ASSERT(ret >= 0);
if (ntype == TYPE_INODE &&
node_blk->footer.nid != node_blk->footer.ino) {
ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]",
nid, le32_to_cpu(node_blk->footer.nid),
le32_to_cpu(node_blk->footer.ino));
return -EINVAL;
}
if (ni->ino != le32_to_cpu(node_blk->footer.ino)) {
ASSERT_MSG("nid[0x%x] nat_entry->ino[0x%x] footer.ino[0x%x]",
nid, ni->ino, le32_to_cpu(node_blk->footer.ino));
return -EINVAL;
}
if (ntype != TYPE_INODE &&
node_blk->footer.nid == node_blk->footer.ino) {
ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]",
nid, le32_to_cpu(node_blk->footer.nid),
le32_to_cpu(node_blk->footer.ino));
return -EINVAL;
}
if (le32_to_cpu(node_blk->footer.nid) != nid) {
ASSERT_MSG("nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]",
nid, ni->blk_addr,
le32_to_cpu(node_blk->footer.nid));
return -EINVAL;
}
if (ntype == TYPE_XATTR) {
u32 flag = le32_to_cpu(node_blk->footer.flag);
if ((flag >> OFFSET_BIT_SHIFT) != XATTR_NODE_OFFSET) {
ASSERT_MSG("xnid[0x%x] has wrong ofs:[0x%x]",
nid, flag);
return -EINVAL;
}
}
if ((ntype == TYPE_INODE && ftype == F2FS_FT_DIR) ||
(ntype == TYPE_XATTR && ftype == F2FS_FT_XATTR)) {
/* not included '.' & '..' */
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) != 0) {
ASSERT_MSG("Duplicated node blk. nid[0x%x][0x%x]\n",
nid, ni->blk_addr);
return -EINVAL;
}
}
/* this if only from fix_hard_links */
if (ftype == F2FS_FT_MAX)
return 0;
if (ntype == TYPE_INODE &&
__check_inode_mode(nid, ftype, le16_to_cpu(node_blk->i.i_mode)))
return -EINVAL;
/* workaround to fix later */
if (ftype != F2FS_FT_ORPHAN ||
f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0) {
f2fs_clear_bit(nid, fsck->nat_area_bitmap);
/* avoid reusing nid when reconnecting files */
f2fs_set_bit(nid, NM_I(sbi)->nid_bitmap);
} else
ASSERT_MSG("orphan or xattr nid is duplicated [0x%x]\n",
nid);
if (is_valid_ssa_node_blk(sbi, nid, ni->blk_addr)) {
ASSERT_MSG("summary node block is not valid. [0x%x]", nid);
return -EINVAL;
}
if (f2fs_test_sit_bitmap(sbi, ni->blk_addr) == 0)
ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]",
ni->blk_addr);
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) {
fsck->chk.valid_blk_cnt++;
fsck->chk.valid_node_cnt++;
/* Progress report */
if (!c.show_file_map && sbi->total_valid_node_count > 1000) {
unsigned int p10 = sbi->total_valid_node_count / 10;
if (sbi->fsck->chk.checked_node_cnt++ % p10)
return 0;
printf("[FSCK] Check node %"PRIu64" / %u (%.2f%%)\n",
sbi->fsck->chk.checked_node_cnt,
sbi->total_valid_node_count,
10 * (float)sbi->fsck->chk.checked_node_cnt /
p10);
}
}
return 0;
}
int fsck_sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid,
struct f2fs_node *node_blk,
enum FILE_TYPE ftype, enum NODE_TYPE ntype,
struct node_info *ni)
{
return sanity_check_nid(sbi, nid, node_blk, ftype, ntype, ni);
}
static int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino,
u32 x_nid, u32 *blk_cnt)
{
struct f2fs_node *node_blk = NULL;
struct node_info ni;
int ret = 0;
if (x_nid == 0x0)
return 0;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
/* Sanity check */
if (sanity_check_nid(sbi, x_nid, node_blk,
F2FS_FT_XATTR, TYPE_XATTR, &ni)) {
ret = -EINVAL;
goto out;
}
*blk_cnt = *blk_cnt + 1;
f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE);
DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid);
out:
free(node_blk);
return ret;
}
int fsck_chk_node_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
u32 nid, enum FILE_TYPE ftype, enum NODE_TYPE ntype,
u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc,
struct child_info *child)
{
struct node_info ni;
struct f2fs_node *node_blk = NULL;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
if (sanity_check_nid(sbi, nid, node_blk, ftype, ntype, &ni))
goto err;
if (ntype == TYPE_INODE) {
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
fsck_chk_inode_blk(sbi, nid, ftype, node_blk, blk_cnt, cbc,
&ni, child);
quota_add_inode_usage(fsck->qctx, nid, &node_blk->i);
} else {
switch (ntype) {
case TYPE_DIRECT_NODE:
f2fs_set_main_bitmap(sbi, ni.blk_addr,
CURSEG_WARM_NODE);
fsck_chk_dnode_blk(sbi, inode, nid, ftype, node_blk,
blk_cnt, cbc, child, &ni);
break;
case TYPE_INDIRECT_NODE:
f2fs_set_main_bitmap(sbi, ni.blk_addr,
CURSEG_COLD_NODE);
fsck_chk_idnode_blk(sbi, inode, ftype, node_blk,
blk_cnt, cbc, child);
break;
case TYPE_DOUBLE_INDIRECT_NODE:
f2fs_set_main_bitmap(sbi, ni.blk_addr,
CURSEG_COLD_NODE);
fsck_chk_didnode_blk(sbi, inode, ftype, node_blk,
blk_cnt, cbc, child);
break;
default:
ASSERT(0);
}
}
free(node_blk);
return 0;
err:
free(node_blk);
return -EINVAL;
}
static inline void get_extent_info(struct extent_info *ext,
struct f2fs_extent *i_ext)
{
ext->fofs = le32_to_cpu(i_ext->fofs);
ext->blk = le32_to_cpu(i_ext->blk_addr);
ext->len = le32_to_cpu(i_ext->len);
}
static void check_extent_info(struct child_info *child,
block_t blkaddr, int last)
{
struct extent_info *ei = &child->ei;
u32 pgofs = child->pgofs;
int is_hole = 0;
if (!ei->len)
return;
if (child->state & FSCK_UNMATCHED_EXTENT)
return;
if ((child->state & FSCK_INLINE_INODE) && ei->len)
goto unmatched;
if (last) {
/* hole exist in the back of extent */
if (child->last_blk != ei->blk + ei->len - 1)
child->state |= FSCK_UNMATCHED_EXTENT;
return;
}
if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR)
is_hole = 1;
if (pgofs >= ei->fofs && pgofs < ei->fofs + ei->len) {
/* unmatched blkaddr */
if (is_hole || (blkaddr != pgofs - ei->fofs + ei->blk))
goto unmatched;
if (!child->last_blk) {
/* hole exists in the front of extent */
if (pgofs != ei->fofs)
goto unmatched;
} else if (child->last_blk + 1 != blkaddr) {
/* hole exists in the middle of extent */
goto unmatched;
}
child->last_blk = blkaddr;
return;
}
if (is_hole)
return;
if (blkaddr < ei->blk || blkaddr >= ei->blk + ei->len)
return;
/* unmatched file offset */
unmatched:
child->state |= FSCK_UNMATCHED_EXTENT;
}
void fsck_reada_node_block(struct f2fs_sb_info *sbi, u32 nid)
{
struct node_info ni;
if (nid != 0 && IS_VALID_NID(sbi, nid)) {
get_node_info(sbi, nid, &ni);
if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
dev_reada_block(ni.blk_addr);
}
}
void fsck_reada_all_direct_node_blocks(struct f2fs_sb_info *sbi,
struct f2fs_node *node_blk)
{
int i;
for (i = 0; i < NIDS_PER_BLOCK; i++) {
u32 nid = le32_to_cpu(node_blk->in.nid[i]);
fsck_reada_node_block(sbi, nid);
}
}
/* start with valid nid and blkaddr */
void fsck_chk_inode_blk(struct f2fs_sb_info *sbi, u32 nid,
enum FILE_TYPE ftype, struct f2fs_node *node_blk,
u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc,
struct node_info *ni, struct child_info *child_d)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct child_info child;
enum NODE_TYPE ntype;
u32 i_links = le32_to_cpu(node_blk->i.i_links);
u64 i_size = le64_to_cpu(node_blk->i.i_size);
u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks);
bool compr_supported = c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION);
u32 i_flags = le32_to_cpu(node_blk->i.i_flags);
bool compressed = i_flags & F2FS_COMPR_FL;
bool compr_rel = node_blk->i.i_inline & F2FS_COMPRESS_RELEASED;
u64 i_compr_blocks = le64_to_cpu(node_blk->i.i_compr_blocks);
nid_t i_xattr_nid = le32_to_cpu(node_blk->i.i_xattr_nid);
int ofs;
char *en;
u32 namelen;
unsigned int addrs, idx = 0;
unsigned short i_gc_failures;
int need_fix = 0;
int ret;
u32 cluster_size = 1 << node_blk->i.i_log_cluster_size;
if (!compressed)
goto check_next;
if (!compr_supported || (node_blk->i.i_inline & F2FS_INLINE_DATA)) {
/*
* The 'compression' flag in i_flags affects the traverse of
* the node tree. Thus, it must be fixed unconditionally
* in the memory (node_blk).
*/
node_blk->i.i_flags &= ~cpu_to_le32(F2FS_COMPR_FL);
compressed = false;
if (c.fix_on) {
need_fix = 1;
FIX_MSG("[0x%x] i_flags=0x%x -> 0x%x",
nid, i_flags, node_blk->i.i_flags);
}
i_flags &= ~F2FS_COMPR_FL;
}
check_next:
memset(&child, 0, sizeof(child));
child.links = 2;
child.p_ino = nid;
child.pp_ino = le32_to_cpu(node_blk->i.i_pino);
child.dir_level = node_blk->i.i_dir_level;
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0)
fsck->chk.valid_inode_cnt++;
if (ftype == F2FS_FT_DIR) {
f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_HOT_NODE);
namelen = le32_to_cpu(node_blk->i.i_namelen);
if (namelen > F2FS_NAME_LEN)
namelen = F2FS_NAME_LEN;
memcpy(child.p_name, node_blk->i.i_name, namelen);
} else {
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) {
f2fs_set_main_bitmap(sbi, ni->blk_addr,
CURSEG_WARM_NODE);
if (i_links > 1 && ftype != F2FS_FT_ORPHAN &&
!is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) {
/* First time. Create new hard link node */
add_into_hard_link_list(sbi, nid, i_links);
fsck->chk.multi_hard_link_files++;
}
} else {
DBG(3, "[0x%x] has hard links [0x%x]\n", nid, i_links);
if (find_and_dec_hard_link_list(sbi, nid)) {
ASSERT_MSG("[0x%x] needs more i_links=0x%x",
nid, i_links);
if (c.fix_on) {
node_blk->i.i_links =
cpu_to_le32(i_links + 1);
need_fix = 1;
FIX_MSG("File: 0x%x "
"i_links= 0x%x -> 0x%x",
nid, i_links, i_links + 1);
}
goto skip_blkcnt_fix;
}
/* No need to go deep into the node */
return;
}
}
/* readahead xattr node block */
fsck_reada_node_block(sbi, i_xattr_nid);
if (fsck_chk_xattr_blk(sbi, nid, i_xattr_nid, blk_cnt)) {
if (c.fix_on) {
node_blk->i.i_xattr_nid = 0;
need_fix = 1;
FIX_MSG("Remove xattr block: 0x%x, x_nid = 0x%x",
nid, i_xattr_nid);
}
}
if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV ||
ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK)
goto check;
/* init extent info */
get_extent_info(&child.ei, &node_blk->i.i_ext);
child.last_blk = 0;
if (f2fs_has_extra_isize(&node_blk->i)) {
if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
unsigned int isize =
le16_to_cpu(node_blk->i.i_extra_isize);
if (isize > 4 * DEF_ADDRS_PER_INODE) {
ASSERT_MSG("[0x%x] wrong i_extra_isize=0x%x",
nid, isize);
if (c.fix_on) {
FIX_MSG("ino[0x%x] recover i_extra_isize "
"from %u to %u",
nid, isize,
calc_extra_isize());
node_blk->i.i_extra_isize =
cpu_to_le16(calc_extra_isize());
need_fix = 1;
}
}
} else {
ASSERT_MSG("[0x%x] wrong extra_attr flag", nid);
if (c.fix_on) {
FIX_MSG("ino[0x%x] remove F2FS_EXTRA_ATTR "
"flag in i_inline:%u",
nid, node_blk->i.i_inline);
/* we don't support tuning F2FS_FEATURE_EXTRA_ATTR now */
node_blk->i.i_inline &= ~F2FS_EXTRA_ATTR;
need_fix = 1;
}
}
if ((c.feature &
cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) &&
(node_blk->i.i_inline & F2FS_INLINE_XATTR)) {
unsigned int inline_size =
le16_to_cpu(node_blk->i.i_inline_xattr_size);
if (!inline_size ||
inline_size > MAX_INLINE_XATTR_SIZE(&node_blk->i)) {
ASSERT_MSG("[0x%x] wrong inline_xattr_size:%u",
nid, inline_size);
if (c.fix_on) {
FIX_MSG("ino[0x%x] recover inline xattr size "
"from %u to %u",
nid, inline_size,
DEFAULT_INLINE_XATTR_ADDRS);
node_blk->i.i_inline_xattr_size =
cpu_to_le16(DEFAULT_INLINE_XATTR_ADDRS);
need_fix = 1;
}
}
}
}
ofs = get_extra_isize(node_blk);
if ((node_blk->i.i_flags & cpu_to_le32(F2FS_CASEFOLD_FL)) &&
(ftype != F2FS_FT_DIR ||
!(c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)))) {
ASSERT_MSG("[0x%x] unexpected casefold flag", nid);
if (c.fix_on) {
FIX_MSG("ino[0x%x] clear casefold flag", nid);
node_blk->i.i_flags &= ~cpu_to_le32(F2FS_CASEFOLD_FL);
need_fix = 1;
}
}
if ((node_blk->i.i_inline & F2FS_INLINE_DATA)) {
unsigned int inline_size = MAX_INLINE_DATA(node_blk);
if (cur_qtype != -1)
qf_szchk_type[cur_qtype] = QF_SZCHK_INLINE;
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs]);
if (blkaddr != 0) {
ASSERT_MSG("[0x%x] wrong inline reserve blkaddr:%u",
nid, blkaddr);
if (c.fix_on) {
FIX_MSG("inline_data has wrong 0'th block = %x",
blkaddr);
node_blk->i.i_addr[ofs] = 0;
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
need_fix = 1;
}
}
if (i_size > inline_size) {
ASSERT_MSG("[0x%x] wrong inline size:%lu",
nid, (unsigned long)i_size);
if (c.fix_on) {
node_blk->i.i_size = cpu_to_le64(inline_size);
FIX_MSG("inline_data has wrong i_size %lu",
(unsigned long)i_size);
need_fix = 1;
}
}
if (!(node_blk->i.i_inline & F2FS_DATA_EXIST)) {
char buf[MAX_INLINE_DATA(node_blk)];
memset(buf, 0, MAX_INLINE_DATA(node_blk));
if (memcmp(buf, inline_data_addr(node_blk),
MAX_INLINE_DATA(node_blk))) {
ASSERT_MSG("[0x%x] junk inline data", nid);
if (c.fix_on) {
FIX_MSG("inline_data has DATA_EXIST");
node_blk->i.i_inline |= F2FS_DATA_EXIST;
need_fix = 1;
}
}
}
DBG(3, "ino[0x%x] has inline data!\n", nid);
child.state |= FSCK_INLINE_INODE;
goto check;
}
if ((node_blk->i.i_inline & F2FS_INLINE_DENTRY)) {
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs]);
DBG(3, "ino[0x%x] has inline dentry!\n", nid);
if (blkaddr != 0) {
ASSERT_MSG("[0x%x] wrong inline reserve blkaddr:%u",
nid, blkaddr);
if (c.fix_on) {
FIX_MSG("inline_dentry has wrong 0'th block = %x",
blkaddr);
node_blk->i.i_addr[ofs] = 0;
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
need_fix = 1;
}
}
ret = fsck_chk_inline_dentries(sbi, node_blk, &child);
if (ret < 0) {
if (c.fix_on)
need_fix = 1;
}
child.state |= FSCK_INLINE_INODE;
goto check;
}
/* check data blocks in inode */
addrs = ADDRS_PER_INODE(&node_blk->i);
if (cur_qtype != -1) {
u64 addrs_per_blk = (u64)ADDRS_PER_BLOCK(&node_blk->i);
qf_szchk_type[cur_qtype] = QF_SZCHK_REGFILE;
qf_maxsize[cur_qtype] = (u64)(addrs + 2 * addrs_per_blk +
2 * addrs_per_blk * NIDS_PER_BLOCK +
addrs_per_blk * NIDS_PER_BLOCK *
NIDS_PER_BLOCK) * F2FS_BLKSIZE;
}
for (idx = 0; idx < addrs; idx++, child.pgofs++) {
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs + idx]);
/* check extent info */
check_extent_info(&child, blkaddr, 0);
if (blkaddr == NULL_ADDR)
continue;
if (blkaddr == COMPRESS_ADDR) {
if (!compressed || (child.pgofs &
(cluster_size - 1)) != 0) {
if (c.fix_on) {
node_blk->i.i_addr[ofs + idx] =
NULL_ADDR;
need_fix = 1;
FIX_MSG("[0x%x] i_addr[%d] = 0", nid,
ofs + idx);
}
continue;
}
if (!compr_rel) {
fsck->chk.valid_blk_cnt++;
*blk_cnt = *blk_cnt + 1;
cbc->cheader_pgofs = child.pgofs;
cbc->cnt++;
}
continue;
}
if (!compr_rel && blkaddr == NEW_ADDR &&
child.pgofs - cbc->cheader_pgofs < cluster_size)
cbc->cnt++;
ret = fsck_chk_data_blk(sbi,
IS_CASEFOLDED(&node_blk->i),
blkaddr,
&child, (i_blocks == *blk_cnt),
ftype, nid, idx, ni->version,
file_is_encrypt(&node_blk->i));
if (!ret) {
*blk_cnt = *blk_cnt + 1;
if (cur_qtype != -1 && blkaddr != NEW_ADDR)
qf_last_blkofs[cur_qtype] = child.pgofs;
} else if (c.fix_on) {
node_blk->i.i_addr[ofs + idx] = 0;
need_fix = 1;
FIX_MSG("[0x%x] i_addr[%d] = 0", nid, ofs + idx);
}
}
/* readahead node blocks */
for (idx = 0; idx < 5; idx++) {
u32 nid = le32_to_cpu(node_blk->i.i_nid[idx]);
fsck_reada_node_block(sbi, nid);
}
/* check node blocks in inode */
for (idx = 0; idx < 5; idx++) {
nid_t i_nid = le32_to_cpu(node_blk->i.i_nid[idx]);
if (idx == 0 || idx == 1)
ntype = TYPE_DIRECT_NODE;
else if (idx == 2 || idx == 3)
ntype = TYPE_INDIRECT_NODE;
else if (idx == 4)
ntype = TYPE_DOUBLE_INDIRECT_NODE;
else
ASSERT(0);
if (i_nid == 0x0)
goto skip;
ret = fsck_chk_node_blk(sbi, &node_blk->i, i_nid,
ftype, ntype, blk_cnt, cbc, &child);
if (!ret) {
*blk_cnt = *blk_cnt + 1;
} else if (ret == -EINVAL) {
if (c.fix_on) {
node_blk->i.i_nid[idx] = 0;
need_fix = 1;
FIX_MSG("[0x%x] i_nid[%d] = 0", nid, idx);
}
skip:
if (ntype == TYPE_DIRECT_NODE)
child.pgofs += ADDRS_PER_BLOCK(&node_blk->i);
else if (ntype == TYPE_INDIRECT_NODE)
child.pgofs += ADDRS_PER_BLOCK(&node_blk->i) *
NIDS_PER_BLOCK;
else
child.pgofs += ADDRS_PER_BLOCK(&node_blk->i) *
NIDS_PER_BLOCK * NIDS_PER_BLOCK;
}
}
check:
/* check uncovered range in the back of extent */
check_extent_info(&child, 0, 1);
if (child.state & FSCK_UNMATCHED_EXTENT) {
ASSERT_MSG("ino: 0x%x has wrong ext: [pgofs:%u, blk:%u, len:%u]",
nid, child.ei.fofs, child.ei.blk, child.ei.len);
if (c.fix_on)
need_fix = 1;
}
if (i_blocks != *blk_cnt) {
ASSERT_MSG("ino: 0x%x has i_blocks: %08"PRIx64", "
"but has %u blocks",
nid, i_blocks, *blk_cnt);
if (c.fix_on) {
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
need_fix = 1;
FIX_MSG("[0x%x] i_blocks=0x%08"PRIx64" -> 0x%x",
nid, i_blocks, *blk_cnt);
}
}
if (compressed && i_compr_blocks != cbc->cnt) {
if (c.fix_on) {
node_blk->i.i_compr_blocks = cpu_to_le64(cbc->cnt);
need_fix = 1;
FIX_MSG("[0x%x] i_compr_blocks=0x%08"PRIx64" -> 0x%x",
nid, i_compr_blocks, cbc->cnt);
}
}
skip_blkcnt_fix:
en = malloc(F2FS_PRINT_NAMELEN);
ASSERT(en);
namelen = le32_to_cpu(node_blk->i.i_namelen);
if (namelen > F2FS_NAME_LEN) {
if (child_d && child_d->i_namelen <= F2FS_NAME_LEN) {
ASSERT_MSG("ino: 0x%x has i_namelen: 0x%x, "
"but has %d characters for name",
nid, namelen, child_d->i_namelen);
if (c.fix_on) {
FIX_MSG("[0x%x] i_namelen=0x%x -> 0x%x", nid, namelen,
child_d->i_namelen);
node_blk->i.i_namelen = cpu_to_le32(child_d->i_namelen);
need_fix = 1;
}
namelen = child_d->i_namelen;
} else
namelen = F2FS_NAME_LEN;
}
pretty_print_filename(node_blk->i.i_name, namelen, en,
file_enc_name(&node_blk->i));
if (ftype == F2FS_FT_ORPHAN)
DBG(1, "Orphan Inode: 0x%x [%s] i_blocks: %u\n\n",
le32_to_cpu(node_blk->footer.ino),
en, (u32)i_blocks);
if (is_qf_ino(F2FS_RAW_SUPER(sbi), nid))
DBG(1, "Quota Inode: 0x%x [%s] i_blocks: %u\n\n",
le32_to_cpu(node_blk->footer.ino),
en, (u32)i_blocks);
if (ftype == F2FS_FT_DIR) {
DBG(1, "Directory Inode: 0x%x [%s] depth: %d has %d files\n\n",
le32_to_cpu(node_blk->footer.ino), en,
le32_to_cpu(node_blk->i.i_current_depth),
child.files);
if (i_links != child.links) {
ASSERT_MSG("ino: 0x%x i_links: %u, real links: %u",
nid, i_links, child.links);
if (c.fix_on) {
node_blk->i.i_links = cpu_to_le32(child.links);
need_fix = 1;
FIX_MSG("Dir: 0x%x i_links= 0x%x -> 0x%x",
nid, i_links, child.links);
}
}
if (child.dots < 2 &&
!(node_blk->i.i_inline & F2FS_INLINE_DOTS)) {
ASSERT_MSG("ino: 0x%x dots: %u",
nid, child.dots);
if (c.fix_on) {
node_blk->i.i_inline |= F2FS_INLINE_DOTS;
need_fix = 1;
FIX_MSG("Dir: 0x%x set inline_dots", nid);
}
}
}
i_gc_failures = le16_to_cpu(node_blk->i.i_gc_failures);
/*
* old kernel initialized i_gc_failures as 0x01, in preen mode 2,
* let's skip repairing.
*/
if (ftype == F2FS_FT_REG_FILE && i_gc_failures &&
(c.preen_mode != PREEN_MODE_2 || i_gc_failures != 0x01)) {
DBG(1, "Regular Inode: 0x%x [%s] depth: %d\n\n",
le32_to_cpu(node_blk->footer.ino), en,
i_gc_failures);
if (c.fix_on) {
node_blk->i.i_gc_failures = cpu_to_le16(0);
need_fix = 1;
FIX_MSG("Regular: 0x%x reset i_gc_failures from 0x%x to 0x00",
nid, i_gc_failures);
}
}
free(en);
if (ftype == F2FS_FT_SYMLINK && i_size == 0 &&
i_blocks == (i_xattr_nid ? 3 : 2)) {
node_blk->i.i_size = cpu_to_le64(F2FS_BLKSIZE);
need_fix = 1;
FIX_MSG("Symlink: recover 0x%x with i_size=%lu",
nid, (unsigned long)F2FS_BLKSIZE);
}
if (ftype == F2FS_FT_ORPHAN && i_links) {
ASSERT_MSG("ino: 0x%x is orphan inode, but has i_links: %u",
nid, i_links);
if (c.fix_on) {
node_blk->i.i_links = 0;
need_fix = 1;
FIX_MSG("ino: 0x%x orphan_inode, i_links= 0x%x -> 0",
nid, i_links);
}
}
/* drop extent information to avoid potential wrong access */
if (need_fix && f2fs_dev_is_writable())
node_blk->i.i_ext.len = 0;
if ((c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) &&
f2fs_has_extra_isize(&node_blk->i)) {
__u32 provided, calculated;
provided = le32_to_cpu(node_blk->i.i_inode_checksum);
calculated = f2fs_inode_chksum(node_blk);
if (provided != calculated) {
ASSERT_MSG("ino: 0x%x chksum:0x%x, but calculated one is: 0x%x",
nid, provided, calculated);
if (c.fix_on) {
node_blk->i.i_inode_checksum =
cpu_to_le32(calculated);
need_fix = 1;
FIX_MSG("ino: 0x%x recover, i_inode_checksum= 0x%x -> 0x%x",
nid, provided, calculated);
}
}
}
if (need_fix && f2fs_dev_is_writable()) {
ret = dev_write_block(node_blk, ni->blk_addr);
ASSERT(ret >= 0);
}
}
int fsck_chk_dnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk,
u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc,
struct child_info *child, struct node_info *ni)
{
int idx, ret;
int need_fix = 0;
child->p_ino = nid;
child->pp_ino = le32_to_cpu(inode->i_pino);
u32 i_flags = le32_to_cpu(inode->i_flags);
bool compressed = i_flags & F2FS_COMPR_FL;
bool compr_rel = inode->i_inline & F2FS_COMPRESS_RELEASED;
u32 cluster_size = 1 << inode->i_log_cluster_size;
for (idx = 0; idx < ADDRS_PER_BLOCK(inode); idx++, child->pgofs++) {
block_t blkaddr = le32_to_cpu(node_blk->dn.addr[idx]);
check_extent_info(child, blkaddr, 0);
if (blkaddr == NULL_ADDR)
continue;
if (blkaddr == COMPRESS_ADDR) {
if (!compressed || (child->pgofs &
(cluster_size - 1)) != 0) {
if (c.fix_on) {
node_blk->dn.addr[idx] = NULL_ADDR;
need_fix = 1;
FIX_MSG("[0x%x] dn.addr[%d] = 0", nid,
idx);
}
continue;
}
if (!compr_rel) {
F2FS_FSCK(sbi)->chk.valid_blk_cnt++;
*blk_cnt = *blk_cnt + 1;
cbc->cheader_pgofs = child->pgofs;
cbc->cnt++;
}
continue;
}
if (!compr_rel && blkaddr == NEW_ADDR && child->pgofs -
cbc->cheader_pgofs < cluster_size)
cbc->cnt++;
ret = fsck_chk_data_blk(sbi, IS_CASEFOLDED(inode),
blkaddr, child,
le64_to_cpu(inode->i_blocks) == *blk_cnt, ftype,
nid, idx, ni->version,
file_is_encrypt(inode));
if (!ret) {
*blk_cnt = *blk_cnt + 1;
if (cur_qtype != -1 && blkaddr != NEW_ADDR)
qf_last_blkofs[cur_qtype] = child->pgofs;
} else if (c.fix_on) {
node_blk->dn.addr[idx] = NULL_ADDR;
need_fix = 1;
FIX_MSG("[0x%x] dn.addr[%d] = 0", nid, idx);
}
}
if (need_fix && f2fs_dev_is_writable()) {
ret = dev_write_block(node_blk, ni->blk_addr);
ASSERT(ret >= 0);
}
return 0;
}
int fsck_chk_idnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt,
struct f2fs_compr_blk_cnt *cbc, struct child_info *child)
{
int need_fix = 0, ret;
int i = 0;
fsck_reada_all_direct_node_blocks(sbi, node_blk);
for (i = 0; i < NIDS_PER_BLOCK; i++) {
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
goto skip;
ret = fsck_chk_node_blk(sbi, inode,
le32_to_cpu(node_blk->in.nid[i]),
ftype, TYPE_DIRECT_NODE, blk_cnt,
cbc, child);
if (!ret)
*blk_cnt = *blk_cnt + 1;
else if (ret == -EINVAL) {
if (!c.fix_on)
printf("should delete in.nid[i] = 0;\n");
else {
node_blk->in.nid[i] = 0;
need_fix = 1;
FIX_MSG("Set indirect node 0x%x -> 0", i);
}
skip:
child->pgofs += ADDRS_PER_BLOCK(&node_blk->i);
}
}
if (need_fix && f2fs_dev_is_writable()) {
struct node_info ni;
nid_t nid = le32_to_cpu(node_blk->footer.nid);
get_node_info(sbi, nid, &ni);
ret = dev_write_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
}
return 0;
}
int fsck_chk_didnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt,
struct f2fs_compr_blk_cnt *cbc, struct child_info *child)
{
int i = 0;
int need_fix = 0, ret = 0;
fsck_reada_all_direct_node_blocks(sbi, node_blk);
for (i = 0; i < NIDS_PER_BLOCK; i++) {
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
goto skip;
ret = fsck_chk_node_blk(sbi, inode,
le32_to_cpu(node_blk->in.nid[i]),
ftype, TYPE_INDIRECT_NODE, blk_cnt, cbc, child);
if (!ret)
*blk_cnt = *blk_cnt + 1;
else if (ret == -EINVAL) {
if (!c.fix_on)
printf("should delete in.nid[i] = 0;\n");
else {
node_blk->in.nid[i] = 0;
need_fix = 1;
FIX_MSG("Set double indirect node 0x%x -> 0", i);
}
skip:
child->pgofs += ADDRS_PER_BLOCK(&node_blk->i) *
NIDS_PER_BLOCK;
}
}
if (need_fix && f2fs_dev_is_writable()) {
struct node_info ni;
nid_t nid = le32_to_cpu(node_blk->footer.nid);
get_node_info(sbi, nid, &ni);
ret = dev_write_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
}
return 0;
}
static const char *lookup_table =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
/**
* base64_encode() -
*
* Encodes the input string using characters from the set [A-Za-z0-9+,].
* The encoded string is roughly 4/3 times the size of the input string.
*/
static int base64_encode(const u8 *src, int len, char *dst)
{
int i, bits = 0, ac = 0;
char *cp = dst;
for (i = 0; i < len; i++) {
ac += src[i] << bits;
bits += 8;
do {
*cp++ = lookup_table[ac & 0x3f];
ac >>= 6;
bits -= 6;
} while (bits >= 6);
}
if (bits)
*cp++ = lookup_table[ac & 0x3f];
return cp - dst;
}
void pretty_print_filename(const u8 *raw_name, u32 len,
char out[F2FS_PRINT_NAMELEN], int enc_name)
{
len = min(len, (u32)F2FS_NAME_LEN);
if (enc_name)
len = base64_encode(raw_name, len, out);
else
memcpy(out, raw_name, len);
out[len] = 0;
}
static void print_dentry(struct f2fs_sb_info *sbi, __u8 *name,
u8 *bitmap, struct f2fs_dir_entry *dentry,
int max, int idx, int last_blk, int enc_name)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
u32 depth = fsck->dentry_depth;
int last_de = 0;
int next_idx = 0;
u32 name_len;
unsigned int i;
int bit_offset;
char new[F2FS_PRINT_NAMELEN];
if (!c.show_dentry && !c.show_file_map)
return;
name_len = le16_to_cpu(dentry[idx].name_len);
next_idx = idx + (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
bit_offset = find_next_bit_le(bitmap, max, next_idx);
if (bit_offset >= max && last_blk)
last_de = 1;
if (tree_mark_size <= depth) {
tree_mark_size *= 2;
ASSERT(tree_mark_size != 0);
tree_mark = realloc(tree_mark, tree_mark_size);
ASSERT(tree_mark != NULL);
}
if (last_de)
tree_mark[depth] = '`';
else
tree_mark[depth] = '|';
if (tree_mark[depth - 1] == '`')
tree_mark[depth - 1] = ' ';
pretty_print_filename(name, name_len, new, enc_name);
if (c.show_file_map) {
struct f2fs_dentry *d = fsck->dentry;
if (dentry[idx].file_type != F2FS_FT_REG_FILE)
return;
while (d) {
if (d->depth > 1)
printf("/%s", d->name);
d = d->next;
}
printf("/%s", new);
if (dump_node(sbi, le32_to_cpu(dentry[idx].ino), 0))
printf("\33[2K\r");
} else {
for (i = 1; i < depth; i++)
printf("%c ", tree_mark[i]);
printf("%c-- %s <ino = 0x%x>, <encrypted (%d)>\n",
last_de ? '`' : '|',
new, le32_to_cpu(dentry[idx].ino),
enc_name);
}
}
static int f2fs_check_hash_code(int encoding, int casefolded,
struct f2fs_dir_entry *dentry,
const unsigned char *name, u32 len, int enc_name)
{
/* Casefolded Encrypted names require a key to compute siphash */
if (enc_name && casefolded)
return 0;
f2fs_hash_t hash_code = f2fs_dentry_hash(encoding, casefolded, name, len);
/* fix hash_code made by old buggy code */
if (dentry->hash_code != hash_code) {
char new[F2FS_PRINT_NAMELEN];
pretty_print_filename(name, len, new, enc_name);
FIX_MSG("Mismatch hash_code for \"%s\" [%x:%x]",
new, le32_to_cpu(dentry->hash_code),
hash_code);
dentry->hash_code = cpu_to_le32(hash_code);
return 1;
}
return 0;
}
static int __get_current_level(int dir_level, u32 pgofs)
{
unsigned int bidx = 0;
int i;
for (i = 0; i < MAX_DIR_HASH_DEPTH; i++) {
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
if (bidx > pgofs)
break;
}
return i;
}
static int f2fs_check_dirent_position(const struct f2fs_dir_entry *dentry,
const char *printable_name,
u32 pgofs, u8 dir_level, u32 pino)
{
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
int level;
level = __get_current_level(dir_level, pgofs);
nbucket = dir_buckets(level, dir_level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, dir_level,
le32_to_cpu(dentry->hash_code) % nbucket);
end_block = bidx + nblock;
if (pgofs >= bidx && pgofs < end_block)
return 0;
ASSERT_MSG("Wrong position of dirent pino:%u, name:%s, level:%d, "
"dir_level:%d, pgofs:%u, correct range:[%u, %u]\n",
pino, printable_name, level, dir_level, pgofs, bidx,
end_block - 1);
return 1;
}
static int __chk_dots_dentries(struct f2fs_sb_info *sbi,
int casefolded,
struct f2fs_dir_entry *dentry,
struct child_info *child,
u8 *name, int len,
__u8 (*filename)[F2FS_SLOT_LEN],
int enc_name)
{
int fixed = 0;
if ((name[0] == '.' && len == 1)) {
if (le32_to_cpu(dentry->ino) != child->p_ino) {
ASSERT_MSG("Bad inode number[0x%x] for '.', parent_ino is [0x%x]\n",
le32_to_cpu(dentry->ino), child->p_ino);
dentry->ino = cpu_to_le32(child->p_ino);
fixed = 1;
}
}
if (name[0] == '.' && name[1] == '.' && len == 2) {
if (child->p_ino == F2FS_ROOT_INO(sbi)) {
if (le32_to_cpu(dentry->ino) != F2FS_ROOT_INO(sbi)) {
ASSERT_MSG("Bad inode number[0x%x] for '..'\n",
le32_to_cpu(dentry->ino));
dentry->ino = cpu_to_le32(F2FS_ROOT_INO(sbi));
fixed = 1;
}
} else if (le32_to_cpu(dentry->ino) != child->pp_ino) {
ASSERT_MSG("Bad inode number[0x%x] for '..', parent parent ino is [0x%x]\n",
le32_to_cpu(dentry->ino), child->pp_ino);
dentry->ino = cpu_to_le32(child->pp_ino);
fixed = 1;
}
}
if (f2fs_check_hash_code(get_encoding(sbi), casefolded, dentry, name, len, enc_name))
fixed = 1;
if (name[len] != '\0') {
ASSERT_MSG("'.' is not NULL terminated\n");
name[len] = '\0';
memcpy(*filename, name, len);
fixed = 1;
}
return fixed;
}
static void nullify_dentry(struct f2fs_dir_entry *dentry, int offs,
__u8 (*filename)[F2FS_SLOT_LEN], u8 **bitmap)
{
memset(dentry, 0, sizeof(struct f2fs_dir_entry));
test_and_clear_bit_le(offs, *bitmap);
memset(*filename, 0, F2FS_SLOT_LEN);
}
static int __chk_dentries(struct f2fs_sb_info *sbi, int casefolded,
struct child_info *child,
u8 *bitmap, struct f2fs_dir_entry *dentry,
__u8 (*filenames)[F2FS_SLOT_LEN],
int max, int last_blk, int enc_name)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
enum FILE_TYPE ftype;
int dentries = 0;
u32 blk_cnt;
struct f2fs_compr_blk_cnt cbc;
u8 *name;
char en[F2FS_PRINT_NAMELEN];
u16 name_len;
int ret = 0;
int fixed = 0;
int i, slots;
/* readahead inode blocks */
for (i = 0; i < max; i++) {
u32 ino;
if (test_bit_le(i, bitmap) == 0)
continue;
ino = le32_to_cpu(dentry[i].ino);
if (IS_VALID_NID(sbi, ino)) {
struct node_info ni;
get_node_info(sbi, ino, &ni);
if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) {
dev_reada_block(ni.blk_addr);
name_len = le16_to_cpu(dentry[i].name_len);
if (name_len > 0)
i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN - 1;
}
}
}
for (i = 0; i < max;) {
if (test_bit_le(i, bitmap) == 0) {
i++;
continue;
}
if (!IS_VALID_NID(sbi, le32_to_cpu(dentry[i].ino))) {
ASSERT_MSG("Bad dentry 0x%x with invalid NID/ino 0x%x",
i, le32_to_cpu(dentry[i].ino));
if (c.fix_on) {
FIX_MSG("Clear bad dentry 0x%x with bad ino 0x%x",
i, le32_to_cpu(dentry[i].ino));
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
continue;
}
ftype = dentry[i].file_type;
if ((ftype <= F2FS_FT_UNKNOWN || ftype > F2FS_FT_LAST_FILE_TYPE)) {
ASSERT_MSG("Bad dentry 0x%x with unexpected ftype 0x%x",
le32_to_cpu(dentry[i].ino), ftype);
if (c.fix_on) {
FIX_MSG("Clear bad dentry 0x%x with bad ftype 0x%x",
i, ftype);
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
continue;
}
name_len = le16_to_cpu(dentry[i].name_len);
if (name_len == 0 || name_len > F2FS_NAME_LEN) {
ASSERT_MSG("Bad dentry 0x%x with invalid name_len", i);
if (c.fix_on) {
FIX_MSG("Clear bad dentry 0x%x", i);
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
continue;
}
name = calloc(name_len + 1, 1);
ASSERT(name);
memcpy(name, filenames[i], name_len);
slots = (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
/* Becareful. 'dentry.file_type' is not imode. */
if (ftype == F2FS_FT_DIR) {
if ((name[0] == '.' && name_len == 1) ||
(name[0] == '.' && name[1] == '.' &&
name_len == 2)) {
ret = __chk_dots_dentries(sbi, casefolded, &dentry[i],
child, name, name_len, &filenames[i],
enc_name);
switch (ret) {
case 1:
fixed = 1;
fallthrough;
case 0:
child->dots++;
break;
}
if (child->dots > 2) {
ASSERT_MSG("More than one '.' or '..', should delete the extra one\n");
nullify_dentry(&dentry[i], i,
&filenames[i], &bitmap);
child->dots--;
fixed = 1;
}
i++;
free(name);
continue;
}
}
if (f2fs_check_hash_code(get_encoding(sbi), casefolded, dentry + i, name, name_len, enc_name))
fixed = 1;
pretty_print_filename(name, name_len, en, enc_name);
if (max == NR_DENTRY_IN_BLOCK) {
ret = f2fs_check_dirent_position(dentry + i, en,
child->pgofs, child->dir_level,
child->p_ino);
if (ret) {
if (c.fix_on) {
FIX_MSG("Clear bad dentry 0x%x", i);
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
free(name);
continue;
}
}
DBG(1, "[%3u]-[0x%x] name[%s] len[0x%x] ino[0x%x] type[0x%x]\n",
fsck->dentry_depth, i, en, name_len,
le32_to_cpu(dentry[i].ino),
dentry[i].file_type);
print_dentry(sbi, name, bitmap,
dentry, max, i, last_blk, enc_name);
blk_cnt = 1;
cbc.cnt = 0;
cbc.cheader_pgofs = CHEADER_PGOFS_NONE;
child->i_namelen = name_len;
ret = fsck_chk_node_blk(sbi,
NULL, le32_to_cpu(dentry[i].ino),
ftype, TYPE_INODE, &blk_cnt, &cbc, child);
if (ret && c.fix_on) {
int j;
for (j = 0; j < slots; j++)
test_and_clear_bit_le(i + j, bitmap);
FIX_MSG("Unlink [0x%x] - %s len[0x%x], type[0x%x]",
le32_to_cpu(dentry[i].ino),
en, name_len,
dentry[i].file_type);
fixed = 1;
} else if (ret == 0) {
if (ftype == F2FS_FT_DIR)
child->links++;
dentries++;
child->files++;
}
i += slots;
free(name);
}
return fixed ? -1 : dentries;
}
int fsck_chk_inline_dentries(struct f2fs_sb_info *sbi,
struct f2fs_node *node_blk, struct child_info *child)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_dentry *cur_dentry = fsck->dentry_end;
struct f2fs_dentry *new_dentry;
struct f2fs_dentry_ptr d;
void *inline_dentry;
int dentries;
inline_dentry = inline_data_addr(node_blk);
ASSERT(inline_dentry != NULL);
make_dentry_ptr(&d, node_blk, inline_dentry, 2);
fsck->dentry_depth++;
new_dentry = calloc(sizeof(struct f2fs_dentry), 1);
ASSERT(new_dentry != NULL);
new_dentry->depth = fsck->dentry_depth;
memcpy(new_dentry->name, child->p_name, F2FS_NAME_LEN);
cur_dentry->next = new_dentry;
fsck->dentry_end = new_dentry;
dentries = __chk_dentries(sbi, IS_CASEFOLDED(&node_blk->i), child,
d.bitmap, d.dentry, d.filename, d.max, 1,
file_is_encrypt(&node_blk->i));// pass through
if (dentries < 0) {
DBG(1, "[%3d] Inline Dentry Block Fixed hash_codes\n\n",
fsck->dentry_depth);
} else {
DBG(1, "[%3d] Inline Dentry Block Done : "
"dentries:%d in %d slots (len:%d)\n\n",
fsck->dentry_depth, dentries,
d.max, F2FS_NAME_LEN);
}
fsck->dentry = cur_dentry;
fsck->dentry_end = cur_dentry;
cur_dentry->next = NULL;
free(new_dentry);
fsck->dentry_depth--;
return dentries;
}
int fsck_chk_dentry_blk(struct f2fs_sb_info *sbi, int casefolded, u32 blk_addr,
struct child_info *child, int last_blk, int enc_name)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_dentry_block *de_blk;
struct f2fs_dentry *cur_dentry = fsck->dentry_end;
struct f2fs_dentry *new_dentry;
int dentries, ret;
de_blk = (struct f2fs_dentry_block *)calloc(BLOCK_SZ, 1);
ASSERT(de_blk != NULL);
ret = dev_read_block(de_blk, blk_addr);
ASSERT(ret >= 0);
fsck->dentry_depth++;
new_dentry = calloc(sizeof(struct f2fs_dentry), 1);
ASSERT(new_dentry != NULL);
new_dentry->depth = fsck->dentry_depth;
memcpy(new_dentry->name, child->p_name, F2FS_NAME_LEN);
cur_dentry->next = new_dentry;
fsck->dentry_end = new_dentry;
dentries = __chk_dentries(sbi, casefolded, child,
de_blk->dentry_bitmap,
de_blk->dentry, de_blk->filename,
NR_DENTRY_IN_BLOCK, last_blk, enc_name);
if (dentries < 0 && f2fs_dev_is_writable()) {
ret = dev_write_block(de_blk, blk_addr);
ASSERT(ret >= 0);
DBG(1, "[%3d] Dentry Block [0x%x] Fixed hash_codes\n\n",
fsck->dentry_depth, blk_addr);
} else {
DBG(1, "[%3d] Dentry Block [0x%x] Done : "
"dentries:%d in %d slots (len:%d)\n\n",
fsck->dentry_depth, blk_addr, dentries,
NR_DENTRY_IN_BLOCK, F2FS_NAME_LEN);
}
fsck->dentry = cur_dentry;
fsck->dentry_end = cur_dentry;
cur_dentry->next = NULL;
free(new_dentry);
fsck->dentry_depth--;
free(de_blk);
return 0;
}
int fsck_chk_data_blk(struct f2fs_sb_info *sbi, int casefolded,
u32 blk_addr, struct child_info *child, int last_blk,
enum FILE_TYPE ftype, u32 parent_nid, u16 idx_in_node, u8 ver,
int enc_name)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
/* Is it reserved block? */
if (blk_addr == NEW_ADDR) {
fsck->chk.valid_blk_cnt++;
return 0;
}
if (!IS_VALID_BLK_ADDR(sbi, blk_addr)) {
ASSERT_MSG("blkaddress is not valid. [0x%x]", blk_addr);
return -EINVAL;
}
if (is_valid_ssa_data_blk(sbi, blk_addr, parent_nid,
idx_in_node, ver)) {
ASSERT_MSG("summary data block is not valid. [0x%x]",
parent_nid);
return -EINVAL;
}
if (f2fs_test_sit_bitmap(sbi, blk_addr) == 0)
ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", blk_addr);
if (f2fs_test_main_bitmap(sbi, blk_addr) != 0)
ASSERT_MSG("Duplicated data [0x%x]. pnid[0x%x] idx[0x%x]",
blk_addr, parent_nid, idx_in_node);
fsck->chk.valid_blk_cnt++;
if (ftype == F2FS_FT_DIR) {
f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_HOT_DATA);
return fsck_chk_dentry_blk(sbi, casefolded, blk_addr, child,
last_blk, enc_name);
} else {
f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_WARM_DATA);
}
return 0;
}
int fsck_chk_orphan_node(struct f2fs_sb_info *sbi)
{
u32 blk_cnt = 0;
struct f2fs_compr_blk_cnt cbc = {0, CHEADER_PGOFS_NONE};
block_t start_blk, orphan_blkaddr, i, j;
struct f2fs_orphan_block *orphan_blk, *new_blk;
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
u32 entry_count;
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
return 0;
start_blk = __start_cp_addr(sbi) + 1 + get_sb(cp_payload);
orphan_blkaddr = __start_sum_addr(sbi) - 1 - get_sb(cp_payload);
f2fs_ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
orphan_blk = calloc(BLOCK_SZ, 1);
ASSERT(orphan_blk);
new_blk = calloc(BLOCK_SZ, 1);
ASSERT(new_blk);
for (i = 0; i < orphan_blkaddr; i++) {
int ret = dev_read_block(orphan_blk, start_blk + i);
u32 new_entry_count = 0;
ASSERT(ret >= 0);
entry_count = le32_to_cpu(orphan_blk->entry_count);
for (j = 0; j < entry_count; j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
DBG(1, "[%3d] ino [0x%x]\n", i, ino);
struct node_info ni;
blk_cnt = 1;
cbc.cnt = 0;
cbc.cheader_pgofs = CHEADER_PGOFS_NONE;
if (c.preen_mode == PREEN_MODE_1 && !c.fix_on) {
get_node_info(sbi, ino, &ni);
if (!IS_VALID_NID(sbi, ino) ||
!IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) {
free(orphan_blk);
free(new_blk);
return -EINVAL;
}
continue;
}
ret = fsck_chk_node_blk(sbi, NULL, ino,
F2FS_FT_ORPHAN, TYPE_INODE, &blk_cnt,
&cbc, NULL);
if (!ret)
new_blk->ino[new_entry_count++] =
orphan_blk->ino[j];
else if (ret && c.fix_on)
FIX_MSG("[0x%x] remove from orphan list", ino);
else if (ret)
ASSERT_MSG("[0x%x] wrong orphan inode", ino);
}
if (f2fs_dev_is_writable() && c.fix_on &&
entry_count != new_entry_count) {
new_blk->entry_count = cpu_to_le32(new_entry_count);
ret = dev_write_block(new_blk, start_blk + i);
ASSERT(ret >= 0);
}
memset(orphan_blk, 0, BLOCK_SZ);
memset(new_blk, 0, BLOCK_SZ);
}
free(orphan_blk);
free(new_blk);
return 0;
}
int fsck_chk_quota_node(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
enum quota_type qtype;
int ret = 0;
u32 blk_cnt = 0;
struct f2fs_compr_blk_cnt cbc = {0, CHEADER_PGOFS_NONE};
for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
cur_qtype = qtype;
if (sb->qf_ino[qtype] == 0)
continue;
nid_t ino = QUOTA_INO(sb, qtype);
struct node_info ni;
DBG(1, "qtype [%d] ino [0x%x]\n", qtype, ino);
blk_cnt = 1;
cbc.cnt = 0;
cbc.cheader_pgofs = CHEADER_PGOFS_NONE;
if (c.preen_mode == PREEN_MODE_1 && !c.fix_on) {
get_node_info(sbi, ino, &ni);
if (!IS_VALID_NID(sbi, ino) ||
!IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
return -EINVAL;
continue;
}
ret = fsck_chk_node_blk(sbi, NULL, ino,
F2FS_FT_REG_FILE, TYPE_INODE, &blk_cnt,
&cbc, NULL);
if (ret) {
ASSERT_MSG("wrong quota inode, qtype [%d] ino [0x%x]",
qtype, ino);
qf_szchk_type[qtype] = QF_SZCHK_ERR;
if (c.fix_on)
f2fs_rebuild_qf_inode(sbi, qtype);
}
}
cur_qtype = -1;
return ret;
}
int fsck_chk_quota_files(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
enum quota_type qtype;
f2fs_ino_t ino;
int ret = 0;
int needs_writeout;
/* Return if quota feature is disabled */
if (!fsck->qctx)
return 0;
for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
ino = sb->qf_ino[qtype];
if (!ino)
continue;
DBG(1, "Checking Quota file ([%3d] ino [0x%x])\n", qtype, ino);
needs_writeout = 0;
ret = quota_compare_and_update(sbi, qtype, &needs_writeout,
c.preserve_limits);
if (ret == 0 && needs_writeout == 0) {
DBG(1, "OK\n");
continue;
}
/* Something is wrong */
if (c.fix_on) {
DBG(0, "Fixing Quota file ([%3d] ino [0x%x])\n",
qtype, ino);
f2fs_filesize_update(sbi, ino, 0);
ret = quota_write_inode(sbi, qtype);
if (!ret) {
c.quota_fixed = true;
DBG(1, "OK\n");
} else {
ASSERT_MSG("Unable to write quota file");
}
} else {
ASSERT_MSG("Quota file is missing or invalid"
" quota file content found.");
}
}
return ret;
}
int fsck_chk_meta(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct seg_entry *se;
unsigned int sit_valid_segs = 0, sit_node_blks = 0;
unsigned int i;
/* 1. check sit usage with CP: curseg is lost? */
for (i = 0; i < MAIN_SEGS(sbi); i++) {
se = get_seg_entry(sbi, i);
if (se->valid_blocks != 0)
sit_valid_segs++;
else if (IS_CUR_SEGNO(sbi, i)) {
/* curseg has not been written back to device */
MSG(1, "\tInfo: curseg %u is counted in valid segs\n", i);
sit_valid_segs++;
}
if (IS_NODESEG(se->type))
sit_node_blks += se->valid_blocks;
}
if (fsck->chk.sit_free_segs + sit_valid_segs !=
get_usable_seg_count(sbi)) {
ASSERT_MSG("SIT usage does not match: sit_free_segs %u, "
"sit_valid_segs %u, total_segs %u",
fsck->chk.sit_free_segs, sit_valid_segs,
get_usable_seg_count(sbi));
return -EINVAL;
}
/* 2. check node count */
if (fsck->chk.valid_nat_entry_cnt != sit_node_blks) {
ASSERT_MSG("node count does not match: valid_nat_entry_cnt %u,"
" sit_node_blks %u",
fsck->chk.valid_nat_entry_cnt, sit_node_blks);
return -EINVAL;
}
/* 3. check SIT with CP */
if (fsck->chk.sit_free_segs != le32_to_cpu(cp->free_segment_count)) {
ASSERT_MSG("free segs does not match: sit_free_segs %u, "
"free_segment_count %u",
fsck->chk.sit_free_segs,
le32_to_cpu(cp->free_segment_count));
return -EINVAL;
}
/* 4. check NAT with CP */
if (fsck->chk.valid_nat_entry_cnt !=
le32_to_cpu(cp->valid_node_count)) {
ASSERT_MSG("valid node does not match: valid_nat_entry_cnt %u,"
" valid_node_count %u",
fsck->chk.valid_nat_entry_cnt,
le32_to_cpu(cp->valid_node_count));
return -EINVAL;
}
/* 4. check orphan inode simply */
if (fsck_chk_orphan_node(sbi))
return -EINVAL;
/* 5. check nat entry -- must be done before quota check */
for (i = 0; i < fsck->nr_nat_entries; i++) {
u32 blk = le32_to_cpu(fsck->entries[i].block_addr);
nid_t ino = le32_to_cpu(fsck->entries[i].ino);
if (!blk)
/*
* skip entry whose ino is 0, otherwise, we will
* get a negative number by BLKOFF_FROM_MAIN(sbi, blk)
*/
continue;
if (!IS_VALID_BLK_ADDR(sbi, blk)) {
MSG(0, "\tError: nat entry[ino %u block_addr 0x%x]"
" is in valid\n",
ino, blk);
return -EINVAL;
}
if (!f2fs_test_sit_bitmap(sbi, blk)) {
MSG(0, "\tError: nat entry[ino %u block_addr 0x%x]"
" not find it in sit_area_bitmap\n",
ino, blk);
return -EINVAL;
}
if (!IS_VALID_NID(sbi, ino)) {
MSG(0, "\tError: nat_entry->ino %u exceeds the range"
" of nat entries %u\n",
ino, fsck->nr_nat_entries);
return -EINVAL;
}
if (!f2fs_test_bit(ino, fsck->nat_area_bitmap)) {
MSG(0, "\tError: nat_entry->ino %u is not set in"
" nat_area_bitmap\n", ino);
return -EINVAL;
}
}
/* 6. check quota inode simply */
if (fsck_chk_quota_node(sbi))
return -EINVAL;
if (fsck->nat_valid_inode_cnt != le32_to_cpu(cp->valid_inode_count)) {
ASSERT_MSG("valid inode does not match: nat_valid_inode_cnt %u,"
" valid_inode_count %u",
fsck->nat_valid_inode_cnt,
le32_to_cpu(cp->valid_inode_count));
return -EINVAL;
}
return 0;
}
void fsck_chk_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
if (get_cp(ckpt_flags) & CP_LARGE_NAT_BITMAP_FLAG) {
if (get_cp(checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
ASSERT_MSG("Deprecated layout of large_nat_bitmap, "
"chksum_offset:%u", get_cp(checksum_offset));
c.fix_chksum = 1;
}
}
}
void fsck_init(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
/*
* We build three bitmap for main/sit/nat so that may check consistency
* of filesystem.
* 1. main_area_bitmap will be used to check whether all blocks of main
* area is used or not.
* 2. nat_area_bitmap has bitmap information of used nid in NAT.
* 3. sit_area_bitmap has bitmap information of used main block.
* At Last sequence, we compare main_area_bitmap with sit_area_bitmap.
*/
fsck->nr_main_blks = sm_i->main_segments << sbi->log_blocks_per_seg;
fsck->main_area_bitmap_sz = (fsck->nr_main_blks + 7) / 8;
fsck->main_area_bitmap = calloc(fsck->main_area_bitmap_sz, 1);
ASSERT(fsck->main_area_bitmap != NULL);
build_nat_area_bitmap(sbi);
build_sit_area_bitmap(sbi);
ASSERT(tree_mark_size != 0);
tree_mark = calloc(tree_mark_size, 1);
ASSERT(tree_mark != NULL);
fsck->dentry = calloc(sizeof(struct f2fs_dentry), 1);
ASSERT(fsck->dentry != NULL);
memcpy(fsck->dentry->name, "/", 1);
fsck->dentry_end = fsck->dentry;
c.quota_fixed = false;
}
static void fix_hard_links(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *tmp, *node;
struct f2fs_node *node_blk = NULL;
struct node_info ni;
int ret;
if (fsck->hard_link_list_head == NULL)
return;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
node = fsck->hard_link_list_head;
while (node) {
/* Sanity check */
if (sanity_check_nid(sbi, node->nid, node_blk,
F2FS_FT_MAX, TYPE_INODE, &ni))
FIX_MSG("Failed to fix, rerun fsck.f2fs");
node_blk->i.i_links = cpu_to_le32(node->actual_links);
FIX_MSG("File: 0x%x i_links= 0x%x -> 0x%x",
node->nid, node->links, node->actual_links);
ret = dev_write_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
tmp = node;
node = node->next;
free(tmp);
}
free(node_blk);
}
static void fix_nat_entries(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
u32 i;
for (i = 0; i < fsck->nr_nat_entries; i++)
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0)
nullify_nat_entry(sbi, i);
}
static void flush_curseg_sit_entries(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct f2fs_sit_block *sit_blk;
int i;
sit_blk = calloc(BLOCK_SZ, 1);
ASSERT(sit_blk);
/* update curseg sit entries, since we may change
* a segment type in move_curseg_info
*/
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
struct f2fs_sit_entry *sit;
struct seg_entry *se;
se = get_seg_entry(sbi, curseg->segno);
get_current_sit_page(sbi, curseg->segno, sit_blk);
sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, curseg->segno)];
sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
se->valid_blocks);
rewrite_current_sit_page(sbi, curseg->segno, sit_blk);
}
free(sit_blk);
}
static void fix_checksum(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct sit_info *sit_i = SIT_I(sbi);
void *bitmap_offset;
if (!c.fix_chksum)
return;
bitmap_offset = cp->sit_nat_version_bitmap + sizeof(__le32);
memcpy(bitmap_offset, nm_i->nat_bitmap, nm_i->bitmap_size);
memcpy(bitmap_offset + nm_i->bitmap_size,
sit_i->sit_bitmap, sit_i->bitmap_size);
}
static void fix_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
unsigned long long cp_blk_no;
u32 flags = c.alloc_failed ? CP_FSCK_FLAG: CP_UMOUNT_FLAG;
block_t orphan_blks = 0;
block_t cp_blocks;
u32 i;
int ret;
uint32_t crc = 0;
/* should call from fsck */
ASSERT(c.func == FSCK);
if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
orphan_blks = __start_sum_addr(sbi) - 1;
flags |= CP_ORPHAN_PRESENT_FLAG;
}
if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG))
flags |= CP_TRIMMED_FLAG;
if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG))
flags |= CP_DISABLED_FLAG;
if (is_set_ckpt_flags(cp, CP_LARGE_NAT_BITMAP_FLAG)) {
flags |= CP_LARGE_NAT_BITMAP_FLAG;
set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
} else {
set_cp(checksum_offset, CP_CHKSUM_OFFSET);
}
if (flags & CP_UMOUNT_FLAG)
cp_blocks = 8;
else
cp_blocks = 5;
set_cp(cp_pack_total_block_count, cp_blocks +
orphan_blks + get_sb(cp_payload));
flags = update_nat_bits_flags(sb, cp, flags);
flags |= CP_NOCRC_RECOVERY_FLAG;
set_cp(ckpt_flags, flags);
set_cp(free_segment_count, get_free_segments(sbi));
set_cp(valid_block_count, fsck->chk.valid_blk_cnt);
set_cp(valid_node_count, fsck->chk.valid_node_cnt);
set_cp(valid_inode_count, fsck->chk.valid_inode_cnt);
crc = f2fs_checkpoint_chksum(cp);
*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
cpu_to_le32(crc);
cp_blk_no = get_sb(cp_blkaddr);
if (sbi->cur_cp == 2)
cp_blk_no += 1 << get_sb(log_blocks_per_seg);
ret = dev_write_block(cp, cp_blk_no++);
ASSERT(ret >= 0);
for (i = 0; i < get_sb(cp_payload); i++) {
ret = dev_write_block(((unsigned char *)cp) +
(i + 1) * F2FS_BLKSIZE, cp_blk_no++);
ASSERT(ret >= 0);
}
cp_blk_no += orphan_blks;
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (!(flags & CP_UMOUNT_FLAG) && IS_NODESEG(i))
continue;
ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
ASSERT(ret >= 0);
}
/* Write nat bits */
if (flags & CP_NAT_BITS_FLAG)
write_nat_bits(sbi, sb, cp, sbi->cur_cp);
ret = f2fs_fsync_device();
ASSERT(ret >= 0);
ret = dev_write_block(cp, cp_blk_no++);
ASSERT(ret >= 0);
ret = f2fs_fsync_device();
ASSERT(ret >= 0);
}
static void fix_checkpoints(struct f2fs_sb_info *sbi)
{
/* copy valid checkpoint to its mirror position */
duplicate_checkpoint(sbi);
/* repair checkpoint at CP #0 position */
sbi->cur_cp = 1;
fix_checkpoint(sbi);
}
#ifdef HAVE_LINUX_BLKZONED_H
/*
* Refer valid block map and return offset of the last valid block in the zone.
* Obtain valid block map from SIT and fsync data.
* If there is no valid block in the zone, return -1.
*/
static int last_vblk_off_in_zone(struct f2fs_sb_info *sbi,
unsigned int zone_segno)
{
int s, b;
unsigned int segs_per_zone = sbi->segs_per_sec * sbi->secs_per_zone;
struct seg_entry *se;
for (s = segs_per_zone - 1; s >= 0; s--) {
se = get_seg_entry(sbi, zone_segno + s);
/*
* Refer not cur_valid_map but ckpt_valid_map which reflects
* fsync data.
*/
ASSERT(se->ckpt_valid_map);
for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
if (f2fs_test_bit(b, (const char*)se->ckpt_valid_map))
return b + (s << sbi->log_blocks_per_seg);
}
return -1;
}
static int check_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct blk_zone blkz;
block_t cs_block, wp_block, zone_last_vblock;
uint64_t cs_sector, wp_sector;
int i, ret;
unsigned int zone_segno;
int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
/* get the device the curseg points to */
cs_block = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
for (i = 0; i < MAX_DEVICES; i++) {
if (!c.devices[i].path)
break;
if (c.devices[i].start_blkaddr <= cs_block &&
cs_block <= c.devices[i].end_blkaddr)
break;
}
if (i >= MAX_DEVICES)
return -EINVAL;
if (c.devices[i].zoned_model != F2FS_ZONED_HM)
return 0;
/* get write pointer position of the zone the curseg points to */
cs_sector = (cs_block - c.devices[i].start_blkaddr)
<< log_sectors_per_block;
ret = f2fs_report_zone(i, cs_sector, &blkz);
if (ret)
return ret;
if (blk_zone_type(&blkz) != BLK_ZONE_TYPE_SEQWRITE_REQ)
return 0;
/* check consistency between the curseg and the write pointer */
wp_block = c.devices[i].start_blkaddr +
(blk_zone_wp_sector(&blkz) >> log_sectors_per_block);
wp_sector = blk_zone_wp_sector(&blkz);
if (cs_sector == wp_sector)
return 0;
if (cs_sector > wp_sector) {
MSG(0, "Inconsistent write pointer with curseg %d: "
"curseg %d[0x%x,0x%x] > wp[0x%x,0x%x]\n",
type, type, curseg->segno, curseg->next_blkoff,
GET_SEGNO(sbi, wp_block), OFFSET_IN_SEG(sbi, wp_block));
fsck->chk.wp_inconsistent_zones++;
return -EINVAL;
}
MSG(0, "Write pointer goes advance from curseg %d: "
"curseg %d[0x%x,0x%x] wp[0x%x,0x%x]\n",
type, type, curseg->segno, curseg->next_blkoff,
GET_SEGNO(sbi, wp_block), OFFSET_IN_SEG(sbi, wp_block));
zone_segno = GET_SEG_FROM_SEC(sbi,
GET_SEC_FROM_SEG(sbi, curseg->segno));
zone_last_vblock = START_BLOCK(sbi, zone_segno) +
last_vblk_off_in_zone(sbi, zone_segno);
/*
* If valid blocks exist between the curseg position and the write
* pointer, they are fsync data. This is not an error to fix. Leave it
* for kernel to recover later.
* If valid blocks exist between the curseg's zone start and the curseg
* position, or if there is no valid block in the curseg's zone, fix
* the inconsistency between the curseg and the writ pointer.
* Of Note is that if there is no valid block in the curseg's zone,
* last_vblk_off_in_zone() returns -1 and zone_last_vblock is always
* smaller than cs_block.
*/
if (cs_block <= zone_last_vblock && zone_last_vblock < wp_block) {
MSG(0, "Curseg has fsync data: curseg %d[0x%x,0x%x] "
"last valid block in zone[0x%x,0x%x]\n",
type, curseg->segno, curseg->next_blkoff,
GET_SEGNO(sbi, zone_last_vblock),
OFFSET_IN_SEG(sbi, zone_last_vblock));
return 0;
}
fsck->chk.wp_inconsistent_zones++;
return -EINVAL;
}
#else
static int check_curseg_write_pointer(struct f2fs_sb_info *UNUSED(sbi),
int UNUSED(type))
{
return 0;
}
#endif
int check_curseg_offset(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct seg_entry *se;
int j, nblocks;
if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO) &&
type != CURSEG_HOT_DATA && type != CURSEG_HOT_NODE)
return 0;
if ((curseg->next_blkoff >> 3) >= SIT_VBLOCK_MAP_SIZE) {
ASSERT_MSG("Next block offset:%u is invalid, type:%d",
curseg->next_blkoff, type);
return -EINVAL;
}
se = get_seg_entry(sbi, curseg->segno);
if (f2fs_test_bit(curseg->next_blkoff,
(const char *)se->cur_valid_map)) {
ASSERT_MSG("Next block offset is not free, type:%d", type);
return -EINVAL;
}
if (curseg->alloc_type == SSR)
return 0;
nblocks = sbi->blocks_per_seg;
for (j = curseg->next_blkoff + 1; j < nblocks; j++) {
if (f2fs_test_bit(j, (const char *)se->cur_valid_map)) {
ASSERT_MSG("For LFS curseg, space after .next_blkoff "
"should be unused, type:%d", type);
return -EINVAL;
}
}
if (c.zoned_model == F2FS_ZONED_HM)
return check_curseg_write_pointer(sbi, type);
return 0;
}
int check_curseg_offsets(struct f2fs_sb_info *sbi)
{
int i, ret;
for (i = 0; i < NO_CHECK_TYPE; i++) {
ret = check_curseg_offset(sbi, i);
if (ret)
return ret;
}
return 0;
}
static void fix_curseg_info(struct f2fs_sb_info *sbi)
{
int i, need_update = 0;
for (i = 0; i < NO_CHECK_TYPE; i++) {
if (check_curseg_offset(sbi, i)) {
update_curseg_info(sbi, i);
need_update = 1;
}
}
if (need_update) {
write_curseg_info(sbi);
flush_curseg_sit_entries(sbi);
}
}
int check_sit_types(struct f2fs_sb_info *sbi)
{
unsigned int i;
int err = 0;
for (i = 0; i < MAIN_SEGS(sbi); i++) {
struct seg_entry *se;
se = get_seg_entry(sbi, i);
if (se->orig_type != se->type) {
if (se->orig_type == CURSEG_COLD_DATA &&
se->type <= CURSEG_COLD_DATA) {
se->type = se->orig_type;
} else {
FIX_MSG("Wrong segment type [0x%x] %x -> %x",
i, se->orig_type, se->type);
err = -EINVAL;
}
}
}
return err;
}
static struct f2fs_node *fsck_get_lpf(struct f2fs_sb_info *sbi)
{
struct f2fs_node *node;
struct node_info ni;
nid_t lpf_ino;
int err;
/* read root inode first */
node = calloc(F2FS_BLKSIZE, 1);
ASSERT(node);
get_node_info(sbi, F2FS_ROOT_INO(sbi), &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
/* lookup lost+found in root directory */
lpf_ino = f2fs_lookup(sbi, node, (u8 *)LPF, strlen(LPF));
if (lpf_ino) { /* found */
get_node_info(sbi, lpf_ino, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
DBG(1, "Found lost+found 0x%x at blkaddr [0x%x]\n",
lpf_ino, ni.blk_addr);
if (!S_ISDIR(le16_to_cpu(node->i.i_mode))) {
ASSERT_MSG("lost+found is not directory [0%o]\n",
le16_to_cpu(node->i.i_mode));
/* FIXME: give up? */
goto out;
}
} else { /* not found, create it */
struct dentry de;
memset(&de, 0, sizeof(de));
de.name = (u8 *) LPF;
de.len = strlen(LPF);
de.mode = 0x41c0;
de.pino = F2FS_ROOT_INO(sbi),
de.file_type = F2FS_FT_DIR,
de.uid = getuid();
de.gid = getgid();
de.mtime = time(NULL);
err = f2fs_mkdir(sbi, &de);
if (err) {
ASSERT_MSG("Failed create lost+found");
goto out;
}
get_node_info(sbi, de.ino, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
DBG(1, "Create lost+found 0x%x at blkaddr [0x%x]\n",
de.ino, ni.blk_addr);
}
c.lpf_ino = le32_to_cpu(node->footer.ino);
return node;
out:
free(node);
return NULL;
}
static int fsck_do_reconnect_file(struct f2fs_sb_info *sbi,
struct f2fs_node *lpf,
struct f2fs_node *fnode)
{
char name[80];
size_t namelen;
nid_t ino = le32_to_cpu(fnode->footer.ino);
struct node_info ni;
int ftype, ret;
namelen = snprintf(name, 80, "%u", ino);
if (namelen >= 80)
/* ignore terminating '\0', should never happen */
namelen = 79;
if (f2fs_lookup(sbi, lpf, (u8 *)name, namelen)) {
ASSERT_MSG("Name %s already exist in lost+found", name);
return -EEXIST;
}
get_node_info(sbi, le32_to_cpu(lpf->footer.ino), &ni);
ftype = map_de_type(le16_to_cpu(fnode->i.i_mode));
ret = f2fs_add_link(sbi, lpf, (unsigned char *)name, namelen,
ino, ftype, ni.blk_addr, 0);
if (ret) {
ASSERT_MSG("Failed to add inode [0x%x] to lost+found", ino);
return -EINVAL;
}
/* update fnode */
memcpy(fnode->i.i_name, name, namelen);
fnode->i.i_namelen = cpu_to_le32(namelen);
fnode->i.i_pino = c.lpf_ino;
get_node_info(sbi, le32_to_cpu(fnode->footer.ino), &ni);
ret = dev_write_block(fnode, ni.blk_addr);
ASSERT(ret >= 0);
DBG(1, "Reconnect inode [0x%x] to lost+found\n", ino);
return 0;
}
static void fsck_failed_reconnect_file_dnode(struct f2fs_sb_info *sbi,
nid_t nid)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_node *node;
struct node_info ni;
u32 addr;
int i, err;
node = calloc(F2FS_BLKSIZE, 1);
ASSERT(node);
get_node_info(sbi, nid, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
fsck->chk.valid_node_cnt--;
fsck->chk.valid_blk_cnt--;
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
for (i = 0; i < ADDRS_PER_BLOCK(&node->i); i++) {
addr = le32_to_cpu(node->dn.addr[i]);
if (!addr)
continue;
fsck->chk.valid_blk_cnt--;
if (addr == NEW_ADDR)
continue;
f2fs_clear_main_bitmap(sbi, addr);
}
free(node);
}
static void fsck_failed_reconnect_file_idnode(struct f2fs_sb_info *sbi,
nid_t nid)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_node *node;
struct node_info ni;
nid_t tmp;
int i, err;
node = calloc(F2FS_BLKSIZE, 1);
ASSERT(node);
get_node_info(sbi, nid, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
fsck->chk.valid_node_cnt--;
fsck->chk.valid_blk_cnt--;
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
for (i = 0; i < NIDS_PER_BLOCK; i++) {
tmp = le32_to_cpu(node->in.nid[i]);
if (!tmp)
continue;
fsck_failed_reconnect_file_dnode(sbi, tmp);
}
free(node);
}
static void fsck_failed_reconnect_file_didnode(struct f2fs_sb_info *sbi,
nid_t nid)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_node *node;
struct node_info ni;
nid_t tmp;
int i, err;
node = calloc(F2FS_BLKSIZE, 1);
ASSERT(node);
get_node_info(sbi, nid, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
fsck->chk.valid_node_cnt--;
fsck->chk.valid_blk_cnt--;
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
for (i = 0; i < NIDS_PER_BLOCK; i++) {
tmp = le32_to_cpu(node->in.nid[i]);
if (!tmp)
continue;
fsck_failed_reconnect_file_idnode(sbi, tmp);
}
free(node);
}
/*
* Counters and main_area_bitmap are already changed during checking
* inode block, so clear them. There is no need to clear new blocks
* allocted to lost+found.
*/
static void fsck_failed_reconnect_file(struct f2fs_sb_info *sbi, nid_t ino)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_node *node;
struct node_info ni;
nid_t nid;
int ofs, i, err;
node = calloc(F2FS_BLKSIZE, 1);
ASSERT(node);
get_node_info(sbi, ino, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
/* clear inode counters */
fsck->chk.valid_inode_cnt--;
fsck->chk.valid_node_cnt--;
fsck->chk.valid_blk_cnt--;
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
/* clear xnid counters */
if (node->i.i_xattr_nid) {
nid = le32_to_cpu(node->i.i_xattr_nid);
fsck->chk.valid_node_cnt--;
fsck->chk.valid_blk_cnt--;
get_node_info(sbi, nid, &ni);
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
}
/* clear data counters */
if(!(node->i.i_inline & F2FS_INLINE_DATA)) {
ofs = get_extra_isize(node);
for (i = 0; i < ADDRS_PER_INODE(&node->i); i++) {
block_t addr = le32_to_cpu(node->i.i_addr[ofs + i]);
if (!addr)
continue;
fsck->chk.valid_blk_cnt--;
if (addr == NEW_ADDR)
continue;
f2fs_clear_main_bitmap(sbi, addr);
}
}
for (i = 0; i < 5; i++) {
nid = le32_to_cpu(node->i.i_nid[i]);
if (!nid)
continue;
switch (i) {
case 0: /* direct node */
case 1:
fsck_failed_reconnect_file_dnode(sbi, nid);
break;
case 2: /* indirect node */
case 3:
fsck_failed_reconnect_file_idnode(sbi, nid);
break;
case 4: /* double indirect node */
fsck_failed_reconnect_file_didnode(sbi, nid);
break;
}
}
free(node);
}
/*
* Scan unreachable nids and find only regular file inodes. If these files
* are not corrupted, reconnect them to lost+found.
*
* Since all unreachable nodes are already checked, we can allocate new
* blocks safely.
*
* This function returns the number of files been reconnected.
*/
static int fsck_reconnect_file(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_node *lpf_node, *node;
struct node_info ni;
char *reconnect_bitmap;
u32 blk_cnt;
struct f2fs_compr_blk_cnt cbc;
nid_t nid;
int err, cnt = 0, ftype;
node = calloc(F2FS_BLKSIZE, 1);
ASSERT(node);
reconnect_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
ASSERT(reconnect_bitmap);
for (nid = 0; nid < fsck->nr_nat_entries; nid++) {
if (f2fs_test_bit(nid, fsck->nat_area_bitmap)) {
if (is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) {
DBG(1, "Not support quota inode [0x%x]\n",
nid);
continue;
}
get_node_info(sbi, nid, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
/* reconnection will restore these nodes if needed */
if (node->footer.ino != node->footer.nid) {
DBG(1, "Not support non-inode node [0x%x]\n",
nid);
continue;
}
if (S_ISDIR(le16_to_cpu(node->i.i_mode))) {
DBG(1, "Not support directory inode [0x%x]\n",
nid);
continue;
}
ftype = map_de_type(le16_to_cpu(node->i.i_mode));
if (sanity_check_nid(sbi, nid, node, ftype,
TYPE_INODE, &ni)) {
ASSERT_MSG("Invalid nid [0x%x]\n", nid);
continue;
}
DBG(1, "Check inode 0x%x\n", nid);
blk_cnt = 1;
cbc.cnt = 0;
cbc.cheader_pgofs = CHEADER_PGOFS_NONE;
fsck_chk_inode_blk(sbi, nid, ftype, node,
&blk_cnt, &cbc, &ni, NULL);
f2fs_set_bit(nid, reconnect_bitmap);
}
}
lpf_node = fsck_get_lpf(sbi);
if (!lpf_node)
goto out;
for (nid = 0; nid < fsck->nr_nat_entries; nid++) {
if (f2fs_test_bit(nid, reconnect_bitmap)) {
get_node_info(sbi, nid, &ni);
err = dev_read_block(node, ni.blk_addr);
ASSERT(err >= 0);
if (fsck_do_reconnect_file(sbi, lpf_node, node)) {
DBG(1, "Failed to reconnect inode [0x%x]\n",
nid);
fsck_failed_reconnect_file(sbi, nid);
continue;
}
quota_add_inode_usage(fsck->qctx, nid, &node->i);
DBG(1, "Reconnected inode [0x%x] to lost+found\n", nid);
cnt++;
}
}
out:
free(node);
free(lpf_node);
free(reconnect_bitmap);
return cnt;
}
#ifdef HAVE_LINUX_BLKZONED_H
struct write_pointer_check_data {
struct f2fs_sb_info *sbi;
int dev_index;
};
static int chk_and_fix_wp_with_sit(int UNUSED(i), void *blkzone, void *opaque)
{
struct blk_zone *blkz = (struct blk_zone *)blkzone;
struct write_pointer_check_data *wpd = opaque;
struct f2fs_sb_info *sbi = wpd->sbi;
struct device_info *dev = c.devices + wpd->dev_index;
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
block_t zone_block, wp_block, wp_blkoff;
unsigned int zone_segno, wp_segno;
struct curseg_info *cs;
int cs_index, ret, last_valid_blkoff;
int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
unsigned int segs_per_zone = sbi->segs_per_sec * sbi->secs_per_zone;
if (blk_zone_conv(blkz))
return 0;
zone_block = dev->start_blkaddr
+ (blk_zone_sector(blkz) >> log_sectors_per_block);
zone_segno = GET_SEGNO(sbi, zone_block);
if (zone_segno >= MAIN_SEGS(sbi))
return 0;
wp_block = dev->start_blkaddr
+ (blk_zone_wp_sector(blkz) >> log_sectors_per_block);
wp_segno = GET_SEGNO(sbi, wp_block);
wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
/* if a curseg points to the zone, skip the check */
for (cs_index = 0; cs_index < NO_CHECK_TYPE; cs_index++) {
cs = &SM_I(sbi)->curseg_array[cs_index];
if (zone_segno <= cs->segno &&
cs->segno < zone_segno + segs_per_zone)
return 0;
}
last_valid_blkoff = last_vblk_off_in_zone(sbi, zone_segno);
/*
* When there is no valid block in the zone, check write pointer is
* at zone start. If not, reset the write pointer.
*/
if (last_valid_blkoff < 0 &&
blk_zone_wp_sector(blkz) != blk_zone_sector(blkz)) {
if (!c.fix_on) {
MSG(0, "Inconsistent write pointer: wp[0x%x,0x%x]\n",
wp_segno, wp_blkoff);
fsck->chk.wp_inconsistent_zones++;
return 0;
}
FIX_MSG("Reset write pointer of zone at segment 0x%x",
zone_segno);
ret = f2fs_reset_zone(wpd->dev_index, blkz);
if (ret) {
printf("[FSCK] Write pointer reset failed: %s\n",
dev->path);
return ret;
}
fsck->chk.wp_fixed = 1;
return 0;
}
/*
* If valid blocks exist in the zone beyond the write pointer, it
* is a bug. No need to fix because the zone is not selected for the
* write. Just report it.
*/
if (last_valid_blkoff + zone_block > wp_block) {
MSG(0, "Unexpected invalid write pointer: wp[0x%x,0x%x]\n",
wp_segno, wp_blkoff);
return 0;
}
return 0;
}
static void fix_wp_sit_alignment(struct f2fs_sb_info *sbi)
{
unsigned int i;
struct write_pointer_check_data wpd = { sbi, 0 };
if (c.zoned_model != F2FS_ZONED_HM)
return;
for (i = 0; i < MAX_DEVICES; i++) {
if (!c.devices[i].path)
break;
if (c.devices[i].zoned_model != F2FS_ZONED_HM)
break;
wpd.dev_index = i;
if (f2fs_report_zones(i, chk_and_fix_wp_with_sit, &wpd)) {
printf("[FSCK] Write pointer check failed: %s\n",
c.devices[i].path);
return;
}
}
}
#else
static void fix_wp_sit_alignment(struct f2fs_sb_info *UNUSED(sbi))
{
return;
}
#endif
/*
* Check and fix consistency with write pointers at the beginning of
* fsck so that following writes by fsck do not fail.
*/
void fsck_chk_and_fix_write_pointers(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
if (c.zoned_model != F2FS_ZONED_HM)
return;
if (check_curseg_offsets(sbi) && c.fix_on) {
fix_curseg_info(sbi);
fsck->chk.wp_fixed = 1;
}
fix_wp_sit_alignment(sbi);
}
int fsck_chk_curseg_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct curseg_info *curseg;
struct seg_entry *se;
struct f2fs_summary_block *sum_blk;
int i, ret = 0;
for (i = 0; i < NO_CHECK_TYPE; i++) {
curseg = CURSEG_I(sbi, i);
se = get_seg_entry(sbi, curseg->segno);
sum_blk = curseg->sum_blk;
if ((get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) &&
(i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE))
continue;
if (se->type != i) {
ASSERT_MSG("Incorrect curseg [%d]: segno [0x%x] "
"type(SIT) [%d]", i, curseg->segno,
se->type);
if (c.fix_on || c.preen_mode)
se->type = i;
ret = -1;
}
if (i <= CURSEG_COLD_DATA && IS_SUM_DATA_SEG(sum_blk->footer)) {
continue;
} else if (i > CURSEG_COLD_DATA && IS_SUM_NODE_SEG(sum_blk->footer)) {
continue;
} else {
ASSERT_MSG("Incorrect curseg [%d]: segno [0x%x] "
"type(SSA) [%d]", i, curseg->segno,
sum_blk->footer.entry_type);
if (c.fix_on || c.preen_mode)
sum_blk->footer.entry_type =
i <= CURSEG_COLD_DATA ?
SUM_TYPE_DATA : SUM_TYPE_NODE;
ret = -1;
}
}
return ret;
}
int fsck_verify(struct f2fs_sb_info *sbi)
{
unsigned int i = 0;
int ret = 0;
int force = 0;
u32 nr_unref_nid = 0;
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL;
bool verify_failed = false;
uint64_t max_blks, data_secs, node_secs, free_blks;
if (c.show_file_map)
return 0;
printf("\n");
if (c.zoned_model == F2FS_ZONED_HM) {
printf("[FSCK] Write pointers consistency ");
if (fsck->chk.wp_inconsistent_zones == 0x0) {
printf(" [Ok..]\n");
} else {
printf(" [Fail] [0x%x]\n",
fsck->chk.wp_inconsistent_zones);
verify_failed = true;
}
if (fsck->chk.wp_fixed && c.fix_on)
force = 1;
}
if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
for (i = 0; i < fsck->nr_nat_entries; i++)
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0)
break;
if (i < fsck->nr_nat_entries) {
i = fsck_reconnect_file(sbi);
printf("[FSCK] Reconnect %u files to lost+found\n", i);
}
}
for (i = 0; i < fsck->nr_nat_entries; i++) {
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) {
struct node_info ni;
get_node_info(sbi, i, &ni);
printf("NID[0x%x] is unreachable, blkaddr:0x%x\n",
i, ni.blk_addr);
nr_unref_nid++;
}
}
if (fsck->hard_link_list_head != NULL) {
node = fsck->hard_link_list_head;
while (node) {
printf("NID[0x%x] has [0x%x] more unreachable links\n",
node->nid, node->links);
node = node->next;
}
c.bug_on = 1;
}
data_secs = round_up(sbi->total_valid_node_count, BLKS_PER_SEC(sbi));
node_secs = round_up(sbi->total_valid_block_count -
sbi->total_valid_node_count, BLKS_PER_SEC(sbi));
free_blks = (sbi->total_sections - data_secs - node_secs) *
BLKS_PER_SEC(sbi);
max_blks = SM_I(sbi)->main_blkaddr + (data_secs + node_secs) *
BLKS_PER_SEC(sbi);
printf("[FSCK] Max image size: %"PRIu64" MB, Free space: %"PRIu64" MB\n",
max_blks >> 8, free_blks >> 8);
printf("[FSCK] Unreachable nat entries ");
if (nr_unref_nid == 0x0) {
printf(" [Ok..] [0x%x]\n", nr_unref_nid);
} else {
printf(" [Fail] [0x%x]\n", nr_unref_nid);
verify_failed = true;
}
printf("[FSCK] SIT valid block bitmap checking ");
if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap,
fsck->sit_area_bitmap_sz) == 0x0) {
printf("[Ok..]\n");
} else {
printf("[Fail]\n");
verify_failed = true;
}
printf("[FSCK] Hard link checking for regular file ");
if (fsck->hard_link_list_head == NULL) {
printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files);
verify_failed = true;
}
printf("[FSCK] valid_block_count matching with CP ");
if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) {
printf(" [Ok..] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
} else {
printf(" [Fail] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
verify_failed = true;
}
printf("[FSCK] valid_node_count matching with CP (de lookup) ");
if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt);
verify_failed = true;
}
printf("[FSCK] valid_node_count matching with CP (nat lookup)");
if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
verify_failed = true;
}
printf("[FSCK] valid_inode_count matched with CP ");
if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt);
verify_failed = true;
}
printf("[FSCK] free segment_count matched with CP ");
if (le32_to_cpu(F2FS_CKPT(sbi)->free_segment_count) ==
fsck->chk.sit_free_segs) {
printf(" [Ok..] [0x%x]\n", fsck->chk.sit_free_segs);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.sit_free_segs);
verify_failed = true;
}
printf("[FSCK] next block offset is free ");
if (check_curseg_offsets(sbi) == 0) {
printf(" [Ok..]\n");
} else {
printf(" [Fail]\n");
verify_failed = true;
}
printf("[FSCK] fixing SIT types\n");
if (check_sit_types(sbi) != 0)
force = 1;
printf("[FSCK] other corrupted bugs ");
if (c.bug_on == 0) {
printf(" [Ok..]\n");
} else {
printf(" [Fail]\n");
ret = EXIT_ERR_CODE;
}
if (verify_failed) {
ret = EXIT_ERR_CODE;
c.bug_on = 1;
}
#ifndef WITH_OHOS
if (nr_unref_nid && !c.ro) {
char ans[255] = {0};
int res;
printf("\nDo you want to restore lost files into ./lost_found/? [Y/N] ");
res = scanf("%s", ans);
ASSERT(res >= 0);
if (!strcasecmp(ans, "y")) {
for (i = 0; i < fsck->nr_nat_entries; i++) {
if (f2fs_test_bit(i, fsck->nat_area_bitmap))
dump_node(sbi, i, 1);
}
}
}
#endif
/* fix global metadata */
if (force || (c.fix_on && f2fs_dev_is_writable())) {
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
if (force || c.bug_on || c.bug_nat_bits || c.quota_fixed) {
/* flush nats to write_nit_bits below */
flush_journal_entries(sbi);
fix_hard_links(sbi);
fix_nat_entries(sbi);
rewrite_sit_area_bitmap(sbi);
fix_wp_sit_alignment(sbi);
fix_curseg_info(sbi);
fix_checksum(sbi);
fix_checkpoints(sbi);
} else if (is_set_ckpt_flags(cp, CP_FSCK_FLAG) ||
is_set_ckpt_flags(cp, CP_QUOTA_NEED_FSCK_FLAG)) {
write_checkpoints(sbi);
}
if (c.abnormal_stop)
memset(sb->s_stop_reason, 0, MAX_STOP_REASON);
if (c.fs_errors)
memset(sb->s_errors, 0, MAX_F2FS_ERRORS);
if (c.abnormal_stop || c.fs_errors)
update_superblock(sb, SB_MASK_ALL);
/* to return FSCK_ERROR_CORRECTED */
ret = 0;
}
return ret;
}
void fsck_free(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
if (fsck->qctx)
quota_release_context(&fsck->qctx);
if (fsck->main_area_bitmap)
free(fsck->main_area_bitmap);
if (fsck->nat_area_bitmap)
free(fsck->nat_area_bitmap);
if (fsck->sit_area_bitmap)
free(fsck->sit_area_bitmap);
if (fsck->entries)
free(fsck->entries);
if (tree_mark)
free(tree_mark);
while (fsck->dentry) {
struct f2fs_dentry *dentry = fsck->dentry;
fsck->dentry = fsck->dentry->next;
free(dentry);
}
}