third_party_f2fs-tools/fsck/f2fs.h
Sheng Yong 25b71b53ed resize.f2fs: skip cursegs when finding next free block
resize.f2fs (f2fs_defragment) tries to migrate blocks to new positions.
However, if a curseg is selected, and f2fs_defragment is broken by any
error, curseg->next_blkoff is left not updated.

To avoid this, we skip cursegs when finding next free block.

Signed-off-by: Sheng Yong <shengyong1@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-08-27 23:49:26 -07:00

499 lines
14 KiB
C

/**
* f2fs.h
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _F2FS_H_
#define _F2FS_H_
#include <f2fs_fs.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#ifdef HAVE_MNTENT_H
#include <mntent.h>
#endif
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <assert.h>
#define EXIT_ERR_CODE (-1)
#define ver_after(a, b) (typecheck(unsigned long long, a) && \
typecheck(unsigned long long, b) && \
((long long)((a) - (b)) > 0))
struct list_head {
struct list_head *next, *prev;
};
enum {
NAT_BITMAP,
SIT_BITMAP
};
struct node_info {
nid_t nid;
nid_t ino;
u32 blk_addr;
unsigned char version;
};
struct f2fs_nm_info {
block_t nat_blkaddr;
block_t nat_blocks;
nid_t max_nid;
nid_t init_scan_nid;
nid_t next_scan_nid;
unsigned int nat_cnt;
unsigned int fcnt;
char *nat_bitmap;
int bitmap_size;
char *nid_bitmap;
};
struct seg_entry {
unsigned short valid_blocks; /* # of valid blocks */
unsigned char *cur_valid_map; /* validity bitmap of blocks */
unsigned char type; /* segment type like CURSEG_XXX_TYPE */
unsigned char orig_type; /* segment type like CURSEG_XXX_TYPE */
unsigned long long mtime; /* modification time of the segment */
int dirty;
};
struct sec_entry {
unsigned int valid_blocks; /* # of valid blocks in a section */
};
struct sit_info {
block_t sit_base_addr; /* start block address of SIT area */
block_t sit_blocks; /* # of blocks used by SIT area */
block_t written_valid_blocks; /* # of valid blocks in main area */
char *sit_bitmap; /* SIT bitmap pointer */
unsigned int bitmap_size; /* SIT bitmap size */
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
unsigned int dirty_sentries; /* # of dirty sentries */
unsigned int sents_per_block; /* # of SIT entries per block */
struct seg_entry *sentries; /* SIT segment-level cache */
struct sec_entry *sec_entries; /* SIT section-level cache */
unsigned long long elapsed_time; /* elapsed time after mount */
unsigned long long mounted_time; /* mount time */
unsigned long long min_mtime; /* min. modification time */
unsigned long long max_mtime; /* max. modification time */
};
struct curseg_info {
struct f2fs_summary_block *sum_blk; /* cached summary block */
unsigned char alloc_type; /* current allocation type */
unsigned int segno; /* current segment number */
unsigned short next_blkoff; /* next block offset to write */
unsigned int zone; /* current zone number */
unsigned int next_segno; /* preallocated segment */
};
struct f2fs_sm_info {
struct sit_info *sit_info;
struct curseg_info *curseg_array;
block_t seg0_blkaddr;
block_t main_blkaddr;
block_t ssa_blkaddr;
unsigned int segment_count;
unsigned int main_segments;
unsigned int reserved_segments;
unsigned int ovp_segments;
};
struct f2fs_dentry_ptr {
struct inode *inode;
u8 *bitmap;
struct f2fs_dir_entry *dentry;
__u8 (*filename)[F2FS_SLOT_LEN];
int max;
int nr_bitmap;
};
struct dentry {
char *path;
char *full_path;
const u8 *name;
int len;
char *link;
unsigned long size;
u8 file_type;
u16 mode;
u16 uid;
u16 gid;
u32 *inode;
u32 mtime;
char *secon;
uint64_t capabilities;
nid_t ino;
nid_t pino;
};
/* different from dnode_of_data in kernel */
struct dnode_of_data {
struct f2fs_node *inode_blk; /* inode page */
struct f2fs_node *node_blk; /* cached direct node page */
nid_t nid;
unsigned int ofs_in_node;
block_t data_blkaddr;
block_t node_blkaddr;
int idirty, ndirty;
};
struct f2fs_sb_info {
struct f2fs_fsck *fsck;
struct f2fs_super_block *raw_super;
struct f2fs_nm_info *nm_info;
struct f2fs_sm_info *sm_info;
struct f2fs_checkpoint *ckpt;
int cur_cp;
struct list_head orphan_inode_list;
unsigned int n_orphans;
/* basic file system units */
unsigned int log_sectors_per_block; /* log2 sectors per block */
unsigned int log_blocksize; /* log2 block size */
unsigned int blocksize; /* block size */
unsigned int root_ino_num; /* root inode number*/
unsigned int node_ino_num; /* node inode number*/
unsigned int meta_ino_num; /* meta inode number*/
unsigned int log_blocks_per_seg; /* log2 blocks per segment */
unsigned int blocks_per_seg; /* blocks per segment */
unsigned int segs_per_sec; /* segments per section */
unsigned int secs_per_zone; /* sections per zone */
unsigned int total_sections; /* total section count */
unsigned int total_node_count; /* total node block count */
unsigned int total_valid_node_count; /* valid node block count */
unsigned int total_valid_inode_count; /* valid inode count */
int active_logs; /* # of active logs */
block_t user_block_count; /* # of user blocks */
block_t total_valid_block_count; /* # of valid blocks */
block_t alloc_valid_block_count; /* # of allocated blocks */
block_t last_valid_block_count; /* for recovery */
u32 s_next_generation; /* for NFS support */
unsigned int cur_victim_sec; /* current victim section num */
u32 free_segments;
};
static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
return (struct f2fs_super_block *)(sbi->raw_super);
}
static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_checkpoint *)(sbi->ckpt);
}
static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi)
{
return (struct f2fs_fsck *)(sbi->fsck);
}
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_nm_info *)(sbi->nm_info);
}
static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_sm_info *)(sbi->sm_info);
}
static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
return (struct sit_info *)(SM_I(sbi)->sit_info);
}
static inline void *inline_data_addr(struct f2fs_node *node_blk)
{
int ofs = get_extra_isize(node_blk) + DEF_INLINE_RESERVED_SIZE;
return (void *)&(node_blk->i.i_addr[ofs]);
}
static inline unsigned int ofs_of_node(struct f2fs_node *node_blk)
{
unsigned flag = le32_to_cpu(node_blk->footer.flag);
return flag >> OFFSET_BIT_SHIFT;
}
static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
return ckpt_flags & f ? 1 : 0;
}
static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
/* return NAT or SIT bitmap */
if (flag == NAT_BITMAP)
return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
else if (flag == SIT_BITMAP)
return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
return 0;
}
static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
int offset;
if (is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG)) {
offset = (flag == SIT_BITMAP) ?
le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
return &ckpt->sit_nat_version_bitmap + offset;
}
if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
if (flag == NAT_BITMAP)
return &ckpt->sit_nat_version_bitmap;
else
return ((char *)ckpt + F2FS_BLKSIZE);
} else {
offset = (flag == NAT_BITMAP) ?
le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
return &ckpt->sit_nat_version_bitmap + offset;
}
}
static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
if (sbi->cur_cp == 2)
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline block_t __end_block_addr(struct f2fs_sb_info *sbi)
{
block_t end = SM_I(sbi)->main_blkaddr;
return end + le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
}
#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
#define IS_DATASEG(t) \
((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
(t == CURSEG_WARM_DATA))
#define IS_NODESEG(t) \
((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
(t == CURSEG_WARM_NODE))
#define GET_SUM_BLKADDR(sbi, segno) \
((sbi->sm_info->ssa_blkaddr) + segno)
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
((blk_addr) - SM_I(sbi)->seg0_blkaddr)
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
#define FREE_I_START_SEGNO(sbi) \
GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr)
#define GET_R2L_SEGNO(sbi, segno) (segno + FREE_I_START_SEGNO(sbi))
#define START_BLOCK(sbi, segno) (SM_I(sbi)->main_blkaddr + \
((segno) << sbi->log_blocks_per_seg))
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
- (base + 1) + type;
}
#define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
#define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
#define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
#define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
#define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
#define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
#define SIT_ENTRY_OFFSET(sit_i, segno) \
((segno) % sit_i->sents_per_block)
#define SIT_BLOCK_OFFSET(sit_i, segno) \
((segno) / SIT_ENTRY_PER_BLOCK)
#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
static inline bool IS_VALID_NID(struct f2fs_sb_info *sbi, u32 nid)
{
return (nid <= (NAT_ENTRY_PER_BLOCK *
le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_nat)
<< (sbi->log_blocks_per_seg - 1)));
}
static inline bool IS_VALID_BLK_ADDR(struct f2fs_sb_info *sbi, u32 addr)
{
if (addr >= le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count) ||
addr < SM_I(sbi)->main_blkaddr) {
DBG(1, "block addr [0x%x]\n", addr);
return 0;
}
/* next block offset will be checked at the end of fsck. */
return 1;
}
static inline int IS_CUR_SEGNO(struct f2fs_sb_info *sbi, u32 segno)
{
int i;
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (segno == curseg->segno)
return 1;
}
return 0;
}
static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr)
{
ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr);
return blk_addr - SM_I(sbi)->main_blkaddr;
}
static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr)
{
return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
>> sbi->log_blocks_per_seg);
}
static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr)
{
return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
% (1 << sbi->log_blocks_per_seg));
}
static inline void node_info_from_raw_nat(struct node_info *ni,
struct f2fs_nat_entry *raw_nat)
{
ni->ino = le32_to_cpu(raw_nat->ino);
ni->blk_addr = le32_to_cpu(raw_nat->block_addr);
ni->version = raw_nat->version;
}
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
unsigned int ofs_in_node, unsigned char version)
{
sum->nid = cpu_to_le32(nid);
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
sum->version = version;
}
#define S_SHIFT 12
static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
[S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
[S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
};
static inline int map_de_type(umode_t mode)
{
return f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
}
static inline void *inline_xattr_addr(struct f2fs_inode *inode)
{
return (void *)&(inode->i_addr[DEF_ADDRS_PER_INODE -
get_inline_xattr_addrs(inode)]);
}
static inline int inline_xattr_size(struct f2fs_inode *inode)
{
return get_inline_xattr_addrs(inode) * sizeof(__le32);
}
extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne);
#define IS_SUM_NODE_SEG(footer) (footer.entry_type == SUM_TYPE_NODE)
#define IS_SUM_DATA_SEG(footer) (footer.entry_type == SUM_TYPE_DATA)
static inline unsigned int dir_buckets(unsigned int level, int dir_level)
{
if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
return 1 << (level + dir_level);
else
return MAX_DIR_BUCKETS;
}
static inline unsigned int bucket_blocks(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
static inline unsigned long dir_block_index(unsigned int level,
int dir_level, unsigned int idx)
{
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
bidx += idx * bucket_blocks(level);
return bidx;
}
static inline int is_dot_dotdot(const unsigned char *name, const int len)
{
if (len == 1 && name[0] == '.')
return 1;
if (len == 2 && name[0] == '.' && name[1] == '.')
return 1;
return 0;
}
#endif /* _F2FS_H_ */