third_party_f2fs-tools/fsck/fsck.c
Sheng Yong a9cd90e531 fsck.f2fs: check ino of an used nat entry
If a nid is valid, the ino in its nat entry should record its parent nid.
However if the ino is zero, we should drop the node.

Signed-off-by: Sheng Yong <shengyong1@huawei.com>
Signed-off-by: Xue Liu <liuxueliu.liu@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-01 16:28:15 -08:00

1586 lines
40 KiB
C

/**
* fsck.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "fsck.h"
char *tree_mark;
uint32_t tree_mark_size = 256;
static inline int f2fs_set_main_bitmap(struct f2fs_sb_info *sbi, u32 blk,
int type)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct seg_entry *se;
int fix = 0;
se = get_seg_entry(sbi, GET_SEGNO(sbi, blk));
if (se->type >= NO_CHECK_TYPE)
fix = 1;
else if (IS_DATASEG(se->type) != IS_DATASEG(type))
fix = 1;
/* just check data and node types */
if (fix) {
DBG(1, "Wrong segment type [0x%x] %x -> %x",
GET_SEGNO(sbi, blk), se->type, type);
se->type = type;
}
return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap);
}
static inline int f2fs_test_main_bitmap(struct f2fs_sb_info *sbi, u32 blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk),
fsck->main_area_bitmap);
}
static inline int f2fs_test_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap);
}
static int add_into_hard_link_list(struct f2fs_sb_info *sbi,
u32 nid, u32 link_cnt)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL, *tmp = NULL, *prev = NULL;
node = calloc(sizeof(struct hard_link_node), 1);
ASSERT(node != NULL);
node->nid = nid;
node->links = link_cnt;
node->actual_links = 1;
node->next = NULL;
if (fsck->hard_link_list_head == NULL) {
fsck->hard_link_list_head = node;
goto out;
}
tmp = fsck->hard_link_list_head;
/* Find insertion position */
while (tmp && (nid < tmp->nid)) {
ASSERT(tmp->nid != nid);
prev = tmp;
tmp = tmp->next;
}
if (tmp == fsck->hard_link_list_head) {
node->next = tmp;
fsck->hard_link_list_head = node;
} else {
prev->next = node;
node->next = tmp;
}
out:
DBG(2, "ino[0x%x] has hard links [0x%x]\n", nid, link_cnt);
return 0;
}
static int find_and_dec_hard_link_list(struct f2fs_sb_info *sbi, u32 nid)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL, *prev = NULL;
if (fsck->hard_link_list_head == NULL)
return -EINVAL;
node = fsck->hard_link_list_head;
while (node && (nid < node->nid)) {
prev = node;
node = node->next;
}
if (node == NULL || (nid != node->nid))
return -EINVAL;
/* Decrease link count */
node->links = node->links - 1;
node->actual_links++;
/* if link count becomes one, remove the node */
if (node->links == 1) {
if (fsck->hard_link_list_head == node)
fsck->hard_link_list_head = node->next;
else
prev->next = node->next;
free(node);
}
return 0;
}
static int is_valid_ssa_node_blk(struct f2fs_sb_info *sbi, u32 nid,
u32 blk_addr)
{
struct f2fs_summary_block *sum_blk;
struct f2fs_summary *sum_entry;
struct seg_entry * se;
u32 segno, offset;
int need_fix = 0, ret = 0;
int type;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
sum_blk = get_sum_block(sbi, segno, &type);
if (type != SEG_TYPE_NODE && type != SEG_TYPE_CUR_NODE) {
/* can't fix current summary, then drop the block */
if (!config.fix_on || type < 0) {
ASSERT_MSG("Summary footer is not for node segment");
ret = -EINVAL;
goto out;
}
need_fix = 1;
se = get_seg_entry(sbi, segno);
if(IS_NODESEG(se->type)) {
FIX_MSG("Summary footer indicates a node segment: 0x%x", segno);
sum_blk->footer.entry_type = SUM_TYPE_NODE;
} else {
ret = -EINVAL;
goto out;
}
}
sum_entry = &(sum_blk->entries[offset]);
if (le32_to_cpu(sum_entry->nid) != nid) {
if (!config.fix_on || type < 0) {
DBG(0, "nid [0x%x]\n", nid);
DBG(0, "target blk_addr [0x%x]\n", blk_addr);
DBG(0, "summary blk_addr [0x%x]\n",
GET_SUM_BLKADDR(sbi,
GET_SEGNO(sbi, blk_addr)));
DBG(0, "seg no / offset [0x%x / 0x%x]\n",
GET_SEGNO(sbi, blk_addr),
OFFSET_IN_SEG(sbi, blk_addr));
DBG(0, "summary_entry.nid [0x%x]\n",
le32_to_cpu(sum_entry->nid));
DBG(0, "--> node block's nid [0x%x]\n", nid);
ASSERT_MSG("Invalid node seg summary\n");
ret = -EINVAL;
} else {
FIX_MSG("Set node summary 0x%x -> [0x%x] [0x%x]",
segno, nid, blk_addr);
sum_entry->nid = cpu_to_le32(nid);
need_fix = 1;
}
}
if (need_fix && !config.ro) {
u64 ssa_blk;
int ret2;
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
ret2 = dev_write_block(sum_blk, ssa_blk);
ASSERT(ret2 >= 0);
}
out:
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX)
free(sum_blk);
return ret;
}
static int is_valid_summary(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
u32 blk_addr)
{
u16 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
u32 nid = le32_to_cpu(sum->nid);
struct f2fs_node *node_blk = NULL;
__le32 target_blk_addr;
struct node_info ni;
int ret = 0;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
if (!IS_VALID_NID(sbi, nid))
goto out;
get_node_info(sbi, nid, &ni);
if (!IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
goto out;
/* read node_block */
ret = dev_read_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
if (le32_to_cpu(node_blk->footer.nid) != nid)
goto out;
/* check its block address */
if (node_blk->footer.nid == node_blk->footer.ino)
target_blk_addr = node_blk->i.i_addr[ofs_in_node];
else
target_blk_addr = node_blk->dn.addr[ofs_in_node];
if (blk_addr == le32_to_cpu(target_blk_addr))
ret = 1;
out:
free(node_blk);
return ret;
}
static int is_valid_ssa_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr,
u32 parent_nid, u16 idx_in_node, u8 version)
{
struct f2fs_summary_block *sum_blk;
struct f2fs_summary *sum_entry;
struct seg_entry * se;
u32 segno, offset;
int need_fix = 0, ret = 0;
int type;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
sum_blk = get_sum_block(sbi, segno, &type);
if (type != SEG_TYPE_DATA && type != SEG_TYPE_CUR_DATA) {
/* can't fix current summary, then drop the block */
if (!config.fix_on || type < 0) {
ASSERT_MSG("Summary footer is not for data segment");
ret = -EINVAL;
goto out;
}
need_fix = 1;
se = get_seg_entry(sbi, segno);
if (IS_DATASEG(se->type)) {
FIX_MSG("Summary footer indicates a data segment: 0x%x", segno);
sum_blk->footer.entry_type = SUM_TYPE_DATA;
} else {
ret = -EINVAL;
goto out;
}
}
sum_entry = &(sum_blk->entries[offset]);
if (le32_to_cpu(sum_entry->nid) != parent_nid ||
sum_entry->version != version ||
le16_to_cpu(sum_entry->ofs_in_node) != idx_in_node) {
if (!config.fix_on || type < 0) {
DBG(0, "summary_entry.nid [0x%x]\n",
le32_to_cpu(sum_entry->nid));
DBG(0, "summary_entry.version [0x%x]\n",
sum_entry->version);
DBG(0, "summary_entry.ofs_in_node [0x%x]\n",
le16_to_cpu(sum_entry->ofs_in_node));
DBG(0, "parent nid [0x%x]\n",
parent_nid);
DBG(0, "version from nat [0x%x]\n", version);
DBG(0, "idx in parent node [0x%x]\n",
idx_in_node);
DBG(0, "Target data block addr [0x%x]\n", blk_addr);
ASSERT_MSG("Invalid data seg summary\n");
ret = -EINVAL;
} else if (is_valid_summary(sbi, sum_entry, blk_addr)) {
/* delete wrong index */
ret = -EINVAL;
} else {
FIX_MSG("Set data summary 0x%x -> [0x%x] [0x%x] [0x%x]",
segno, parent_nid, version, idx_in_node);
sum_entry->nid = cpu_to_le32(parent_nid);
sum_entry->version = version;
sum_entry->ofs_in_node = cpu_to_le16(idx_in_node);
need_fix = 1;
}
}
if (need_fix && !config.ro) {
u64 ssa_blk;
int ret2;
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
ret2 = dev_write_block(sum_blk, ssa_blk);
ASSERT(ret2 >= 0);
}
out:
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX)
free(sum_blk);
return ret;
}
static int __check_inode_mode(u32 nid, enum FILE_TYPE ftype, u32 mode)
{
if (ftype >= F2FS_FT_MAX)
return 0;
if (S_ISLNK(mode) && ftype != F2FS_FT_SYMLINK)
goto err;
if (S_ISREG(mode) && ftype != F2FS_FT_REG_FILE)
goto err;
if (S_ISDIR(mode) && ftype != F2FS_FT_DIR)
goto err;
if (S_ISCHR(mode) && ftype != F2FS_FT_CHRDEV)
goto err;
if (S_ISBLK(mode) && ftype != F2FS_FT_BLKDEV)
goto err;
if (S_ISFIFO(mode) && ftype != F2FS_FT_FIFO)
goto err;
if (S_ISSOCK(mode) && ftype != F2FS_FT_SOCK)
goto err;
return 0;
err:
ASSERT_MSG("mismatch i_mode [0x%x] [0x%x vs. 0x%x]", nid, ftype, mode);
return -1;
}
static int sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid,
struct f2fs_node *node_blk,
enum FILE_TYPE ftype, enum NODE_TYPE ntype,
struct node_info *ni, u8 *name)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
int ret;
if (!IS_VALID_NID(sbi, nid)) {
ASSERT_MSG("nid is not valid. [0x%x]", nid);
return -EINVAL;
}
get_node_info(sbi, nid, ni);
if (ni->ino == 0) {
ASSERT_MSG("nid[0x%x] ino is 0", nid);
return -EINVAL;
}
if (ni->blk_addr == NEW_ADDR) {
ASSERT_MSG("nid is NEW_ADDR. [0x%x]", nid);
return -EINVAL;
}
if (!IS_VALID_BLK_ADDR(sbi, ni->blk_addr)) {
ASSERT_MSG("blkaddres is not valid. [0x%x]", ni->blk_addr);
return -EINVAL;
}
ret = dev_read_block(node_blk, ni->blk_addr);
ASSERT(ret >= 0);
if (ntype == TYPE_INODE &&
node_blk->footer.nid != node_blk->footer.ino) {
ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]",
nid, le32_to_cpu(node_blk->footer.nid),
le32_to_cpu(node_blk->footer.ino));
return -EINVAL;
}
if (ntype != TYPE_INODE &&
node_blk->footer.nid == node_blk->footer.ino) {
ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]",
nid, le32_to_cpu(node_blk->footer.nid),
le32_to_cpu(node_blk->footer.ino));
return -EINVAL;
}
if (le32_to_cpu(node_blk->footer.nid) != nid) {
ASSERT_MSG("nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]",
nid, ni->blk_addr,
le32_to_cpu(node_blk->footer.nid));
return -EINVAL;
}
if (ntype == TYPE_XATTR) {
u32 flag = le32_to_cpu(node_blk->footer.flag);
if ((flag >> OFFSET_BIT_SHIFT) != XATTR_NODE_OFFSET) {
ASSERT_MSG("xnid[0x%x] has wrong ofs:[0x%x]",
nid, flag);
return -EINVAL;
}
}
if ((ntype == TYPE_INODE && ftype == F2FS_FT_DIR) ||
(ntype == TYPE_XATTR && ftype == F2FS_FT_XATTR)) {
/* not included '.' & '..' */
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) != 0) {
ASSERT_MSG("Duplicated node blk. nid[0x%x][0x%x]\n",
nid, ni->blk_addr);
return -EINVAL;
}
}
if (ntype == TYPE_INODE && ftype == F2FS_FT_DIR) {
u32 len = le32_to_cpu(node_blk->i.i_namelen);
if (name && memcmp(name, node_blk->i.i_name, len)) {
ASSERT_MSG("mismatch name [0x%x] [%s vs. %s]",
nid, name, node_blk->i.i_name);
return -EINVAL;
}
}
/* this if only from fix_hard_links */
if (ftype == F2FS_FT_MAX)
return 0;
if (ntype == TYPE_INODE &&
__check_inode_mode(nid, ftype, le32_to_cpu(node_blk->i.i_mode)))
return -EINVAL;
/* workaround to fix later */
if (ftype != F2FS_FT_ORPHAN ||
f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0)
f2fs_clear_bit(nid, fsck->nat_area_bitmap);
else
ASSERT_MSG("orphan or xattr nid is duplicated [0x%x]\n",
nid);
if (is_valid_ssa_node_blk(sbi, nid, ni->blk_addr)) {
ASSERT_MSG("summary node block is not valid. [0x%x]", nid);
return -EINVAL;
}
if (f2fs_test_sit_bitmap(sbi, ni->blk_addr) == 0)
ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]",
ni->blk_addr);
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) {
fsck->chk.valid_blk_cnt++;
fsck->chk.valid_node_cnt++;
}
return 0;
}
static int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino,
u32 x_nid, u32 *blk_cnt)
{
struct f2fs_node *node_blk = NULL;
struct node_info ni;
int ret = 0;
if (x_nid == 0x0)
return 0;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
/* Sanity check */
if (sanity_check_nid(sbi, x_nid, node_blk,
F2FS_FT_XATTR, TYPE_XATTR, &ni, NULL)) {
ret = -EINVAL;
goto out;
}
*blk_cnt = *blk_cnt + 1;
f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE);
DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid);
out:
free(node_blk);
return ret;
}
int fsck_chk_node_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
u32 nid, u8 *name, enum FILE_TYPE ftype, enum NODE_TYPE ntype,
u32 *blk_cnt, struct child_info *child,
struct extent_info *i_ext)
{
struct node_info ni;
struct f2fs_node *node_blk = NULL;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
if (sanity_check_nid(sbi, nid, node_blk, ftype, ntype, &ni, name))
goto err;
if (ntype == TYPE_INODE) {
fsck_chk_inode_blk(sbi, nid, ftype, node_blk, blk_cnt, &ni);
} else {
switch (ntype) {
case TYPE_DIRECT_NODE:
f2fs_set_main_bitmap(sbi, ni.blk_addr,
CURSEG_WARM_NODE);
fsck_chk_dnode_blk(sbi, inode, nid, ftype, node_blk,
blk_cnt, child, &ni, i_ext);
break;
case TYPE_INDIRECT_NODE:
f2fs_set_main_bitmap(sbi, ni.blk_addr,
CURSEG_COLD_NODE);
fsck_chk_idnode_blk(sbi, inode, ftype, node_blk,
blk_cnt, child, i_ext);
break;
case TYPE_DOUBLE_INDIRECT_NODE:
f2fs_set_main_bitmap(sbi, ni.blk_addr,
CURSEG_COLD_NODE);
fsck_chk_didnode_blk(sbi, inode, ftype, node_blk,
blk_cnt, child, i_ext);
break;
default:
ASSERT(0);
}
}
free(node_blk);
return 0;
err:
free(node_blk);
return -EINVAL;
}
static void update_i_extent(struct extent_info *i_ext, block_t blkaddr)
{
block_t end_addr;
if (!i_ext)
return;
end_addr = i_ext->ext.blk_addr + i_ext->ext.len;
/* TODO: check its file offset later */
if (blkaddr >= i_ext->ext.blk_addr && blkaddr < end_addr) {
unsigned int offset = blkaddr - i_ext->ext.blk_addr;
if (f2fs_set_bit(offset, i_ext->map))
i_ext->fail = 1;
else
i_ext->len--;
}
}
/* start with valid nid and blkaddr */
void fsck_chk_inode_blk(struct f2fs_sb_info *sbi, u32 nid,
enum FILE_TYPE ftype, struct f2fs_node *node_blk,
u32 *blk_cnt, struct node_info *ni)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct child_info child = {2, 0, 0};
enum NODE_TYPE ntype;
u32 i_links = le32_to_cpu(node_blk->i.i_links);
u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks);
struct extent_info i_extent;
unsigned int idx = 0;
int need_fix = 0;
int ret;
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0)
fsck->chk.valid_inode_cnt++;
if (ftype == F2FS_FT_DIR) {
f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_HOT_NODE);
} else {
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) {
f2fs_set_main_bitmap(sbi, ni->blk_addr,
CURSEG_WARM_NODE);
if (i_links > 1 && ftype != F2FS_FT_ORPHAN) {
/* First time. Create new hard link node */
add_into_hard_link_list(sbi, nid, i_links);
fsck->chk.multi_hard_link_files++;
}
} else {
DBG(3, "[0x%x] has hard links [0x%x]\n", nid, i_links);
if (find_and_dec_hard_link_list(sbi, nid)) {
ASSERT_MSG("[0x%x] needs more i_links=0x%x",
nid, i_links);
if (config.fix_on) {
node_blk->i.i_links =
cpu_to_le32(i_links + 1);
need_fix = 1;
FIX_MSG("File: 0x%x "
"i_links= 0x%x -> 0x%x",
nid, i_links, i_links + 1);
}
goto skip_blkcnt_fix;
}
/* No need to go deep into the node */
return;
}
}
if (fsck_chk_xattr_blk(sbi, nid,
le32_to_cpu(node_blk->i.i_xattr_nid), blk_cnt) &&
config.fix_on) {
node_blk->i.i_xattr_nid = 0;
need_fix = 1;
FIX_MSG("Remove xattr block: 0x%x, x_nid = 0x%x",
nid, le32_to_cpu(node_blk->i.i_xattr_nid));
}
if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV ||
ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK)
goto check;
if((node_blk->i.i_inline & F2FS_INLINE_DATA)) {
if (le32_to_cpu(node_blk->i.i_addr[0]) != 0) {
/* should fix this bug all the time */
FIX_MSG("inline_data has wrong 0'th block = %x",
le32_to_cpu(node_blk->i.i_addr[0]));
node_blk->i.i_addr[0] = 0;
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
need_fix = 1;
}
if (!(node_blk->i.i_inline & F2FS_DATA_EXIST)) {
char buf[MAX_INLINE_DATA];
memset(buf, 0, MAX_INLINE_DATA);
if (memcmp(buf, &node_blk->i.i_addr[1],
MAX_INLINE_DATA)) {
FIX_MSG("inline_data has DATA_EXIST");
node_blk->i.i_inline |= F2FS_DATA_EXIST;
need_fix = 1;
}
}
DBG(3, "ino[0x%x] has inline data!\n", nid);
goto check;
}
if((node_blk->i.i_inline & F2FS_INLINE_DENTRY)) {
DBG(3, "ino[0x%x] has inline dentry!\n", nid);
ret = fsck_chk_inline_dentries(sbi, node_blk, &child);
if (ret < 0) {
/* should fix this bug all the time */
need_fix = 1;
}
goto check;
}
/* readahead node blocks */
for (idx = 0; idx < 5; idx++) {
u32 nid = le32_to_cpu(node_blk->i.i_nid[idx]);
if (nid != 0) {
struct node_info ni;
get_node_info(sbi, nid, &ni);
if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
dev_reada_block(ni.blk_addr);
}
}
i_extent.ext = node_blk->i.i_ext;
i_extent.len = le32_to_cpu(i_extent.ext.len);
i_extent.fail = 0;
if (i_extent.len) {
/* max 126KB */
i_extent.map = calloc(i_extent.len, 1);
ASSERT(i_extent.map != NULL);
}
/* check data blocks in inode */
for (idx = 0; idx < ADDRS_PER_INODE(&node_blk->i); idx++) {
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[idx]);
if (blkaddr != 0) {
ret = fsck_chk_data_blk(sbi,
blkaddr,
&child, (i_blocks == *blk_cnt),
ftype, nid, idx, ni->version,
file_is_encrypt(node_blk->i.i_advise));
if (!ret) {
*blk_cnt = *blk_cnt + 1;
update_i_extent(&i_extent, blkaddr);
} else if (config.fix_on) {
node_blk->i.i_addr[idx] = 0;
need_fix = 1;
FIX_MSG("[0x%x] i_addr[%d] = 0", nid, idx);
}
}
}
/* check node blocks in inode */
for (idx = 0; idx < 5; idx++) {
block_t blkaddr = le32_to_cpu(node_blk->i.i_nid[idx]);
if (idx == 0 || idx == 1)
ntype = TYPE_DIRECT_NODE;
else if (idx == 2 || idx == 3)
ntype = TYPE_INDIRECT_NODE;
else if (idx == 4)
ntype = TYPE_DOUBLE_INDIRECT_NODE;
else
ASSERT(0);
if (blkaddr != 0) {
ret = fsck_chk_node_blk(sbi, &node_blk->i,
blkaddr,
NULL, ftype, ntype, blk_cnt, &child,
&i_extent);
if (!ret) {
*blk_cnt = *blk_cnt + 1;
} else if (config.fix_on) {
node_blk->i.i_nid[idx] = 0;
need_fix = 1;
FIX_MSG("[0x%x] i_nid[%d] = 0", nid, idx);
}
}
}
if (i_extent.len || i_extent.fail) {
ASSERT_MSG("ino: 0x%x has wrong ext: untouched=%d, overlap=%d",
nid, i_extent.len, i_extent.fail);
if (config.fix_on)
need_fix = 1;
}
check:
if (i_blocks != *blk_cnt) {
ASSERT_MSG("ino: 0x%x has i_blocks: %08"PRIx64", "
"but has %u blocks",
nid, i_blocks, *blk_cnt);
if (config.fix_on) {
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
need_fix = 1;
FIX_MSG("[0x%x] i_blocks=0x%08"PRIx64" -> 0x%x",
nid, i_blocks, *blk_cnt);
}
}
skip_blkcnt_fix:
if (ftype == F2FS_FT_ORPHAN)
DBG(1, "Orphan Inode: 0x%x [%s] i_blocks: %u\n\n",
le32_to_cpu(node_blk->footer.ino),
node_blk->i.i_name,
(u32)i_blocks);
if (ftype == F2FS_FT_DIR) {
DBG(1, "Directory Inode: 0x%x [%s] depth: %d has %d files\n\n",
le32_to_cpu(node_blk->footer.ino),
node_blk->i.i_name,
le32_to_cpu(node_blk->i.i_current_depth),
child.files);
if (i_links != child.links) {
ASSERT_MSG("ino: 0x%x i_links: %u, real links: %u",
nid, i_links, child.links);
if (config.fix_on) {
node_blk->i.i_links = cpu_to_le32(child.links);
need_fix = 1;
FIX_MSG("Dir: 0x%x i_links= 0x%x -> 0x%x",
nid, i_links, child.links);
}
}
if (child.dots < 2 &&
!(node_blk->i.i_inline & F2FS_INLINE_DOTS)) {
ASSERT_MSG("ino: 0x%x dots: %u",
nid, child.dots);
if (config.fix_on) {
node_blk->i.i_inline |= F2FS_INLINE_DOTS;
need_fix = 1;
FIX_MSG("Dir: 0x%x set inline_dots", nid);
}
}
}
if (ftype == F2FS_FT_ORPHAN && i_links) {
ASSERT_MSG("ino: 0x%x is orphan inode, but has i_links: %u",
nid, i_links);
if (config.fix_on) {
node_blk->i.i_links = 0;
need_fix = 1;
FIX_MSG("ino: 0x%x orphan_inode, i_links= 0x%x -> 0",
nid, i_links);
}
}
if (need_fix && !config.ro) {
/* drop extent information to avoid potential wrong access */
node_blk->i.i_ext.len = 0;
ret = dev_write_block(node_blk, ni->blk_addr);
ASSERT(ret >= 0);
}
}
int fsck_chk_dnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk,
u32 *blk_cnt, struct child_info *child, struct node_info *ni,
struct extent_info *i_ext)
{
int idx, ret;
int need_fix = 0;
for (idx = 0; idx < ADDRS_PER_BLOCK; idx++) {
block_t blkaddr = le32_to_cpu(node_blk->dn.addr[idx]);
if (blkaddr == 0x0)
continue;
ret = fsck_chk_data_blk(sbi,
blkaddr, child,
le64_to_cpu(inode->i_blocks) == *blk_cnt, ftype,
nid, idx, ni->version,
file_is_encrypt(inode->i_advise));
if (!ret) {
*blk_cnt = *blk_cnt + 1;
update_i_extent(i_ext, blkaddr);
} else if (config.fix_on) {
node_blk->dn.addr[idx] = 0;
need_fix = 1;
FIX_MSG("[0x%x] dn.addr[%d] = 0", nid, idx);
}
}
if (need_fix && !config.ro) {
ret = dev_write_block(node_blk, ni->blk_addr);
ASSERT(ret >= 0);
}
return 0;
}
int fsck_chk_idnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt,
struct child_info *child, struct extent_info *i_ext)
{
int ret;
int i = 0;
for (i = 0 ; i < NIDS_PER_BLOCK; i++) {
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
continue;
ret = fsck_chk_node_blk(sbi, inode,
le32_to_cpu(node_blk->in.nid[i]), NULL,
ftype, TYPE_DIRECT_NODE, blk_cnt, child,
i_ext);
if (!ret)
*blk_cnt = *blk_cnt + 1;
else if (ret == -EINVAL)
printf("delete in.nid[i] = 0;\n");
}
return 0;
}
int fsck_chk_didnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt,
struct child_info *child, struct extent_info *i_ext)
{
int i = 0;
int ret = 0;
for (i = 0; i < NIDS_PER_BLOCK; i++) {
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
continue;
ret = fsck_chk_node_blk(sbi, inode,
le32_to_cpu(node_blk->in.nid[i]), NULL,
ftype, TYPE_INDIRECT_NODE, blk_cnt, child,
i_ext);
if (!ret)
*blk_cnt = *blk_cnt + 1;
else if (ret == -EINVAL)
printf("delete in.nid[i] = 0;\n");
}
return 0;
}
static void convert_encrypted_name(unsigned char *name, int len,
unsigned char *new, int encrypted)
{
if (!encrypted) {
memcpy(new, name, len);
new[len] = 0;
return;
}
while (len--) {
*new = *name++;
if (*new > 128)
*new -= 128;
if (*new < 32 || *new == 0x7f)
*new ^= 0x40; /* ^@, ^A, ^B; ^? for DEL */
new++;
}
*new = 0;
}
static void print_dentry(__u32 depth, __u8 *name,
u8 *bitmap, struct f2fs_dir_entry *dentry,
int max, int idx, int last_blk, int encrypted)
{
int last_de = 0;
int next_idx = 0;
int name_len;
unsigned int i;
int bit_offset;
unsigned char new[F2FS_NAME_LEN + 1];
if (config.dbg_lv != -1)
return;
name_len = le16_to_cpu(dentry[idx].name_len);
next_idx = idx + (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
bit_offset = find_next_bit_le(bitmap, max, next_idx);
if (bit_offset >= max && last_blk)
last_de = 1;
if (tree_mark_size <= depth) {
tree_mark_size *= 2;
ASSERT(tree_mark_size != 0);
tree_mark = realloc(tree_mark, tree_mark_size);
ASSERT(tree_mark != NULL);
}
if (last_de)
tree_mark[depth] = '`';
else
tree_mark[depth] = '|';
if (tree_mark[depth - 1] == '`')
tree_mark[depth - 1] = ' ';
for (i = 1; i < depth; i++)
printf("%c ", tree_mark[i]);
convert_encrypted_name(name, name_len, new, encrypted);
printf("%c-- %s <ino = 0x%x>, <encrypted (%d)>\n",
last_de ? '`' : '|',
new, le32_to_cpu(dentry[idx].ino),
encrypted);
}
static int f2fs_check_hash_code(struct f2fs_dir_entry *dentry,
const unsigned char *name, u32 len, int encrypted)
{
f2fs_hash_t hash_code = f2fs_dentry_hash(name, len);
/* fix hash_code made by old buggy code */
if (dentry->hash_code != hash_code) {
unsigned char new[F2FS_NAME_LEN + 1];
convert_encrypted_name((unsigned char *)name, len,
new, encrypted);
FIX_MSG("Mismatch hash_code for \"%s\" [%x:%x]",
new, le32_to_cpu(dentry->hash_code),
hash_code);
dentry->hash_code = cpu_to_le32(hash_code);
return 1;
}
return 0;
}
static int __chk_dentries(struct f2fs_sb_info *sbi, struct child_info *child,
u8 *bitmap, struct f2fs_dir_entry *dentry,
__u8 (*filenames)[F2FS_SLOT_LEN],
int max, int last_blk, int encrypted)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
enum FILE_TYPE ftype;
int dentries = 0;
u32 blk_cnt;
u8 *name;
u16 name_len;;
int ret = 0;
int fixed = 0;
int i, slots;
/* readahead inode blocks */
for (i = 0; i < max; i++) {
u32 ino;
if (test_bit_le(i, bitmap) == 0)
continue;
ino = le32_to_cpu(dentry[i].ino);
if (IS_VALID_NID(sbi, ino)) {
struct node_info ni;
get_node_info(sbi, ino, &ni);
if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) {
dev_reada_block(ni.blk_addr);
name_len = le16_to_cpu(dentry[i].name_len);
if (name_len > 0)
i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN - 1;
continue;
}
}
}
for (i = 0; i < max;) {
if (test_bit_le(i, bitmap) == 0) {
i++;
continue;
}
if (!IS_VALID_NID(sbi, le32_to_cpu(dentry[i].ino))) {
ASSERT_MSG("Bad dentry 0x%x with invalid NID/ino 0x%x",
i, le32_to_cpu(dentry[i].ino));
if (config.fix_on) {
FIX_MSG("Clear bad dentry 0x%x with bad ino 0x%x",
i, le32_to_cpu(dentry[i].ino));
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
continue;
}
ftype = dentry[i].file_type;
if ((ftype <= F2FS_FT_UNKNOWN || ftype > F2FS_FT_LAST_FILE_TYPE)) {
ASSERT_MSG("Bad dentry 0x%x with unexpected ftype 0x%x",
le32_to_cpu(dentry[i].ino), ftype);
if (config.fix_on) {
FIX_MSG("Clear bad dentry 0x%x with bad ftype 0x%x",
i, ftype);
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
continue;
}
name_len = le16_to_cpu(dentry[i].name_len);
if (name_len == 0) {
ASSERT_MSG("Bad dentry 0x%x with zero name_len", i);
if (config.fix_on) {
FIX_MSG("Clear bad dentry 0x%x", i);
test_and_clear_bit_le(i, bitmap);
fixed = 1;
}
i++;
continue;
}
name = calloc(name_len + 1, 1);
memcpy(name, filenames[i], name_len);
slots = (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
/* Becareful. 'dentry.file_type' is not imode. */
if (ftype == F2FS_FT_DIR) {
if ((name[0] == '.' && name_len == 1) ||
(name[0] == '.' && name[1] == '.' &&
name_len == 2)) {
i++;
free(name);
child->dots++;
continue;
}
}
if (f2fs_check_hash_code(dentry + i, name, name_len, encrypted))
fixed = 1;
DBG(1, "[%3u]-[0x%x] name[%s] len[0x%x] ino[0x%x] type[0x%x]\n",
fsck->dentry_depth, i, name, name_len,
le32_to_cpu(dentry[i].ino),
dentry[i].file_type);
print_dentry(fsck->dentry_depth, name, bitmap,
dentry, max, i, last_blk, encrypted);
blk_cnt = 1;
ret = fsck_chk_node_blk(sbi,
NULL, le32_to_cpu(dentry[i].ino), name,
ftype, TYPE_INODE, &blk_cnt, NULL, NULL);
if (ret && config.fix_on) {
int j;
for (j = 0; j < slots; j++)
test_and_clear_bit_le(i + j, bitmap);
FIX_MSG("Unlink [0x%x] - %s len[0x%x], type[0x%x]",
le32_to_cpu(dentry[i].ino),
name, name_len,
dentry[i].file_type);
fixed = 1;
} else if (ret == 0) {
if (ftype == F2FS_FT_DIR)
child->links++;
dentries++;
child->files++;
}
i += slots;
free(name);
}
return fixed ? -1 : dentries;
}
int fsck_chk_inline_dentries(struct f2fs_sb_info *sbi,
struct f2fs_node *node_blk, struct child_info *child)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_inline_dentry *de_blk;
int dentries;
de_blk = inline_data_addr(node_blk);
ASSERT(de_blk != NULL);
fsck->dentry_depth++;
dentries = __chk_dentries(sbi, child,
de_blk->dentry_bitmap,
de_blk->dentry, de_blk->filename,
NR_INLINE_DENTRY, 1,
file_is_encrypt(node_blk->i.i_advise));
if (dentries < 0) {
DBG(1, "[%3d] Inline Dentry Block Fixed hash_codes\n\n",
fsck->dentry_depth);
} else {
DBG(1, "[%3d] Inline Dentry Block Done : "
"dentries:%d in %d slots (len:%d)\n\n",
fsck->dentry_depth, dentries,
(int)NR_INLINE_DENTRY, F2FS_NAME_LEN);
}
fsck->dentry_depth--;
return dentries;
}
int fsck_chk_dentry_blk(struct f2fs_sb_info *sbi, u32 blk_addr,
struct child_info *child, int last_blk, int encrypted)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_dentry_block *de_blk;
int dentries, ret;
de_blk = (struct f2fs_dentry_block *)calloc(BLOCK_SZ, 1);
ASSERT(de_blk != NULL);
ret = dev_read_block(de_blk, blk_addr);
ASSERT(ret >= 0);
fsck->dentry_depth++;
dentries = __chk_dentries(sbi, child,
de_blk->dentry_bitmap,
de_blk->dentry, de_blk->filename,
NR_DENTRY_IN_BLOCK, last_blk, encrypted);
if (dentries < 0 && !config.ro) {
ret = dev_write_block(de_blk, blk_addr);
ASSERT(ret >= 0);
DBG(1, "[%3d] Dentry Block [0x%x] Fixed hash_codes\n\n",
fsck->dentry_depth, blk_addr);
} else {
DBG(1, "[%3d] Dentry Block [0x%x] Done : "
"dentries:%d in %d slots (len:%d)\n\n",
fsck->dentry_depth, blk_addr, dentries,
NR_DENTRY_IN_BLOCK, F2FS_NAME_LEN);
}
fsck->dentry_depth--;
free(de_blk);
return 0;
}
int fsck_chk_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr,
struct child_info *child, int last_blk,
enum FILE_TYPE ftype, u32 parent_nid, u16 idx_in_node, u8 ver,
int encrypted)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
/* Is it reserved block? */
if (blk_addr == NEW_ADDR) {
fsck->chk.valid_blk_cnt++;
return 0;
}
if (!IS_VALID_BLK_ADDR(sbi, blk_addr)) {
ASSERT_MSG("blkaddres is not valid. [0x%x]", blk_addr);
return -EINVAL;
}
if (is_valid_ssa_data_blk(sbi, blk_addr, parent_nid,
idx_in_node, ver)) {
ASSERT_MSG("summary data block is not valid. [0x%x]",
parent_nid);
return -EINVAL;
}
if (f2fs_test_sit_bitmap(sbi, blk_addr) == 0)
ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", blk_addr);
if (f2fs_test_main_bitmap(sbi, blk_addr) != 0)
ASSERT_MSG("Duplicated data [0x%x]. pnid[0x%x] idx[0x%x]",
blk_addr, parent_nid, idx_in_node);
fsck->chk.valid_blk_cnt++;
if (ftype == F2FS_FT_DIR) {
f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_HOT_DATA);
return fsck_chk_dentry_blk(sbi, blk_addr, child,
last_blk, encrypted);
} else {
f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_WARM_DATA);
}
return 0;
}
void fsck_chk_orphan_node(struct f2fs_sb_info *sbi)
{
u32 blk_cnt = 0;
block_t start_blk, orphan_blkaddr, i, j;
struct f2fs_orphan_block *orphan_blk, *new_blk;
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
u32 entry_count;
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
return;
start_blk = __start_cp_addr(sbi) + 1 + get_sb(cp_payload);
orphan_blkaddr = __start_sum_addr(sbi) - 1;
orphan_blk = calloc(BLOCK_SZ, 1);
ASSERT(orphan_blk);
new_blk = calloc(BLOCK_SZ, 1);
ASSERT(new_blk);
for (i = 0; i < orphan_blkaddr; i++) {
int ret = dev_read_block(orphan_blk, start_blk + i);
u32 new_entry_count = 0;
ASSERT(ret >= 0);
entry_count = le32_to_cpu(orphan_blk->entry_count);
for (j = 0; j < entry_count; j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
DBG(1, "[%3d] ino [0x%x]\n", i, ino);
blk_cnt = 1;
ret = fsck_chk_node_blk(sbi, NULL, ino, NULL,
F2FS_FT_ORPHAN, TYPE_INODE, &blk_cnt,
NULL, NULL);
if (!ret)
new_blk->ino[new_entry_count++] =
orphan_blk->ino[j];
else if (ret && config.fix_on)
FIX_MSG("[0x%x] remove from orphan list", ino);
else if (ret)
ASSERT_MSG("[0x%x] wrong orphan inode", ino);
}
if (!config.ro && config.fix_on &&
entry_count != new_entry_count) {
new_blk->entry_count = cpu_to_le32(new_entry_count);
ret = dev_write_block(new_blk, start_blk + i);
ASSERT(ret >= 0);
}
memset(orphan_blk, 0, BLOCK_SZ);
memset(new_blk, 0, BLOCK_SZ);
}
free(orphan_blk);
free(new_blk);
}
void fsck_init(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
/*
* We build three bitmap for main/sit/nat so that may check consistency
* of filesystem.
* 1. main_area_bitmap will be used to check whether all blocks of main
* area is used or not.
* 2. nat_area_bitmap has bitmap information of used nid in NAT.
* 3. sit_area_bitmap has bitmap information of used main block.
* At Last sequence, we compare main_area_bitmap with sit_area_bitmap.
*/
fsck->nr_main_blks = sm_i->main_segments << sbi->log_blocks_per_seg;
fsck->main_area_bitmap_sz = (fsck->nr_main_blks + 7) / 8;
fsck->main_area_bitmap = calloc(fsck->main_area_bitmap_sz, 1);
ASSERT(fsck->main_area_bitmap != NULL);
build_nat_area_bitmap(sbi);
build_sit_area_bitmap(sbi);
ASSERT(tree_mark_size != 0);
tree_mark = calloc(tree_mark_size, 1);
ASSERT(tree_mark != NULL);
}
static void fix_hard_links(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *tmp, *node;
struct f2fs_node *node_blk = NULL;
struct node_info ni;
int ret;
if (fsck->hard_link_list_head == NULL)
return;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
node = fsck->hard_link_list_head;
while (node) {
/* Sanity check */
if (sanity_check_nid(sbi, node->nid, node_blk,
F2FS_FT_MAX, TYPE_INODE, &ni, NULL))
FIX_MSG("Failed to fix, rerun fsck.f2fs");
node_blk->i.i_links = cpu_to_le32(node->actual_links);
FIX_MSG("File: 0x%x i_links= 0x%x -> 0x%x",
node->nid, node->links, node->actual_links);
ret = dev_write_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
tmp = node;
node = node->next;
free(tmp);
}
}
static void fix_nat_entries(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
u32 i;
for (i = 0; i < fsck->nr_nat_entries; i++)
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0)
nullify_nat_entry(sbi, i);
}
static void fix_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
unsigned long long cp_blk_no;
u32 flags = CP_UMOUNT_FLAG;
block_t orphan_blks = 0;
u32 i;
int ret;
u_int32_t crc = 0;
if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
orphan_blks = __start_sum_addr(sbi) - 1;
flags |= CP_ORPHAN_PRESENT_FLAG;
}
set_cp(ckpt_flags, flags);
set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_sb(cp_payload));
set_cp(free_segment_count, fsck->chk.free_segs);
set_cp(valid_block_count, fsck->chk.valid_blk_cnt);
set_cp(valid_node_count, fsck->chk.valid_node_cnt);
set_cp(valid_inode_count, fsck->chk.valid_inode_cnt);
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET);
*((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) = cpu_to_le32(crc);
cp_blk_no = get_sb(cp_blkaddr);
if (sbi->cur_cp == 2)
cp_blk_no += 1 << get_sb(log_blocks_per_seg);
ret = dev_write_block(cp, cp_blk_no++);
ASSERT(ret >= 0);
for (i = 0; i < get_sb(cp_payload); i++) {
ret = dev_write_block(((unsigned char *)cp) + i * F2FS_BLKSIZE,
cp_blk_no++);
ASSERT(ret >= 0);
}
cp_blk_no += orphan_blks;
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
ASSERT(ret >= 0);
}
ret = dev_write_block(cp, cp_blk_no++);
ASSERT(ret >= 0);
}
int check_curseg_offset(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
struct seg_entry *se;
int j, nblocks;
se = get_seg_entry(sbi, curseg->segno);
if (f2fs_test_bit(curseg->next_blkoff,
(const char *)se->cur_valid_map)) {
ASSERT_MSG("Next block offset is not free, type:%d", i);
return -EINVAL;
}
if (curseg->alloc_type == SSR)
return 0;
nblocks = sbi->blocks_per_seg;
for (j = curseg->next_blkoff + 1; j < nblocks; j++) {
if (f2fs_test_bit(j, (const char *)se->cur_valid_map)) {
ASSERT_MSG("LFS must have free section:%d", i);
return -EINVAL;
}
}
}
return 0;
}
int check_sit_types(struct f2fs_sb_info *sbi)
{
unsigned int i;
int err = 0;
for (i = 0; i < TOTAL_SEGS(sbi); i++) {
struct seg_entry *se;
se = get_seg_entry(sbi, i);
if (se->orig_type != se->type) {
if (se->orig_type == CURSEG_COLD_DATA) {
se->type = se->orig_type;
} else {
FIX_MSG("Wrong segment type [0x%x] %x -> %x",
i, se->orig_type, se->type);
err = -EINVAL;
}
}
}
return err;
}
int fsck_verify(struct f2fs_sb_info *sbi)
{
unsigned int i = 0;
int ret = 0;
int force = 0;
u32 nr_unref_nid = 0;
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL;
printf("\n");
for (i = 0; i < fsck->nr_nat_entries; i++) {
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) {
printf("NID[0x%x] is unreachable\n", i);
nr_unref_nid++;
}
}
if (fsck->hard_link_list_head != NULL) {
node = fsck->hard_link_list_head;
while (node) {
printf("NID[0x%x] has [0x%x] more unreachable links\n",
node->nid, node->links);
node = node->next;
}
config.bug_on = 1;
}
printf("[FSCK] Unreachable nat entries ");
if (nr_unref_nid == 0x0) {
printf(" [Ok..] [0x%x]\n", nr_unref_nid);
} else {
printf(" [Fail] [0x%x]\n", nr_unref_nid);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] SIT valid block bitmap checking ");
if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap,
fsck->sit_area_bitmap_sz) == 0x0) {
printf("[Ok..]\n");
} else {
printf("[Fail]\n");
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] Hard link checking for regular file ");
if (fsck->hard_link_list_head == NULL) {
printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] valid_block_count matching with CP ");
if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) {
printf(" [Ok..] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
} else {
printf(" [Fail] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] valid_node_count matcing with CP (de lookup) ");
if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] valid_node_count matcing with CP (nat lookup) ");
if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] valid_inode_count matched with CP ");
if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] free segment_count matched with CP ");
if (le32_to_cpu(F2FS_CKPT(sbi)->free_segment_count) ==
fsck->chk.sit_free_segs) {
printf(" [Ok..] [0x%x]\n", fsck->chk.sit_free_segs);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.sit_free_segs);
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] next block offset is free ");
if (check_curseg_offset(sbi) == 0) {
printf(" [Ok..]\n");
} else {
printf(" [Fail]\n");
ret = EXIT_ERR_CODE;
config.bug_on = 1;
}
printf("[FSCK] fixing SIT types\n");
if (check_sit_types(sbi) != 0)
force = 1;
printf("[FSCK] other corrupted bugs ");
if (config.bug_on == 0) {
printf(" [Ok..]\n");
} else {
printf(" [Fail]\n");
ret = EXIT_ERR_CODE;
}
/* fix global metadata */
if (force || (config.bug_on && config.fix_on && !config.ro)) {
fix_hard_links(sbi);
fix_nat_entries(sbi);
move_curseg_info(sbi, SM_I(sbi)->main_blkaddr);
write_curseg_info(sbi);
rewrite_sit_area_bitmap(sbi);
fix_checkpoint(sbi);
}
return ret;
}
void fsck_free(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
if (fsck->main_area_bitmap)
free(fsck->main_area_bitmap);
if (fsck->nat_area_bitmap)
free(fsck->nat_area_bitmap);
if (fsck->sit_area_bitmap)
free(fsck->sit_area_bitmap);
if (tree_mark)
free(tree_mark);
}