mirror of
https://gitee.com/openharmony/third_party_f2fs-tools
synced 2024-12-04 00:31:25 +00:00
f8410857b7
NVM Express Zoned Namespace (ZNS) devices can have zone-capacity(zc) less than the zone-size. ZNS defines a per zone capacity which can be equal or less than the zone-size. Zone-capacity is the number of usable blocks in the zone. If zone-capacity is less than zone-size, then the segments which start at/after zone-capacity are considered unusable. Only those segments which start before the zone-capacity are considered as usable and added to the free_segment_count and free_segment_bitmap of the kernel. In such cases, the filesystem should not write/read beyond the zone-capacity. Update the super block with the usable number of blocks and free segment count in the ZNS device zones, if zone-capacity is less than zone-size. Set reserved segment count and overprovision ratio based on the usable segments in the zone. Allow fsck to find the free_segment_count based on the zone-capacity and compare with checkpoint values. Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> [Jaegeuk Kim: add UNUSED to is_usable_seg()] Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
3197 lines
80 KiB
C
3197 lines
80 KiB
C
/**
|
|
* fsck.c
|
|
*
|
|
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include "fsck.h"
|
|
#include "xattr.h"
|
|
#include "quotaio.h"
|
|
#include <time.h>
|
|
|
|
char *tree_mark;
|
|
uint32_t tree_mark_size = 256;
|
|
|
|
int f2fs_set_main_bitmap(struct f2fs_sb_info *sbi, u32 blk, int type)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct seg_entry *se;
|
|
int fix = 0;
|
|
|
|
se = get_seg_entry(sbi, GET_SEGNO(sbi, blk));
|
|
if (se->type >= NO_CHECK_TYPE)
|
|
fix = 1;
|
|
else if (IS_DATASEG(se->type) != IS_DATASEG(type))
|
|
fix = 1;
|
|
|
|
/* just check data and node types */
|
|
if (fix) {
|
|
DBG(1, "Wrong segment type [0x%x] %x -> %x",
|
|
GET_SEGNO(sbi, blk), se->type, type);
|
|
se->type = type;
|
|
}
|
|
return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap);
|
|
}
|
|
|
|
static inline int f2fs_test_main_bitmap(struct f2fs_sb_info *sbi, u32 blk)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk),
|
|
fsck->main_area_bitmap);
|
|
}
|
|
|
|
static inline int f2fs_clear_main_bitmap(struct f2fs_sb_info *sbi, u32 blk)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
return f2fs_clear_bit(BLKOFF_FROM_MAIN(sbi, blk),
|
|
fsck->main_area_bitmap);
|
|
}
|
|
|
|
static inline int f2fs_test_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap);
|
|
}
|
|
|
|
int f2fs_set_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap);
|
|
}
|
|
|
|
static int add_into_hard_link_list(struct f2fs_sb_info *sbi,
|
|
u32 nid, u32 link_cnt)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct hard_link_node *node = NULL, *tmp = NULL, *prev = NULL;
|
|
|
|
node = calloc(sizeof(struct hard_link_node), 1);
|
|
ASSERT(node != NULL);
|
|
|
|
node->nid = nid;
|
|
node->links = link_cnt;
|
|
node->actual_links = 1;
|
|
node->next = NULL;
|
|
|
|
if (fsck->hard_link_list_head == NULL) {
|
|
fsck->hard_link_list_head = node;
|
|
goto out;
|
|
}
|
|
|
|
tmp = fsck->hard_link_list_head;
|
|
|
|
/* Find insertion position */
|
|
while (tmp && (nid < tmp->nid)) {
|
|
ASSERT(tmp->nid != nid);
|
|
prev = tmp;
|
|
tmp = tmp->next;
|
|
}
|
|
|
|
if (tmp == fsck->hard_link_list_head) {
|
|
node->next = tmp;
|
|
fsck->hard_link_list_head = node;
|
|
} else {
|
|
prev->next = node;
|
|
node->next = tmp;
|
|
}
|
|
|
|
out:
|
|
DBG(2, "ino[0x%x] has hard links [0x%x]\n", nid, link_cnt);
|
|
return 0;
|
|
}
|
|
|
|
static int find_and_dec_hard_link_list(struct f2fs_sb_info *sbi, u32 nid)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct hard_link_node *node = NULL, *prev = NULL;
|
|
|
|
if (fsck->hard_link_list_head == NULL)
|
|
return -EINVAL;
|
|
|
|
node = fsck->hard_link_list_head;
|
|
|
|
while (node && (nid < node->nid)) {
|
|
prev = node;
|
|
node = node->next;
|
|
}
|
|
|
|
if (node == NULL || (nid != node->nid))
|
|
return -EINVAL;
|
|
|
|
/* Decrease link count */
|
|
node->links = node->links - 1;
|
|
node->actual_links++;
|
|
|
|
/* if link count becomes one, remove the node */
|
|
if (node->links == 1) {
|
|
if (fsck->hard_link_list_head == node)
|
|
fsck->hard_link_list_head = node->next;
|
|
else
|
|
prev->next = node->next;
|
|
free(node);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int is_valid_ssa_node_blk(struct f2fs_sb_info *sbi, u32 nid,
|
|
u32 blk_addr)
|
|
{
|
|
struct f2fs_summary_block *sum_blk;
|
|
struct f2fs_summary *sum_entry;
|
|
struct seg_entry * se;
|
|
u32 segno, offset;
|
|
int need_fix = 0, ret = 0;
|
|
int type;
|
|
|
|
segno = GET_SEGNO(sbi, blk_addr);
|
|
offset = OFFSET_IN_SEG(sbi, blk_addr);
|
|
|
|
sum_blk = get_sum_block(sbi, segno, &type);
|
|
|
|
if (type != SEG_TYPE_NODE && type != SEG_TYPE_CUR_NODE) {
|
|
/* can't fix current summary, then drop the block */
|
|
if (!c.fix_on || type < 0) {
|
|
ASSERT_MSG("Summary footer is not for node segment");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
need_fix = 1;
|
|
se = get_seg_entry(sbi, segno);
|
|
if(IS_NODESEG(se->type)) {
|
|
FIX_MSG("Summary footer indicates a node segment: 0x%x", segno);
|
|
sum_blk->footer.entry_type = SUM_TYPE_NODE;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
sum_entry = &(sum_blk->entries[offset]);
|
|
|
|
if (le32_to_cpu(sum_entry->nid) != nid) {
|
|
if (!c.fix_on || type < 0) {
|
|
DBG(0, "nid [0x%x]\n", nid);
|
|
DBG(0, "target blk_addr [0x%x]\n", blk_addr);
|
|
DBG(0, "summary blk_addr [0x%x]\n",
|
|
GET_SUM_BLKADDR(sbi,
|
|
GET_SEGNO(sbi, blk_addr)));
|
|
DBG(0, "seg no / offset [0x%x / 0x%x]\n",
|
|
GET_SEGNO(sbi, blk_addr),
|
|
OFFSET_IN_SEG(sbi, blk_addr));
|
|
DBG(0, "summary_entry.nid [0x%x]\n",
|
|
le32_to_cpu(sum_entry->nid));
|
|
DBG(0, "--> node block's nid [0x%x]\n", nid);
|
|
ASSERT_MSG("Invalid node seg summary\n");
|
|
ret = -EINVAL;
|
|
} else {
|
|
FIX_MSG("Set node summary 0x%x -> [0x%x] [0x%x]",
|
|
segno, nid, blk_addr);
|
|
sum_entry->nid = cpu_to_le32(nid);
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
if (need_fix && f2fs_dev_is_writable()) {
|
|
u64 ssa_blk;
|
|
int ret2;
|
|
|
|
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
|
|
ret2 = dev_write_block(sum_blk, ssa_blk);
|
|
ASSERT(ret2 >= 0);
|
|
}
|
|
out:
|
|
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
|
|
type == SEG_TYPE_MAX)
|
|
free(sum_blk);
|
|
return ret;
|
|
}
|
|
|
|
static int is_valid_summary(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
|
u32 blk_addr)
|
|
{
|
|
u16 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
|
|
u32 nid = le32_to_cpu(sum->nid);
|
|
struct f2fs_node *node_blk = NULL;
|
|
__le32 target_blk_addr;
|
|
struct node_info ni;
|
|
int ret = 0;
|
|
|
|
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
|
|
ASSERT(node_blk != NULL);
|
|
|
|
if (!IS_VALID_NID(sbi, nid))
|
|
goto out;
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
|
|
if (!IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
|
|
goto out;
|
|
|
|
/* read node_block */
|
|
ret = dev_read_block(node_blk, ni.blk_addr);
|
|
ASSERT(ret >= 0);
|
|
|
|
if (le32_to_cpu(node_blk->footer.nid) != nid)
|
|
goto out;
|
|
|
|
/* check its block address */
|
|
if (node_blk->footer.nid == node_blk->footer.ino) {
|
|
int ofs = get_extra_isize(node_blk);
|
|
|
|
target_blk_addr = node_blk->i.i_addr[ofs + ofs_in_node];
|
|
} else {
|
|
target_blk_addr = node_blk->dn.addr[ofs_in_node];
|
|
}
|
|
|
|
if (blk_addr == le32_to_cpu(target_blk_addr))
|
|
ret = 1;
|
|
out:
|
|
free(node_blk);
|
|
return ret;
|
|
}
|
|
|
|
static int is_valid_ssa_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr,
|
|
u32 parent_nid, u16 idx_in_node, u8 version)
|
|
{
|
|
struct f2fs_summary_block *sum_blk;
|
|
struct f2fs_summary *sum_entry;
|
|
struct seg_entry * se;
|
|
u32 segno, offset;
|
|
int need_fix = 0, ret = 0;
|
|
int type;
|
|
|
|
segno = GET_SEGNO(sbi, blk_addr);
|
|
offset = OFFSET_IN_SEG(sbi, blk_addr);
|
|
|
|
sum_blk = get_sum_block(sbi, segno, &type);
|
|
|
|
if (type != SEG_TYPE_DATA && type != SEG_TYPE_CUR_DATA) {
|
|
/* can't fix current summary, then drop the block */
|
|
if (!c.fix_on || type < 0) {
|
|
ASSERT_MSG("Summary footer is not for data segment");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
need_fix = 1;
|
|
se = get_seg_entry(sbi, segno);
|
|
if (IS_DATASEG(se->type)) {
|
|
FIX_MSG("Summary footer indicates a data segment: 0x%x", segno);
|
|
sum_blk->footer.entry_type = SUM_TYPE_DATA;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
sum_entry = &(sum_blk->entries[offset]);
|
|
|
|
if (le32_to_cpu(sum_entry->nid) != parent_nid ||
|
|
sum_entry->version != version ||
|
|
le16_to_cpu(sum_entry->ofs_in_node) != idx_in_node) {
|
|
if (!c.fix_on || type < 0) {
|
|
DBG(0, "summary_entry.nid [0x%x]\n",
|
|
le32_to_cpu(sum_entry->nid));
|
|
DBG(0, "summary_entry.version [0x%x]\n",
|
|
sum_entry->version);
|
|
DBG(0, "summary_entry.ofs_in_node [0x%x]\n",
|
|
le16_to_cpu(sum_entry->ofs_in_node));
|
|
DBG(0, "parent nid [0x%x]\n",
|
|
parent_nid);
|
|
DBG(0, "version from nat [0x%x]\n", version);
|
|
DBG(0, "idx in parent node [0x%x]\n",
|
|
idx_in_node);
|
|
|
|
DBG(0, "Target data block addr [0x%x]\n", blk_addr);
|
|
ASSERT_MSG("Invalid data seg summary\n");
|
|
ret = -EINVAL;
|
|
} else if (is_valid_summary(sbi, sum_entry, blk_addr)) {
|
|
/* delete wrong index */
|
|
ret = -EINVAL;
|
|
} else {
|
|
FIX_MSG("Set data summary 0x%x -> [0x%x] [0x%x] [0x%x]",
|
|
segno, parent_nid, version, idx_in_node);
|
|
sum_entry->nid = cpu_to_le32(parent_nid);
|
|
sum_entry->version = version;
|
|
sum_entry->ofs_in_node = cpu_to_le16(idx_in_node);
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
if (need_fix && f2fs_dev_is_writable()) {
|
|
u64 ssa_blk;
|
|
int ret2;
|
|
|
|
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
|
|
ret2 = dev_write_block(sum_blk, ssa_blk);
|
|
ASSERT(ret2 >= 0);
|
|
}
|
|
out:
|
|
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
|
|
type == SEG_TYPE_MAX)
|
|
free(sum_blk);
|
|
return ret;
|
|
}
|
|
|
|
static int __check_inode_mode(u32 nid, enum FILE_TYPE ftype, u16 mode)
|
|
{
|
|
if (ftype >= F2FS_FT_MAX)
|
|
return 0;
|
|
/* f2fs_iget will return -EIO if mode is not valid file type */
|
|
if (!S_ISLNK(mode) && !S_ISREG(mode) && !S_ISDIR(mode) &&
|
|
!S_ISCHR(mode) && !S_ISBLK(mode) && !S_ISFIFO(mode) &&
|
|
!S_ISSOCK(mode)) {
|
|
ASSERT_MSG("inode [0x%x] unknown file type i_mode [0x%x]",
|
|
nid, mode);
|
|
return -1;
|
|
}
|
|
|
|
if (S_ISLNK(mode) && ftype != F2FS_FT_SYMLINK)
|
|
goto err;
|
|
if (S_ISREG(mode) && ftype != F2FS_FT_REG_FILE)
|
|
goto err;
|
|
if (S_ISDIR(mode) && ftype != F2FS_FT_DIR)
|
|
goto err;
|
|
if (S_ISCHR(mode) && ftype != F2FS_FT_CHRDEV)
|
|
goto err;
|
|
if (S_ISBLK(mode) && ftype != F2FS_FT_BLKDEV)
|
|
goto err;
|
|
if (S_ISFIFO(mode) && ftype != F2FS_FT_FIFO)
|
|
goto err;
|
|
if (S_ISSOCK(mode) && ftype != F2FS_FT_SOCK)
|
|
goto err;
|
|
return 0;
|
|
err:
|
|
ASSERT_MSG("inode [0x%x] mismatch i_mode [0x%x vs. 0x%x]",
|
|
nid, ftype, mode);
|
|
return -1;
|
|
}
|
|
|
|
static int sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid,
|
|
struct f2fs_node *node_blk,
|
|
enum FILE_TYPE ftype, enum NODE_TYPE ntype,
|
|
struct node_info *ni)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
int ret;
|
|
|
|
if (!IS_VALID_NID(sbi, nid)) {
|
|
ASSERT_MSG("nid is not valid. [0x%x]", nid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
get_node_info(sbi, nid, ni);
|
|
if (ni->ino == 0) {
|
|
ASSERT_MSG("nid[0x%x] ino is 0", nid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ni->blk_addr == NEW_ADDR) {
|
|
ASSERT_MSG("nid is NEW_ADDR. [0x%x]", nid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!IS_VALID_BLK_ADDR(sbi, ni->blk_addr)) {
|
|
ASSERT_MSG("blkaddress is not valid. [0x%x]", ni->blk_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = dev_read_block(node_blk, ni->blk_addr);
|
|
ASSERT(ret >= 0);
|
|
|
|
if (ntype == TYPE_INODE &&
|
|
node_blk->footer.nid != node_blk->footer.ino) {
|
|
ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]",
|
|
nid, le32_to_cpu(node_blk->footer.nid),
|
|
le32_to_cpu(node_blk->footer.ino));
|
|
return -EINVAL;
|
|
}
|
|
if (ni->ino != le32_to_cpu(node_blk->footer.ino)) {
|
|
ASSERT_MSG("nid[0x%x] nat_entry->ino[0x%x] footer.ino[0x%x]",
|
|
nid, ni->ino, le32_to_cpu(node_blk->footer.ino));
|
|
return -EINVAL;
|
|
}
|
|
if (ntype != TYPE_INODE &&
|
|
node_blk->footer.nid == node_blk->footer.ino) {
|
|
ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]",
|
|
nid, le32_to_cpu(node_blk->footer.nid),
|
|
le32_to_cpu(node_blk->footer.ino));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (le32_to_cpu(node_blk->footer.nid) != nid) {
|
|
ASSERT_MSG("nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]",
|
|
nid, ni->blk_addr,
|
|
le32_to_cpu(node_blk->footer.nid));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ntype == TYPE_XATTR) {
|
|
u32 flag = le32_to_cpu(node_blk->footer.flag);
|
|
|
|
if ((flag >> OFFSET_BIT_SHIFT) != XATTR_NODE_OFFSET) {
|
|
ASSERT_MSG("xnid[0x%x] has wrong ofs:[0x%x]",
|
|
nid, flag);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if ((ntype == TYPE_INODE && ftype == F2FS_FT_DIR) ||
|
|
(ntype == TYPE_XATTR && ftype == F2FS_FT_XATTR)) {
|
|
/* not included '.' & '..' */
|
|
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) != 0) {
|
|
ASSERT_MSG("Duplicated node blk. nid[0x%x][0x%x]\n",
|
|
nid, ni->blk_addr);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* this if only from fix_hard_links */
|
|
if (ftype == F2FS_FT_MAX)
|
|
return 0;
|
|
|
|
if (ntype == TYPE_INODE &&
|
|
__check_inode_mode(nid, ftype, le16_to_cpu(node_blk->i.i_mode)))
|
|
return -EINVAL;
|
|
|
|
/* workaround to fix later */
|
|
if (ftype != F2FS_FT_ORPHAN ||
|
|
f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0) {
|
|
f2fs_clear_bit(nid, fsck->nat_area_bitmap);
|
|
/* avoid reusing nid when reconnecting files */
|
|
f2fs_set_bit(nid, NM_I(sbi)->nid_bitmap);
|
|
} else
|
|
ASSERT_MSG("orphan or xattr nid is duplicated [0x%x]\n",
|
|
nid);
|
|
|
|
if (is_valid_ssa_node_blk(sbi, nid, ni->blk_addr)) {
|
|
ASSERT_MSG("summary node block is not valid. [0x%x]", nid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (f2fs_test_sit_bitmap(sbi, ni->blk_addr) == 0)
|
|
ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]",
|
|
ni->blk_addr);
|
|
|
|
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) {
|
|
fsck->chk.valid_blk_cnt++;
|
|
fsck->chk.valid_node_cnt++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int fsck_sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid,
|
|
struct f2fs_node *node_blk,
|
|
enum FILE_TYPE ftype, enum NODE_TYPE ntype,
|
|
struct node_info *ni)
|
|
{
|
|
return sanity_check_nid(sbi, nid, node_blk, ftype, ntype, ni);
|
|
}
|
|
|
|
static int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino,
|
|
u32 x_nid, u32 *blk_cnt)
|
|
{
|
|
struct f2fs_node *node_blk = NULL;
|
|
struct node_info ni;
|
|
int ret = 0;
|
|
|
|
if (x_nid == 0x0)
|
|
return 0;
|
|
|
|
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
|
|
ASSERT(node_blk != NULL);
|
|
|
|
/* Sanity check */
|
|
if (sanity_check_nid(sbi, x_nid, node_blk,
|
|
F2FS_FT_XATTR, TYPE_XATTR, &ni)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
*blk_cnt = *blk_cnt + 1;
|
|
f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE);
|
|
DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid);
|
|
out:
|
|
free(node_blk);
|
|
return ret;
|
|
}
|
|
|
|
int fsck_chk_node_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
|
|
u32 nid, enum FILE_TYPE ftype, enum NODE_TYPE ntype,
|
|
u32 *blk_cnt, struct child_info *child)
|
|
{
|
|
struct node_info ni;
|
|
struct f2fs_node *node_blk = NULL;
|
|
|
|
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
|
|
ASSERT(node_blk != NULL);
|
|
|
|
if (sanity_check_nid(sbi, nid, node_blk, ftype, ntype, &ni))
|
|
goto err;
|
|
|
|
if (ntype == TYPE_INODE) {
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
fsck_chk_inode_blk(sbi, nid, ftype, node_blk, blk_cnt, &ni, child);
|
|
quota_add_inode_usage(fsck->qctx, nid, &node_blk->i);
|
|
} else {
|
|
switch (ntype) {
|
|
case TYPE_DIRECT_NODE:
|
|
f2fs_set_main_bitmap(sbi, ni.blk_addr,
|
|
CURSEG_WARM_NODE);
|
|
fsck_chk_dnode_blk(sbi, inode, nid, ftype, node_blk,
|
|
blk_cnt, child, &ni);
|
|
break;
|
|
case TYPE_INDIRECT_NODE:
|
|
f2fs_set_main_bitmap(sbi, ni.blk_addr,
|
|
CURSEG_COLD_NODE);
|
|
fsck_chk_idnode_blk(sbi, inode, ftype, node_blk,
|
|
blk_cnt, child);
|
|
break;
|
|
case TYPE_DOUBLE_INDIRECT_NODE:
|
|
f2fs_set_main_bitmap(sbi, ni.blk_addr,
|
|
CURSEG_COLD_NODE);
|
|
fsck_chk_didnode_blk(sbi, inode, ftype, node_blk,
|
|
blk_cnt, child);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
free(node_blk);
|
|
return 0;
|
|
err:
|
|
free(node_blk);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline void get_extent_info(struct extent_info *ext,
|
|
struct f2fs_extent *i_ext)
|
|
{
|
|
ext->fofs = le32_to_cpu(i_ext->fofs);
|
|
ext->blk = le32_to_cpu(i_ext->blk_addr);
|
|
ext->len = le32_to_cpu(i_ext->len);
|
|
}
|
|
|
|
static void check_extent_info(struct child_info *child,
|
|
block_t blkaddr, int last)
|
|
{
|
|
struct extent_info *ei = &child->ei;
|
|
u32 pgofs = child->pgofs;
|
|
int is_hole = 0;
|
|
|
|
if (!ei->len)
|
|
return;
|
|
|
|
if (child->state & FSCK_UNMATCHED_EXTENT)
|
|
return;
|
|
|
|
if ((child->state & FSCK_INLINE_INODE) && ei->len)
|
|
goto unmatched;
|
|
|
|
if (last) {
|
|
/* hole exist in the back of extent */
|
|
if (child->last_blk != ei->blk + ei->len - 1)
|
|
child->state |= FSCK_UNMATCHED_EXTENT;
|
|
return;
|
|
}
|
|
|
|
if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR)
|
|
is_hole = 1;
|
|
|
|
if (pgofs >= ei->fofs && pgofs < ei->fofs + ei->len) {
|
|
/* unmatched blkaddr */
|
|
if (is_hole || (blkaddr != pgofs - ei->fofs + ei->blk))
|
|
goto unmatched;
|
|
|
|
if (!child->last_blk) {
|
|
/* hole exists in the front of extent */
|
|
if (pgofs != ei->fofs)
|
|
goto unmatched;
|
|
} else if (child->last_blk + 1 != blkaddr) {
|
|
/* hole exists in the middle of extent */
|
|
goto unmatched;
|
|
}
|
|
child->last_blk = blkaddr;
|
|
return;
|
|
}
|
|
|
|
if (is_hole)
|
|
return;
|
|
|
|
if (blkaddr < ei->blk || blkaddr >= ei->blk + ei->len)
|
|
return;
|
|
/* unmatched file offset */
|
|
unmatched:
|
|
child->state |= FSCK_UNMATCHED_EXTENT;
|
|
}
|
|
|
|
void fsck_reada_node_block(struct f2fs_sb_info *sbi, u32 nid)
|
|
{
|
|
struct node_info ni;
|
|
|
|
if (nid != 0 && IS_VALID_NID(sbi, nid)) {
|
|
get_node_info(sbi, nid, &ni);
|
|
if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
|
|
dev_reada_block(ni.blk_addr);
|
|
}
|
|
}
|
|
|
|
void fsck_reada_all_direct_node_blocks(struct f2fs_sb_info *sbi,
|
|
struct f2fs_node *node_blk)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NIDS_PER_BLOCK; i++) {
|
|
u32 nid = le32_to_cpu(node_blk->in.nid[i]);
|
|
|
|
fsck_reada_node_block(sbi, nid);
|
|
}
|
|
}
|
|
|
|
/* start with valid nid and blkaddr */
|
|
void fsck_chk_inode_blk(struct f2fs_sb_info *sbi, u32 nid,
|
|
enum FILE_TYPE ftype, struct f2fs_node *node_blk,
|
|
u32 *blk_cnt, struct node_info *ni, struct child_info *child_d)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct child_info child;
|
|
enum NODE_TYPE ntype;
|
|
u32 i_links = le32_to_cpu(node_blk->i.i_links);
|
|
u64 i_size = le64_to_cpu(node_blk->i.i_size);
|
|
u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks);
|
|
nid_t i_xattr_nid = le32_to_cpu(node_blk->i.i_xattr_nid);
|
|
int ofs;
|
|
char *en;
|
|
u32 namelen;
|
|
unsigned int idx = 0;
|
|
unsigned short i_gc_failures;
|
|
int need_fix = 0;
|
|
int ret;
|
|
|
|
memset(&child, 0, sizeof(child));
|
|
child.links = 2;
|
|
child.p_ino = nid;
|
|
child.pp_ino = le32_to_cpu(node_blk->i.i_pino);
|
|
child.dir_level = node_blk->i.i_dir_level;
|
|
|
|
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0)
|
|
fsck->chk.valid_inode_cnt++;
|
|
|
|
if (ftype == F2FS_FT_DIR) {
|
|
f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_HOT_NODE);
|
|
} else {
|
|
if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) {
|
|
f2fs_set_main_bitmap(sbi, ni->blk_addr,
|
|
CURSEG_WARM_NODE);
|
|
if (i_links > 1 && ftype != F2FS_FT_ORPHAN &&
|
|
!is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) {
|
|
/* First time. Create new hard link node */
|
|
add_into_hard_link_list(sbi, nid, i_links);
|
|
fsck->chk.multi_hard_link_files++;
|
|
}
|
|
} else {
|
|
DBG(3, "[0x%x] has hard links [0x%x]\n", nid, i_links);
|
|
if (find_and_dec_hard_link_list(sbi, nid)) {
|
|
ASSERT_MSG("[0x%x] needs more i_links=0x%x",
|
|
nid, i_links);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_links =
|
|
cpu_to_le32(i_links + 1);
|
|
need_fix = 1;
|
|
FIX_MSG("File: 0x%x "
|
|
"i_links= 0x%x -> 0x%x",
|
|
nid, i_links, i_links + 1);
|
|
}
|
|
goto skip_blkcnt_fix;
|
|
}
|
|
/* No need to go deep into the node */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* readahead xattr node block */
|
|
fsck_reada_node_block(sbi, i_xattr_nid);
|
|
|
|
if (fsck_chk_xattr_blk(sbi, nid, i_xattr_nid, blk_cnt)) {
|
|
if (c.fix_on) {
|
|
node_blk->i.i_xattr_nid = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("Remove xattr block: 0x%x, x_nid = 0x%x",
|
|
nid, i_xattr_nid);
|
|
}
|
|
}
|
|
|
|
if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV ||
|
|
ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK)
|
|
goto check;
|
|
|
|
/* init extent info */
|
|
get_extent_info(&child.ei, &node_blk->i.i_ext);
|
|
child.last_blk = 0;
|
|
|
|
if (f2fs_has_extra_isize(&node_blk->i)) {
|
|
if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
|
|
unsigned int isize =
|
|
le16_to_cpu(node_blk->i.i_extra_isize);
|
|
if (isize > 4 * DEF_ADDRS_PER_INODE) {
|
|
ASSERT_MSG("[0x%x] wrong i_extra_isize=0x%x",
|
|
nid, isize);
|
|
if (c.fix_on) {
|
|
FIX_MSG("ino[0x%x] recover i_extra_isize "
|
|
"from %u to %u",
|
|
nid, isize,
|
|
calc_extra_isize());
|
|
node_blk->i.i_extra_isize =
|
|
cpu_to_le16(calc_extra_isize());
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT_MSG("[0x%x] wrong extra_attr flag", nid);
|
|
if (c.fix_on) {
|
|
FIX_MSG("ino[0x%x] remove F2FS_EXTRA_ATTR "
|
|
"flag in i_inline:%u",
|
|
nid, node_blk->i.i_inline);
|
|
/* we don't support tuning F2FS_FEATURE_EXTRA_ATTR now */
|
|
node_blk->i.i_inline &= ~F2FS_EXTRA_ATTR;
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
|
|
if ((c.feature &
|
|
cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) &&
|
|
(node_blk->i.i_inline & F2FS_INLINE_XATTR)) {
|
|
unsigned int inline_size =
|
|
le16_to_cpu(node_blk->i.i_inline_xattr_size);
|
|
|
|
if (!inline_size ||
|
|
inline_size > MAX_INLINE_XATTR_SIZE) {
|
|
ASSERT_MSG("[0x%x] wrong inline_xattr_size:%u",
|
|
nid, inline_size);
|
|
if (c.fix_on) {
|
|
FIX_MSG("ino[0x%x] recover inline xattr size "
|
|
"from %u to %u",
|
|
nid, inline_size,
|
|
DEFAULT_INLINE_XATTR_ADDRS);
|
|
node_blk->i.i_inline_xattr_size =
|
|
cpu_to_le16(DEFAULT_INLINE_XATTR_ADDRS);
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ofs = get_extra_isize(node_blk);
|
|
|
|
if ((node_blk->i.i_inline & F2FS_INLINE_DATA)) {
|
|
unsigned int inline_size = MAX_INLINE_DATA(node_blk);
|
|
if (cur_qtype != -1)
|
|
qf_szchk_type[cur_qtype] = QF_SZCHK_INLINE;
|
|
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs]);
|
|
|
|
if (blkaddr != 0) {
|
|
ASSERT_MSG("[0x%x] wrong inline reserve blkaddr:%u",
|
|
nid, blkaddr);
|
|
if (c.fix_on) {
|
|
FIX_MSG("inline_data has wrong 0'th block = %x",
|
|
blkaddr);
|
|
node_blk->i.i_addr[ofs] = 0;
|
|
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
if (i_size > inline_size) {
|
|
ASSERT_MSG("[0x%x] wrong inline size:%lu",
|
|
nid, (unsigned long)i_size);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_size = cpu_to_le64(inline_size);
|
|
FIX_MSG("inline_data has wrong i_size %lu",
|
|
(unsigned long)i_size);
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
if (!(node_blk->i.i_inline & F2FS_DATA_EXIST)) {
|
|
char buf[MAX_INLINE_DATA(node_blk)];
|
|
memset(buf, 0, MAX_INLINE_DATA(node_blk));
|
|
|
|
if (memcmp(buf, inline_data_addr(node_blk),
|
|
MAX_INLINE_DATA(node_blk))) {
|
|
ASSERT_MSG("[0x%x] junk inline data", nid);
|
|
if (c.fix_on) {
|
|
FIX_MSG("inline_data has DATA_EXIST");
|
|
node_blk->i.i_inline |= F2FS_DATA_EXIST;
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
}
|
|
DBG(3, "ino[0x%x] has inline data!\n", nid);
|
|
child.state |= FSCK_INLINE_INODE;
|
|
goto check;
|
|
}
|
|
|
|
if ((node_blk->i.i_inline & F2FS_INLINE_DENTRY)) {
|
|
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs]);
|
|
|
|
DBG(3, "ino[0x%x] has inline dentry!\n", nid);
|
|
if (blkaddr != 0) {
|
|
ASSERT_MSG("[0x%x] wrong inline reserve blkaddr:%u",
|
|
nid, blkaddr);
|
|
if (c.fix_on) {
|
|
FIX_MSG("inline_dentry has wrong 0'th block = %x",
|
|
blkaddr);
|
|
node_blk->i.i_addr[ofs] = 0;
|
|
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
|
|
need_fix = 1;
|
|
}
|
|
}
|
|
|
|
ret = fsck_chk_inline_dentries(sbi, node_blk, &child);
|
|
if (ret < 0) {
|
|
if (c.fix_on)
|
|
need_fix = 1;
|
|
}
|
|
child.state |= FSCK_INLINE_INODE;
|
|
goto check;
|
|
}
|
|
|
|
/* check data blocks in inode */
|
|
if (cur_qtype != -1) {
|
|
qf_szchk_type[cur_qtype] = QF_SZCHK_REGFILE;
|
|
qf_maxsize[cur_qtype] = (ADDRS_PER_INODE(&node_blk->i) +
|
|
2 * ADDRS_PER_BLOCK(&node_blk->i) +
|
|
2 * ADDRS_PER_BLOCK(&node_blk->i) *
|
|
NIDS_PER_BLOCK +
|
|
(u64) ADDRS_PER_BLOCK(&node_blk->i) *
|
|
NIDS_PER_BLOCK * NIDS_PER_BLOCK) * F2FS_BLKSIZE;
|
|
}
|
|
for (idx = 0; idx < ADDRS_PER_INODE(&node_blk->i);
|
|
idx++, child.pgofs++) {
|
|
block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs + idx]);
|
|
|
|
/* check extent info */
|
|
check_extent_info(&child, blkaddr, 0);
|
|
|
|
if (blkaddr == COMPRESS_ADDR) {
|
|
if (node_blk->i.i_compr_blocks) {
|
|
fsck->chk.valid_blk_cnt++;
|
|
*blk_cnt = *blk_cnt + 1;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (blkaddr != 0) {
|
|
ret = fsck_chk_data_blk(sbi,
|
|
IS_CASEFOLDED(&node_blk->i),
|
|
blkaddr,
|
|
&child, (i_blocks == *blk_cnt),
|
|
ftype, nid, idx, ni->version,
|
|
file_is_encrypt(&node_blk->i));
|
|
if (!ret) {
|
|
*blk_cnt = *blk_cnt + 1;
|
|
if (cur_qtype != -1 && blkaddr != NEW_ADDR)
|
|
qf_last_blkofs[cur_qtype] = child.pgofs;
|
|
} else if (c.fix_on) {
|
|
node_blk->i.i_addr[ofs + idx] = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("[0x%x] i_addr[%d] = 0",
|
|
nid, ofs + idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* readahead node blocks */
|
|
for (idx = 0; idx < 5; idx++) {
|
|
u32 nid = le32_to_cpu(node_blk->i.i_nid[idx]);
|
|
fsck_reada_node_block(sbi, nid);
|
|
}
|
|
|
|
/* check node blocks in inode */
|
|
for (idx = 0; idx < 5; idx++) {
|
|
nid_t i_nid = le32_to_cpu(node_blk->i.i_nid[idx]);
|
|
|
|
if (idx == 0 || idx == 1)
|
|
ntype = TYPE_DIRECT_NODE;
|
|
else if (idx == 2 || idx == 3)
|
|
ntype = TYPE_INDIRECT_NODE;
|
|
else if (idx == 4)
|
|
ntype = TYPE_DOUBLE_INDIRECT_NODE;
|
|
else
|
|
ASSERT(0);
|
|
|
|
if (i_nid == 0x0)
|
|
goto skip;
|
|
|
|
ret = fsck_chk_node_blk(sbi, &node_blk->i, i_nid,
|
|
ftype, ntype, blk_cnt, &child);
|
|
if (!ret) {
|
|
*blk_cnt = *blk_cnt + 1;
|
|
} else if (ret == -EINVAL) {
|
|
if (c.fix_on) {
|
|
node_blk->i.i_nid[idx] = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("[0x%x] i_nid[%d] = 0", nid, idx);
|
|
}
|
|
skip:
|
|
if (ntype == TYPE_DIRECT_NODE)
|
|
child.pgofs += ADDRS_PER_BLOCK(&node_blk->i);
|
|
else if (ntype == TYPE_INDIRECT_NODE)
|
|
child.pgofs += ADDRS_PER_BLOCK(&node_blk->i) *
|
|
NIDS_PER_BLOCK;
|
|
else
|
|
child.pgofs += ADDRS_PER_BLOCK(&node_blk->i) *
|
|
NIDS_PER_BLOCK * NIDS_PER_BLOCK;
|
|
}
|
|
|
|
}
|
|
|
|
check:
|
|
/* check uncovered range in the back of extent */
|
|
check_extent_info(&child, 0, 1);
|
|
|
|
if (child.state & FSCK_UNMATCHED_EXTENT) {
|
|
ASSERT_MSG("ino: 0x%x has wrong ext: [pgofs:%u, blk:%u, len:%u]",
|
|
nid, child.ei.fofs, child.ei.blk, child.ei.len);
|
|
if (c.fix_on)
|
|
need_fix = 1;
|
|
}
|
|
|
|
if (i_blocks != *blk_cnt) {
|
|
ASSERT_MSG("ino: 0x%x has i_blocks: %08"PRIx64", "
|
|
"but has %u blocks",
|
|
nid, i_blocks, *blk_cnt);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_blocks = cpu_to_le64(*blk_cnt);
|
|
need_fix = 1;
|
|
FIX_MSG("[0x%x] i_blocks=0x%08"PRIx64" -> 0x%x",
|
|
nid, i_blocks, *blk_cnt);
|
|
}
|
|
}
|
|
skip_blkcnt_fix:
|
|
en = malloc(F2FS_PRINT_NAMELEN);
|
|
ASSERT(en);
|
|
|
|
namelen = le32_to_cpu(node_blk->i.i_namelen);
|
|
if (namelen > F2FS_NAME_LEN) {
|
|
if (child_d && child_d->i_namelen <= F2FS_NAME_LEN) {
|
|
ASSERT_MSG("ino: 0x%x has i_namelen: 0x%x, "
|
|
"but has %d characters for name",
|
|
nid, namelen, child_d->i_namelen);
|
|
if (c.fix_on) {
|
|
FIX_MSG("[0x%x] i_namelen=0x%x -> 0x%x", nid, namelen,
|
|
child_d->i_namelen);
|
|
node_blk->i.i_namelen = cpu_to_le32(child_d->i_namelen);
|
|
need_fix = 1;
|
|
}
|
|
namelen = child_d->i_namelen;
|
|
} else
|
|
namelen = F2FS_NAME_LEN;
|
|
}
|
|
pretty_print_filename(node_blk->i.i_name, namelen, en,
|
|
file_enc_name(&node_blk->i));
|
|
if (ftype == F2FS_FT_ORPHAN)
|
|
DBG(1, "Orphan Inode: 0x%x [%s] i_blocks: %u\n\n",
|
|
le32_to_cpu(node_blk->footer.ino),
|
|
en, (u32)i_blocks);
|
|
|
|
if (is_qf_ino(F2FS_RAW_SUPER(sbi), nid))
|
|
DBG(1, "Quota Inode: 0x%x [%s] i_blocks: %u\n\n",
|
|
le32_to_cpu(node_blk->footer.ino),
|
|
en, (u32)i_blocks);
|
|
|
|
if (ftype == F2FS_FT_DIR) {
|
|
DBG(1, "Directory Inode: 0x%x [%s] depth: %d has %d files\n\n",
|
|
le32_to_cpu(node_blk->footer.ino), en,
|
|
le32_to_cpu(node_blk->i.i_current_depth),
|
|
child.files);
|
|
|
|
if (i_links != child.links) {
|
|
ASSERT_MSG("ino: 0x%x i_links: %u, real links: %u",
|
|
nid, i_links, child.links);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_links = cpu_to_le32(child.links);
|
|
need_fix = 1;
|
|
FIX_MSG("Dir: 0x%x i_links= 0x%x -> 0x%x",
|
|
nid, i_links, child.links);
|
|
}
|
|
}
|
|
if (child.dots < 2 &&
|
|
!(node_blk->i.i_inline & F2FS_INLINE_DOTS)) {
|
|
ASSERT_MSG("ino: 0x%x dots: %u",
|
|
nid, child.dots);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_inline |= F2FS_INLINE_DOTS;
|
|
need_fix = 1;
|
|
FIX_MSG("Dir: 0x%x set inline_dots", nid);
|
|
}
|
|
}
|
|
}
|
|
|
|
i_gc_failures = le16_to_cpu(node_blk->i.i_gc_failures);
|
|
|
|
/*
|
|
* old kernel initialized i_gc_failures as 0x01, in preen mode 2,
|
|
* let's skip repairing.
|
|
*/
|
|
if (ftype == F2FS_FT_REG_FILE && i_gc_failures &&
|
|
(c.preen_mode != PREEN_MODE_2 || i_gc_failures != 0x01)) {
|
|
|
|
DBG(1, "Regular Inode: 0x%x [%s] depth: %d\n\n",
|
|
le32_to_cpu(node_blk->footer.ino), en,
|
|
i_gc_failures);
|
|
|
|
if (c.fix_on) {
|
|
node_blk->i.i_gc_failures = cpu_to_le16(0);
|
|
need_fix = 1;
|
|
FIX_MSG("Regular: 0x%x reset i_gc_failures from 0x%x to 0x00",
|
|
nid, i_gc_failures);
|
|
}
|
|
}
|
|
|
|
free(en);
|
|
|
|
if (ftype == F2FS_FT_SYMLINK && i_size == 0 &&
|
|
i_blocks == (i_xattr_nid ? 3 : 2)) {
|
|
ASSERT_MSG("ino: 0x%x i_blocks: %lu with zero i_size\n",
|
|
nid, (unsigned long)i_blocks);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_size = cpu_to_le64(F2FS_BLKSIZE);
|
|
need_fix = 1;
|
|
FIX_MSG("Symlink: recover 0x%x with i_size=%lu",
|
|
nid, (unsigned long)F2FS_BLKSIZE);
|
|
}
|
|
}
|
|
|
|
if (ftype == F2FS_FT_ORPHAN && i_links) {
|
|
ASSERT_MSG("ino: 0x%x is orphan inode, but has i_links: %u",
|
|
nid, i_links);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_links = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("ino: 0x%x orphan_inode, i_links= 0x%x -> 0",
|
|
nid, i_links);
|
|
}
|
|
}
|
|
|
|
/* drop extent information to avoid potential wrong access */
|
|
if (need_fix && f2fs_dev_is_writable())
|
|
node_blk->i.i_ext.len = 0;
|
|
|
|
if ((c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) &&
|
|
f2fs_has_extra_isize(&node_blk->i)) {
|
|
__u32 provided, calculated;
|
|
|
|
provided = le32_to_cpu(node_blk->i.i_inode_checksum);
|
|
calculated = f2fs_inode_chksum(node_blk);
|
|
|
|
if (provided != calculated) {
|
|
ASSERT_MSG("ino: 0x%x chksum:0x%x, but calculated one is: 0x%x",
|
|
nid, provided, calculated);
|
|
if (c.fix_on) {
|
|
node_blk->i.i_inode_checksum =
|
|
cpu_to_le32(calculated);
|
|
need_fix = 1;
|
|
FIX_MSG("ino: 0x%x recover, i_inode_checksum= 0x%x -> 0x%x",
|
|
nid, provided, calculated);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (need_fix && f2fs_dev_is_writable()) {
|
|
ret = dev_write_block(node_blk, ni->blk_addr);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
}
|
|
|
|
int fsck_chk_dnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
|
|
u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk,
|
|
u32 *blk_cnt, struct child_info *child, struct node_info *ni)
|
|
{
|
|
int idx, ret;
|
|
int need_fix = 0;
|
|
child->p_ino = nid;
|
|
child->pp_ino = le32_to_cpu(inode->i_pino);
|
|
|
|
for (idx = 0; idx < ADDRS_PER_BLOCK(inode); idx++, child->pgofs++) {
|
|
block_t blkaddr = le32_to_cpu(node_blk->dn.addr[idx]);
|
|
|
|
check_extent_info(child, blkaddr, 0);
|
|
|
|
if (blkaddr == 0x0)
|
|
continue;
|
|
if (blkaddr == COMPRESS_ADDR) {
|
|
if (inode->i_compr_blocks) {
|
|
F2FS_FSCK(sbi)->chk.valid_blk_cnt++;
|
|
*blk_cnt = *blk_cnt + 1;
|
|
}
|
|
continue;
|
|
}
|
|
ret = fsck_chk_data_blk(sbi, IS_CASEFOLDED(inode),
|
|
blkaddr, child,
|
|
le64_to_cpu(inode->i_blocks) == *blk_cnt, ftype,
|
|
nid, idx, ni->version,
|
|
file_is_encrypt(inode));
|
|
if (!ret) {
|
|
*blk_cnt = *blk_cnt + 1;
|
|
if (cur_qtype != -1 && blkaddr != NEW_ADDR)
|
|
qf_last_blkofs[cur_qtype] = child->pgofs;
|
|
} else if (c.fix_on) {
|
|
node_blk->dn.addr[idx] = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("[0x%x] dn.addr[%d] = 0", nid, idx);
|
|
}
|
|
}
|
|
if (need_fix && f2fs_dev_is_writable()) {
|
|
ret = dev_write_block(node_blk, ni->blk_addr);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int fsck_chk_idnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
|
|
enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt,
|
|
struct child_info *child)
|
|
{
|
|
int need_fix = 0, ret;
|
|
int i = 0;
|
|
|
|
fsck_reada_all_direct_node_blocks(sbi, node_blk);
|
|
|
|
for (i = 0; i < NIDS_PER_BLOCK; i++) {
|
|
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
|
|
goto skip;
|
|
ret = fsck_chk_node_blk(sbi, inode,
|
|
le32_to_cpu(node_blk->in.nid[i]),
|
|
ftype, TYPE_DIRECT_NODE, blk_cnt, child);
|
|
if (!ret)
|
|
*blk_cnt = *blk_cnt + 1;
|
|
else if (ret == -EINVAL) {
|
|
if (!c.fix_on)
|
|
printf("should delete in.nid[i] = 0;\n");
|
|
else {
|
|
node_blk->in.nid[i] = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("Set indirect node 0x%x -> 0", i);
|
|
}
|
|
skip:
|
|
child->pgofs += ADDRS_PER_BLOCK(&node_blk->i);
|
|
}
|
|
}
|
|
|
|
if (need_fix && f2fs_dev_is_writable()) {
|
|
struct node_info ni;
|
|
nid_t nid = le32_to_cpu(node_blk->footer.nid);
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
ret = dev_write_block(node_blk, ni.blk_addr);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fsck_chk_didnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode,
|
|
enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt,
|
|
struct child_info *child)
|
|
{
|
|
int i = 0;
|
|
int need_fix = 0, ret = 0;
|
|
|
|
fsck_reada_all_direct_node_blocks(sbi, node_blk);
|
|
|
|
for (i = 0; i < NIDS_PER_BLOCK; i++) {
|
|
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
|
|
goto skip;
|
|
ret = fsck_chk_node_blk(sbi, inode,
|
|
le32_to_cpu(node_blk->in.nid[i]),
|
|
ftype, TYPE_INDIRECT_NODE, blk_cnt, child);
|
|
if (!ret)
|
|
*blk_cnt = *blk_cnt + 1;
|
|
else if (ret == -EINVAL) {
|
|
if (!c.fix_on)
|
|
printf("should delete in.nid[i] = 0;\n");
|
|
else {
|
|
node_blk->in.nid[i] = 0;
|
|
need_fix = 1;
|
|
FIX_MSG("Set double indirect node 0x%x -> 0", i);
|
|
}
|
|
skip:
|
|
child->pgofs += ADDRS_PER_BLOCK(&node_blk->i) *
|
|
NIDS_PER_BLOCK;
|
|
}
|
|
}
|
|
|
|
if (need_fix && f2fs_dev_is_writable()) {
|
|
struct node_info ni;
|
|
nid_t nid = le32_to_cpu(node_blk->footer.nid);
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
ret = dev_write_block(node_blk, ni.blk_addr);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char *lookup_table =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
|
|
|
|
/**
|
|
* base64_encode() -
|
|
*
|
|
* Encodes the input string using characters from the set [A-Za-z0-9+,].
|
|
* The encoded string is roughly 4/3 times the size of the input string.
|
|
*/
|
|
static int base64_encode(const u8 *src, int len, char *dst)
|
|
{
|
|
int i, bits = 0, ac = 0;
|
|
char *cp = dst;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
ac += src[i] << bits;
|
|
bits += 8;
|
|
do {
|
|
*cp++ = lookup_table[ac & 0x3f];
|
|
ac >>= 6;
|
|
bits -= 6;
|
|
} while (bits >= 6);
|
|
}
|
|
if (bits)
|
|
*cp++ = lookup_table[ac & 0x3f];
|
|
return cp - dst;
|
|
}
|
|
|
|
void pretty_print_filename(const u8 *raw_name, u32 len,
|
|
char out[F2FS_PRINT_NAMELEN], int enc_name)
|
|
{
|
|
len = min(len, (u32)F2FS_NAME_LEN);
|
|
|
|
if (enc_name)
|
|
len = base64_encode(raw_name, len, out);
|
|
else
|
|
memcpy(out, raw_name, len);
|
|
out[len] = 0;
|
|
}
|
|
|
|
static void print_dentry(__u32 depth, __u8 *name,
|
|
u8 *bitmap, struct f2fs_dir_entry *dentry,
|
|
int max, int idx, int last_blk, int enc_name)
|
|
{
|
|
int last_de = 0;
|
|
int next_idx = 0;
|
|
u32 name_len;
|
|
unsigned int i;
|
|
int bit_offset;
|
|
char new[F2FS_PRINT_NAMELEN];
|
|
|
|
if (!c.show_dentry)
|
|
return;
|
|
|
|
name_len = le16_to_cpu(dentry[idx].name_len);
|
|
next_idx = idx + (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
|
|
|
|
bit_offset = find_next_bit_le(bitmap, max, next_idx);
|
|
if (bit_offset >= max && last_blk)
|
|
last_de = 1;
|
|
|
|
if (tree_mark_size <= depth) {
|
|
tree_mark_size *= 2;
|
|
ASSERT(tree_mark_size != 0);
|
|
tree_mark = realloc(tree_mark, tree_mark_size);
|
|
ASSERT(tree_mark != NULL);
|
|
}
|
|
|
|
if (last_de)
|
|
tree_mark[depth] = '`';
|
|
else
|
|
tree_mark[depth] = '|';
|
|
|
|
if (tree_mark[depth - 1] == '`')
|
|
tree_mark[depth - 1] = ' ';
|
|
|
|
for (i = 1; i < depth; i++)
|
|
printf("%c ", tree_mark[i]);
|
|
|
|
pretty_print_filename(name, name_len, new, enc_name);
|
|
|
|
printf("%c-- %s <ino = 0x%x>, <encrypted (%d)>\n",
|
|
last_de ? '`' : '|',
|
|
new, le32_to_cpu(dentry[idx].ino),
|
|
enc_name);
|
|
}
|
|
|
|
static int f2fs_check_hash_code(int encoding, int casefolded,
|
|
struct f2fs_dir_entry *dentry,
|
|
const unsigned char *name, u32 len, int enc_name)
|
|
{
|
|
/* Casefolded Encrypted names require a key to compute siphash */
|
|
if (enc_name && casefolded)
|
|
return 0;
|
|
|
|
f2fs_hash_t hash_code = f2fs_dentry_hash(encoding, casefolded, name, len);
|
|
/* fix hash_code made by old buggy code */
|
|
if (dentry->hash_code != hash_code) {
|
|
char new[F2FS_PRINT_NAMELEN];
|
|
|
|
pretty_print_filename(name, len, new, enc_name);
|
|
FIX_MSG("Mismatch hash_code for \"%s\" [%x:%x]",
|
|
new, le32_to_cpu(dentry->hash_code),
|
|
hash_code);
|
|
dentry->hash_code = cpu_to_le32(hash_code);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __get_current_level(int dir_level, u32 pgofs)
|
|
{
|
|
unsigned int bidx = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_DIR_HASH_DEPTH; i++) {
|
|
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
|
|
if (bidx > pgofs)
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static int f2fs_check_dirent_position(const struct f2fs_dir_entry *dentry,
|
|
const char *printable_name,
|
|
u32 pgofs, u8 dir_level, u32 pino)
|
|
{
|
|
unsigned int nbucket, nblock;
|
|
unsigned int bidx, end_block;
|
|
int level;
|
|
|
|
level = __get_current_level(dir_level, pgofs);
|
|
|
|
nbucket = dir_buckets(level, dir_level);
|
|
nblock = bucket_blocks(level);
|
|
|
|
bidx = dir_block_index(level, dir_level,
|
|
le32_to_cpu(dentry->hash_code) % nbucket);
|
|
end_block = bidx + nblock;
|
|
|
|
if (pgofs >= bidx && pgofs < end_block)
|
|
return 0;
|
|
|
|
ASSERT_MSG("Wrong position of dirent pino:%u, name:%s, level:%d, "
|
|
"dir_level:%d, pgofs:%u, correct range:[%u, %u]\n",
|
|
pino, printable_name, level, dir_level, pgofs, bidx,
|
|
end_block - 1);
|
|
return 1;
|
|
}
|
|
|
|
static int __chk_dots_dentries(struct f2fs_sb_info *sbi,
|
|
int casefolded,
|
|
struct f2fs_dir_entry *dentry,
|
|
struct child_info *child,
|
|
u8 *name, int len,
|
|
__u8 (*filename)[F2FS_SLOT_LEN],
|
|
int enc_name)
|
|
{
|
|
int fixed = 0;
|
|
|
|
if ((name[0] == '.' && len == 1)) {
|
|
if (le32_to_cpu(dentry->ino) != child->p_ino) {
|
|
ASSERT_MSG("Bad inode number[0x%x] for '.', parent_ino is [0x%x]\n",
|
|
le32_to_cpu(dentry->ino), child->p_ino);
|
|
dentry->ino = cpu_to_le32(child->p_ino);
|
|
fixed = 1;
|
|
}
|
|
}
|
|
|
|
if (name[0] == '.' && name[1] == '.' && len == 2) {
|
|
if (child->p_ino == F2FS_ROOT_INO(sbi)) {
|
|
if (le32_to_cpu(dentry->ino) != F2FS_ROOT_INO(sbi)) {
|
|
ASSERT_MSG("Bad inode number[0x%x] for '..'\n",
|
|
le32_to_cpu(dentry->ino));
|
|
dentry->ino = cpu_to_le32(F2FS_ROOT_INO(sbi));
|
|
fixed = 1;
|
|
}
|
|
} else if (le32_to_cpu(dentry->ino) != child->pp_ino) {
|
|
ASSERT_MSG("Bad inode number[0x%x] for '..', parent parent ino is [0x%x]\n",
|
|
le32_to_cpu(dentry->ino), child->pp_ino);
|
|
dentry->ino = cpu_to_le32(child->pp_ino);
|
|
fixed = 1;
|
|
}
|
|
}
|
|
|
|
if (f2fs_check_hash_code(get_encoding(sbi), casefolded, dentry, name, len, enc_name))
|
|
fixed = 1;
|
|
|
|
if (name[len] != '\0') {
|
|
ASSERT_MSG("'.' is not NULL terminated\n");
|
|
name[len] = '\0';
|
|
memcpy(*filename, name, len);
|
|
fixed = 1;
|
|
}
|
|
return fixed;
|
|
}
|
|
|
|
static void nullify_dentry(struct f2fs_dir_entry *dentry, int offs,
|
|
__u8 (*filename)[F2FS_SLOT_LEN], u8 **bitmap)
|
|
{
|
|
memset(dentry, 0, sizeof(struct f2fs_dir_entry));
|
|
test_and_clear_bit_le(offs, *bitmap);
|
|
memset(*filename, 0, F2FS_SLOT_LEN);
|
|
}
|
|
|
|
static int __chk_dentries(struct f2fs_sb_info *sbi, int casefolded,
|
|
struct child_info *child,
|
|
u8 *bitmap, struct f2fs_dir_entry *dentry,
|
|
__u8 (*filenames)[F2FS_SLOT_LEN],
|
|
int max, int last_blk, int enc_name)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
enum FILE_TYPE ftype;
|
|
int dentries = 0;
|
|
u32 blk_cnt;
|
|
u8 *name;
|
|
char en[F2FS_PRINT_NAMELEN];
|
|
u16 name_len;
|
|
int ret = 0;
|
|
int fixed = 0;
|
|
int i, slots;
|
|
|
|
/* readahead inode blocks */
|
|
for (i = 0; i < max; i++) {
|
|
u32 ino;
|
|
|
|
if (test_bit_le(i, bitmap) == 0)
|
|
continue;
|
|
|
|
ino = le32_to_cpu(dentry[i].ino);
|
|
|
|
if (IS_VALID_NID(sbi, ino)) {
|
|
struct node_info ni;
|
|
|
|
get_node_info(sbi, ino, &ni);
|
|
if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) {
|
|
dev_reada_block(ni.blk_addr);
|
|
name_len = le16_to_cpu(dentry[i].name_len);
|
|
if (name_len > 0)
|
|
i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < max;) {
|
|
if (test_bit_le(i, bitmap) == 0) {
|
|
i++;
|
|
continue;
|
|
}
|
|
if (!IS_VALID_NID(sbi, le32_to_cpu(dentry[i].ino))) {
|
|
ASSERT_MSG("Bad dentry 0x%x with invalid NID/ino 0x%x",
|
|
i, le32_to_cpu(dentry[i].ino));
|
|
if (c.fix_on) {
|
|
FIX_MSG("Clear bad dentry 0x%x with bad ino 0x%x",
|
|
i, le32_to_cpu(dentry[i].ino));
|
|
test_and_clear_bit_le(i, bitmap);
|
|
fixed = 1;
|
|
}
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
ftype = dentry[i].file_type;
|
|
if ((ftype <= F2FS_FT_UNKNOWN || ftype > F2FS_FT_LAST_FILE_TYPE)) {
|
|
ASSERT_MSG("Bad dentry 0x%x with unexpected ftype 0x%x",
|
|
le32_to_cpu(dentry[i].ino), ftype);
|
|
if (c.fix_on) {
|
|
FIX_MSG("Clear bad dentry 0x%x with bad ftype 0x%x",
|
|
i, ftype);
|
|
test_and_clear_bit_le(i, bitmap);
|
|
fixed = 1;
|
|
}
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
name_len = le16_to_cpu(dentry[i].name_len);
|
|
|
|
if (name_len == 0 || name_len > F2FS_NAME_LEN) {
|
|
ASSERT_MSG("Bad dentry 0x%x with invalid name_len", i);
|
|
if (c.fix_on) {
|
|
FIX_MSG("Clear bad dentry 0x%x", i);
|
|
test_and_clear_bit_le(i, bitmap);
|
|
fixed = 1;
|
|
}
|
|
i++;
|
|
continue;
|
|
}
|
|
name = calloc(name_len + 1, 1);
|
|
ASSERT(name);
|
|
|
|
memcpy(name, filenames[i], name_len);
|
|
slots = (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
|
|
|
|
/* Becareful. 'dentry.file_type' is not imode. */
|
|
if (ftype == F2FS_FT_DIR) {
|
|
if ((name[0] == '.' && name_len == 1) ||
|
|
(name[0] == '.' && name[1] == '.' &&
|
|
name_len == 2)) {
|
|
ret = __chk_dots_dentries(sbi, casefolded, &dentry[i],
|
|
child, name, name_len, &filenames[i],
|
|
enc_name);
|
|
switch (ret) {
|
|
case 1:
|
|
fixed = 1;
|
|
case 0:
|
|
child->dots++;
|
|
break;
|
|
}
|
|
|
|
if (child->dots > 2) {
|
|
ASSERT_MSG("More than one '.' or '..', should delete the extra one\n");
|
|
nullify_dentry(&dentry[i], i,
|
|
&filenames[i], &bitmap);
|
|
child->dots--;
|
|
fixed = 1;
|
|
}
|
|
|
|
i++;
|
|
free(name);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (f2fs_check_hash_code(get_encoding(sbi), casefolded, dentry + i, name, name_len, enc_name))
|
|
fixed = 1;
|
|
|
|
pretty_print_filename(name, name_len, en, enc_name);
|
|
|
|
if (max == NR_DENTRY_IN_BLOCK) {
|
|
ret = f2fs_check_dirent_position(dentry + i, en,
|
|
child->pgofs, child->dir_level,
|
|
child->p_ino);
|
|
if (ret) {
|
|
if (c.fix_on) {
|
|
FIX_MSG("Clear bad dentry 0x%x", i);
|
|
test_and_clear_bit_le(i, bitmap);
|
|
fixed = 1;
|
|
}
|
|
i++;
|
|
free(name);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
DBG(1, "[%3u]-[0x%x] name[%s] len[0x%x] ino[0x%x] type[0x%x]\n",
|
|
fsck->dentry_depth, i, en, name_len,
|
|
le32_to_cpu(dentry[i].ino),
|
|
dentry[i].file_type);
|
|
|
|
print_dentry(fsck->dentry_depth, name, bitmap,
|
|
dentry, max, i, last_blk, enc_name);
|
|
|
|
blk_cnt = 1;
|
|
child->i_namelen = name_len;
|
|
ret = fsck_chk_node_blk(sbi,
|
|
NULL, le32_to_cpu(dentry[i].ino),
|
|
ftype, TYPE_INODE, &blk_cnt, child);
|
|
|
|
if (ret && c.fix_on) {
|
|
int j;
|
|
|
|
for (j = 0; j < slots; j++)
|
|
test_and_clear_bit_le(i + j, bitmap);
|
|
FIX_MSG("Unlink [0x%x] - %s len[0x%x], type[0x%x]",
|
|
le32_to_cpu(dentry[i].ino),
|
|
en, name_len,
|
|
dentry[i].file_type);
|
|
fixed = 1;
|
|
} else if (ret == 0) {
|
|
if (ftype == F2FS_FT_DIR)
|
|
child->links++;
|
|
dentries++;
|
|
child->files++;
|
|
}
|
|
|
|
i += slots;
|
|
free(name);
|
|
}
|
|
return fixed ? -1 : dentries;
|
|
}
|
|
|
|
int fsck_chk_inline_dentries(struct f2fs_sb_info *sbi,
|
|
struct f2fs_node *node_blk, struct child_info *child)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_dentry_ptr d;
|
|
void *inline_dentry;
|
|
int dentries;
|
|
|
|
inline_dentry = inline_data_addr(node_blk);
|
|
ASSERT(inline_dentry != NULL);
|
|
|
|
make_dentry_ptr(&d, node_blk, inline_dentry, 2);
|
|
|
|
fsck->dentry_depth++;
|
|
dentries = __chk_dentries(sbi, IS_CASEFOLDED(&node_blk->i), child,
|
|
d.bitmap, d.dentry, d.filename, d.max, 1,
|
|
file_is_encrypt(&node_blk->i));// pass through
|
|
if (dentries < 0) {
|
|
DBG(1, "[%3d] Inline Dentry Block Fixed hash_codes\n\n",
|
|
fsck->dentry_depth);
|
|
} else {
|
|
DBG(1, "[%3d] Inline Dentry Block Done : "
|
|
"dentries:%d in %d slots (len:%d)\n\n",
|
|
fsck->dentry_depth, dentries,
|
|
d.max, F2FS_NAME_LEN);
|
|
}
|
|
fsck->dentry_depth--;
|
|
return dentries;
|
|
}
|
|
|
|
int fsck_chk_dentry_blk(struct f2fs_sb_info *sbi, int casefolded, u32 blk_addr,
|
|
struct child_info *child, int last_blk, int enc_name)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_dentry_block *de_blk;
|
|
int dentries, ret;
|
|
|
|
de_blk = (struct f2fs_dentry_block *)calloc(BLOCK_SZ, 1);
|
|
ASSERT(de_blk != NULL);
|
|
|
|
ret = dev_read_block(de_blk, blk_addr);
|
|
ASSERT(ret >= 0);
|
|
|
|
fsck->dentry_depth++;
|
|
dentries = __chk_dentries(sbi, casefolded, child,
|
|
de_blk->dentry_bitmap,
|
|
de_blk->dentry, de_blk->filename,
|
|
NR_DENTRY_IN_BLOCK, last_blk, enc_name);
|
|
|
|
if (dentries < 0 && f2fs_dev_is_writable()) {
|
|
ret = dev_write_block(de_blk, blk_addr);
|
|
ASSERT(ret >= 0);
|
|
DBG(1, "[%3d] Dentry Block [0x%x] Fixed hash_codes\n\n",
|
|
fsck->dentry_depth, blk_addr);
|
|
} else {
|
|
DBG(1, "[%3d] Dentry Block [0x%x] Done : "
|
|
"dentries:%d in %d slots (len:%d)\n\n",
|
|
fsck->dentry_depth, blk_addr, dentries,
|
|
NR_DENTRY_IN_BLOCK, F2FS_NAME_LEN);
|
|
}
|
|
fsck->dentry_depth--;
|
|
free(de_blk);
|
|
return 0;
|
|
}
|
|
|
|
int fsck_chk_data_blk(struct f2fs_sb_info *sbi, int casefolded,
|
|
u32 blk_addr, struct child_info *child, int last_blk,
|
|
enum FILE_TYPE ftype, u32 parent_nid, u16 idx_in_node, u8 ver,
|
|
int enc_name)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
/* Is it reserved block? */
|
|
if (blk_addr == NEW_ADDR) {
|
|
fsck->chk.valid_blk_cnt++;
|
|
return 0;
|
|
}
|
|
|
|
if (!IS_VALID_BLK_ADDR(sbi, blk_addr)) {
|
|
ASSERT_MSG("blkaddress is not valid. [0x%x]", blk_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_valid_ssa_data_blk(sbi, blk_addr, parent_nid,
|
|
idx_in_node, ver)) {
|
|
ASSERT_MSG("summary data block is not valid. [0x%x]",
|
|
parent_nid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (f2fs_test_sit_bitmap(sbi, blk_addr) == 0)
|
|
ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", blk_addr);
|
|
|
|
if (f2fs_test_main_bitmap(sbi, blk_addr) != 0)
|
|
ASSERT_MSG("Duplicated data [0x%x]. pnid[0x%x] idx[0x%x]",
|
|
blk_addr, parent_nid, idx_in_node);
|
|
|
|
fsck->chk.valid_blk_cnt++;
|
|
|
|
if (ftype == F2FS_FT_DIR) {
|
|
f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_HOT_DATA);
|
|
return fsck_chk_dentry_blk(sbi, casefolded, blk_addr, child,
|
|
last_blk, enc_name);
|
|
} else {
|
|
f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_WARM_DATA);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int fsck_chk_orphan_node(struct f2fs_sb_info *sbi)
|
|
{
|
|
u32 blk_cnt = 0;
|
|
block_t start_blk, orphan_blkaddr, i, j;
|
|
struct f2fs_orphan_block *orphan_blk, *new_blk;
|
|
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
|
|
u32 entry_count;
|
|
|
|
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
|
|
return 0;
|
|
|
|
start_blk = __start_cp_addr(sbi) + 1 + get_sb(cp_payload);
|
|
orphan_blkaddr = __start_sum_addr(sbi) - 1 - get_sb(cp_payload);
|
|
|
|
f2fs_ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
|
|
|
|
orphan_blk = calloc(BLOCK_SZ, 1);
|
|
ASSERT(orphan_blk);
|
|
|
|
new_blk = calloc(BLOCK_SZ, 1);
|
|
ASSERT(new_blk);
|
|
|
|
for (i = 0; i < orphan_blkaddr; i++) {
|
|
int ret = dev_read_block(orphan_blk, start_blk + i);
|
|
u32 new_entry_count = 0;
|
|
|
|
ASSERT(ret >= 0);
|
|
entry_count = le32_to_cpu(orphan_blk->entry_count);
|
|
|
|
for (j = 0; j < entry_count; j++) {
|
|
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
|
|
DBG(1, "[%3d] ino [0x%x]\n", i, ino);
|
|
struct node_info ni;
|
|
blk_cnt = 1;
|
|
|
|
if (c.preen_mode == PREEN_MODE_1 && !c.fix_on) {
|
|
get_node_info(sbi, ino, &ni);
|
|
if (!IS_VALID_NID(sbi, ino) ||
|
|
!IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
|
|
return -EINVAL;
|
|
|
|
continue;
|
|
}
|
|
|
|
ret = fsck_chk_node_blk(sbi, NULL, ino,
|
|
F2FS_FT_ORPHAN, TYPE_INODE, &blk_cnt,
|
|
NULL);
|
|
if (!ret)
|
|
new_blk->ino[new_entry_count++] =
|
|
orphan_blk->ino[j];
|
|
else if (ret && c.fix_on)
|
|
FIX_MSG("[0x%x] remove from orphan list", ino);
|
|
else if (ret)
|
|
ASSERT_MSG("[0x%x] wrong orphan inode", ino);
|
|
}
|
|
if (f2fs_dev_is_writable() && c.fix_on &&
|
|
entry_count != new_entry_count) {
|
|
new_blk->entry_count = cpu_to_le32(new_entry_count);
|
|
ret = dev_write_block(new_blk, start_blk + i);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
memset(orphan_blk, 0, BLOCK_SZ);
|
|
memset(new_blk, 0, BLOCK_SZ);
|
|
}
|
|
free(orphan_blk);
|
|
free(new_blk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fsck_chk_quota_node(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
|
|
enum quota_type qtype;
|
|
int ret = 0;
|
|
u32 blk_cnt = 0;
|
|
|
|
for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
|
|
cur_qtype = qtype;
|
|
if (sb->qf_ino[qtype] == 0)
|
|
continue;
|
|
nid_t ino = QUOTA_INO(sb, qtype);
|
|
struct node_info ni;
|
|
|
|
DBG(1, "qtype [%d] ino [0x%x]\n", qtype, ino);
|
|
blk_cnt = 1;
|
|
|
|
if (c.preen_mode == PREEN_MODE_1 && !c.fix_on) {
|
|
get_node_info(sbi, ino, &ni);
|
|
if (!IS_VALID_NID(sbi, ino) ||
|
|
!IS_VALID_BLK_ADDR(sbi, ni.blk_addr))
|
|
return -EINVAL;
|
|
continue;
|
|
}
|
|
ret = fsck_chk_node_blk(sbi, NULL, ino,
|
|
F2FS_FT_REG_FILE, TYPE_INODE, &blk_cnt, NULL);
|
|
if (ret) {
|
|
ASSERT_MSG("wrong quota inode, qtype [%d] ino [0x%x]",
|
|
qtype, ino);
|
|
qf_szchk_type[qtype] = QF_SZCHK_ERR;
|
|
}
|
|
}
|
|
cur_qtype = -1;
|
|
return ret;
|
|
}
|
|
|
|
int fsck_chk_quota_files(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
|
|
enum quota_type qtype;
|
|
f2fs_ino_t ino;
|
|
int ret = 0;
|
|
int needs_writeout;
|
|
|
|
/* Return if quota feature is disabled */
|
|
if (!fsck->qctx)
|
|
return 0;
|
|
|
|
for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
|
|
ino = sb->qf_ino[qtype];
|
|
if (!ino)
|
|
continue;
|
|
|
|
DBG(1, "Checking Quota file ([%3d] ino [0x%x])\n", qtype, ino);
|
|
needs_writeout = 0;
|
|
ret = quota_compare_and_update(sbi, qtype, &needs_writeout,
|
|
c.preserve_limits);
|
|
if (ret == 0 && needs_writeout == 0) {
|
|
DBG(1, "OK\n");
|
|
continue;
|
|
}
|
|
|
|
/* Something is wrong */
|
|
if (c.fix_on) {
|
|
DBG(0, "Fixing Quota file ([%3d] ino [0x%x])\n",
|
|
qtype, ino);
|
|
f2fs_filesize_update(sbi, ino, 0);
|
|
ret = quota_write_inode(sbi, qtype);
|
|
if (!ret) {
|
|
c.bug_on = 1;
|
|
DBG(1, "OK\n");
|
|
} else {
|
|
ASSERT_MSG("Unable to write quota file");
|
|
}
|
|
} else {
|
|
ASSERT_MSG("Quota file is missing or invalid"
|
|
" quota file content found.");
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int fsck_chk_meta(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
|
|
struct seg_entry *se;
|
|
unsigned int sit_valid_segs = 0, sit_node_blks = 0;
|
|
unsigned int i;
|
|
|
|
/* 1. check sit usage with CP: curseg is lost? */
|
|
for (i = 0; i < TOTAL_SEGS(sbi); i++) {
|
|
se = get_seg_entry(sbi, i);
|
|
if (se->valid_blocks != 0)
|
|
sit_valid_segs++;
|
|
else if (IS_CUR_SEGNO(sbi, i)) {
|
|
/* curseg has not been written back to device */
|
|
MSG(1, "\tInfo: curseg %u is counted in valid segs\n", i);
|
|
sit_valid_segs++;
|
|
}
|
|
if (IS_NODESEG(se->type))
|
|
sit_node_blks += se->valid_blocks;
|
|
}
|
|
if (fsck->chk.sit_free_segs + sit_valid_segs !=
|
|
get_usable_seg_count(sbi)) {
|
|
ASSERT_MSG("SIT usage does not match: sit_free_segs %u, "
|
|
"sit_valid_segs %u, total_segs %u",
|
|
fsck->chk.sit_free_segs, sit_valid_segs,
|
|
get_usable_seg_count(sbi));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 2. check node count */
|
|
if (fsck->chk.valid_nat_entry_cnt != sit_node_blks) {
|
|
ASSERT_MSG("node count does not match: valid_nat_entry_cnt %u,"
|
|
" sit_node_blks %u",
|
|
fsck->chk.valid_nat_entry_cnt, sit_node_blks);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 3. check SIT with CP */
|
|
if (fsck->chk.sit_free_segs != le32_to_cpu(cp->free_segment_count)) {
|
|
ASSERT_MSG("free segs does not match: sit_free_segs %u, "
|
|
"free_segment_count %u",
|
|
fsck->chk.sit_free_segs,
|
|
le32_to_cpu(cp->free_segment_count));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 4. check NAT with CP */
|
|
if (fsck->chk.valid_nat_entry_cnt !=
|
|
le32_to_cpu(cp->valid_node_count)) {
|
|
ASSERT_MSG("valid node does not match: valid_nat_entry_cnt %u,"
|
|
" valid_node_count %u",
|
|
fsck->chk.valid_nat_entry_cnt,
|
|
le32_to_cpu(cp->valid_node_count));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 4. check orphan inode simply */
|
|
if (fsck_chk_orphan_node(sbi))
|
|
return -EINVAL;
|
|
|
|
/* 5. check nat entry -- must be done before quota check */
|
|
for (i = 0; i < fsck->nr_nat_entries; i++) {
|
|
u32 blk = le32_to_cpu(fsck->entries[i].block_addr);
|
|
nid_t ino = le32_to_cpu(fsck->entries[i].ino);
|
|
|
|
if (!blk)
|
|
/*
|
|
* skip entry whose ino is 0, otherwise, we will
|
|
* get a negative number by BLKOFF_FROM_MAIN(sbi, blk)
|
|
*/
|
|
continue;
|
|
|
|
if (!IS_VALID_BLK_ADDR(sbi, blk)) {
|
|
MSG(0, "\tError: nat entry[ino %u block_addr 0x%x]"
|
|
" is in valid\n",
|
|
ino, blk);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!f2fs_test_sit_bitmap(sbi, blk)) {
|
|
MSG(0, "\tError: nat entry[ino %u block_addr 0x%x]"
|
|
" not find it in sit_area_bitmap\n",
|
|
ino, blk);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!IS_VALID_NID(sbi, ino)) {
|
|
MSG(0, "\tError: nat_entry->ino %u exceeds the range"
|
|
" of nat entries %u\n",
|
|
ino, fsck->nr_nat_entries);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!f2fs_test_bit(ino, fsck->nat_area_bitmap)) {
|
|
MSG(0, "\tError: nat_entry->ino %u is not set in"
|
|
" nat_area_bitmap\n", ino);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* 6. check quota inode simply */
|
|
if (fsck_chk_quota_node(sbi))
|
|
return -EINVAL;
|
|
|
|
if (fsck->nat_valid_inode_cnt != le32_to_cpu(cp->valid_inode_count)) {
|
|
ASSERT_MSG("valid inode does not match: nat_valid_inode_cnt %u,"
|
|
" valid_inode_count %u",
|
|
fsck->nat_valid_inode_cnt,
|
|
le32_to_cpu(cp->valid_inode_count));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void fsck_chk_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
|
|
|
|
if (get_cp(ckpt_flags) & CP_LARGE_NAT_BITMAP_FLAG) {
|
|
if (get_cp(checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
|
|
ASSERT_MSG("Deprecated layout of large_nat_bitmap, "
|
|
"chksum_offset:%u", get_cp(checksum_offset));
|
|
c.fix_chksum = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void fsck_init(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_sm_info *sm_i = SM_I(sbi);
|
|
|
|
/*
|
|
* We build three bitmap for main/sit/nat so that may check consistency
|
|
* of filesystem.
|
|
* 1. main_area_bitmap will be used to check whether all blocks of main
|
|
* area is used or not.
|
|
* 2. nat_area_bitmap has bitmap information of used nid in NAT.
|
|
* 3. sit_area_bitmap has bitmap information of used main block.
|
|
* At Last sequence, we compare main_area_bitmap with sit_area_bitmap.
|
|
*/
|
|
fsck->nr_main_blks = sm_i->main_segments << sbi->log_blocks_per_seg;
|
|
fsck->main_area_bitmap_sz = (fsck->nr_main_blks + 7) / 8;
|
|
fsck->main_area_bitmap = calloc(fsck->main_area_bitmap_sz, 1);
|
|
ASSERT(fsck->main_area_bitmap != NULL);
|
|
|
|
build_nat_area_bitmap(sbi);
|
|
|
|
build_sit_area_bitmap(sbi);
|
|
|
|
ASSERT(tree_mark_size != 0);
|
|
tree_mark = calloc(tree_mark_size, 1);
|
|
ASSERT(tree_mark != NULL);
|
|
}
|
|
|
|
static void fix_hard_links(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct hard_link_node *tmp, *node;
|
|
struct f2fs_node *node_blk = NULL;
|
|
struct node_info ni;
|
|
int ret;
|
|
|
|
if (fsck->hard_link_list_head == NULL)
|
|
return;
|
|
|
|
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
|
|
ASSERT(node_blk != NULL);
|
|
|
|
node = fsck->hard_link_list_head;
|
|
while (node) {
|
|
/* Sanity check */
|
|
if (sanity_check_nid(sbi, node->nid, node_blk,
|
|
F2FS_FT_MAX, TYPE_INODE, &ni))
|
|
FIX_MSG("Failed to fix, rerun fsck.f2fs");
|
|
|
|
node_blk->i.i_links = cpu_to_le32(node->actual_links);
|
|
|
|
FIX_MSG("File: 0x%x i_links= 0x%x -> 0x%x",
|
|
node->nid, node->links, node->actual_links);
|
|
|
|
ret = dev_write_block(node_blk, ni.blk_addr);
|
|
ASSERT(ret >= 0);
|
|
tmp = node;
|
|
node = node->next;
|
|
free(tmp);
|
|
}
|
|
free(node_blk);
|
|
}
|
|
|
|
static void fix_nat_entries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
u32 i;
|
|
|
|
for (i = 0; i < fsck->nr_nat_entries; i++)
|
|
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0)
|
|
nullify_nat_entry(sbi, i);
|
|
}
|
|
|
|
static void flush_curseg_sit_entries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct f2fs_sit_block *sit_blk;
|
|
int i;
|
|
|
|
sit_blk = calloc(BLOCK_SZ, 1);
|
|
ASSERT(sit_blk);
|
|
/* update curseg sit entries, since we may change
|
|
* a segment type in move_curseg_info
|
|
*/
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
struct curseg_info *curseg = CURSEG_I(sbi, i);
|
|
struct f2fs_sit_entry *sit;
|
|
struct seg_entry *se;
|
|
|
|
se = get_seg_entry(sbi, curseg->segno);
|
|
get_current_sit_page(sbi, curseg->segno, sit_blk);
|
|
sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, curseg->segno)];
|
|
sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
|
|
se->valid_blocks);
|
|
rewrite_current_sit_page(sbi, curseg->segno, sit_blk);
|
|
}
|
|
|
|
free(sit_blk);
|
|
}
|
|
|
|
static void fix_checksum(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
void *bitmap_offset;
|
|
|
|
if (!c.fix_chksum)
|
|
return;
|
|
|
|
bitmap_offset = cp->sit_nat_version_bitmap + sizeof(__le32);
|
|
|
|
memcpy(bitmap_offset, nm_i->nat_bitmap, nm_i->bitmap_size);
|
|
memcpy(bitmap_offset + nm_i->bitmap_size,
|
|
sit_i->sit_bitmap, sit_i->bitmap_size);
|
|
}
|
|
|
|
static void fix_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
|
|
unsigned long long cp_blk_no;
|
|
u32 flags = c.alloc_failed ? CP_FSCK_FLAG: CP_UMOUNT_FLAG;
|
|
block_t orphan_blks = 0;
|
|
block_t cp_blocks;
|
|
u32 i;
|
|
int ret;
|
|
u_int32_t crc = 0;
|
|
|
|
/* should call from fsck */
|
|
ASSERT(c.func == FSCK);
|
|
|
|
if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
|
|
orphan_blks = __start_sum_addr(sbi) - 1;
|
|
flags |= CP_ORPHAN_PRESENT_FLAG;
|
|
}
|
|
if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG))
|
|
flags |= CP_TRIMMED_FLAG;
|
|
if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG))
|
|
flags |= CP_DISABLED_FLAG;
|
|
if (is_set_ckpt_flags(cp, CP_LARGE_NAT_BITMAP_FLAG)) {
|
|
flags |= CP_LARGE_NAT_BITMAP_FLAG;
|
|
set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
|
|
} else {
|
|
set_cp(checksum_offset, CP_CHKSUM_OFFSET);
|
|
}
|
|
|
|
if (flags & CP_UMOUNT_FLAG)
|
|
cp_blocks = 8;
|
|
else
|
|
cp_blocks = 5;
|
|
|
|
set_cp(cp_pack_total_block_count, cp_blocks +
|
|
orphan_blks + get_sb(cp_payload));
|
|
|
|
flags = update_nat_bits_flags(sb, cp, flags);
|
|
flags |= CP_NOCRC_RECOVERY_FLAG;
|
|
set_cp(ckpt_flags, flags);
|
|
|
|
set_cp(free_segment_count, get_free_segments(sbi));
|
|
set_cp(valid_block_count, fsck->chk.valid_blk_cnt);
|
|
set_cp(valid_node_count, fsck->chk.valid_node_cnt);
|
|
set_cp(valid_inode_count, fsck->chk.valid_inode_cnt);
|
|
|
|
crc = f2fs_checkpoint_chksum(cp);
|
|
*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
|
|
cpu_to_le32(crc);
|
|
|
|
cp_blk_no = get_sb(cp_blkaddr);
|
|
if (sbi->cur_cp == 2)
|
|
cp_blk_no += 1 << get_sb(log_blocks_per_seg);
|
|
|
|
ret = dev_write_block(cp, cp_blk_no++);
|
|
ASSERT(ret >= 0);
|
|
|
|
for (i = 0; i < get_sb(cp_payload); i++) {
|
|
ret = dev_write_block(((unsigned char *)cp) +
|
|
(i + 1) * F2FS_BLKSIZE, cp_blk_no++);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
|
|
cp_blk_no += orphan_blks;
|
|
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
struct curseg_info *curseg = CURSEG_I(sbi, i);
|
|
|
|
if (!(flags & CP_UMOUNT_FLAG) && IS_NODESEG(i))
|
|
continue;
|
|
|
|
ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
|
|
ASSERT(ret >= 0);
|
|
}
|
|
|
|
/* Write nat bits */
|
|
if (flags & CP_NAT_BITS_FLAG)
|
|
write_nat_bits(sbi, sb, cp, sbi->cur_cp);
|
|
|
|
ret = f2fs_fsync_device();
|
|
ASSERT(ret >= 0);
|
|
|
|
ret = dev_write_block(cp, cp_blk_no++);
|
|
ASSERT(ret >= 0);
|
|
|
|
ret = f2fs_fsync_device();
|
|
ASSERT(ret >= 0);
|
|
}
|
|
|
|
static void fix_checkpoints(struct f2fs_sb_info *sbi)
|
|
{
|
|
/* copy valid checkpoint to its mirror position */
|
|
duplicate_checkpoint(sbi);
|
|
|
|
/* repair checkpoint at CP #0 position */
|
|
sbi->cur_cp = 1;
|
|
fix_checkpoint(sbi);
|
|
}
|
|
|
|
#ifdef HAVE_LINUX_BLKZONED_H
|
|
|
|
/*
|
|
* Refer valid block map and return offset of the last valid block in the zone.
|
|
* Obtain valid block map from SIT and fsync data.
|
|
* If there is no valid block in the zone, return -1.
|
|
*/
|
|
static int last_vblk_off_in_zone(struct f2fs_sb_info *sbi,
|
|
unsigned int zone_segno)
|
|
{
|
|
int s, b;
|
|
unsigned int segs_per_zone = sbi->segs_per_sec * sbi->secs_per_zone;
|
|
struct seg_entry *se;
|
|
|
|
for (s = segs_per_zone - 1; s >= 0; s--) {
|
|
se = get_seg_entry(sbi, zone_segno + s);
|
|
|
|
/*
|
|
* Refer not cur_valid_map but ckpt_valid_map which reflects
|
|
* fsync data.
|
|
*/
|
|
ASSERT(se->ckpt_valid_map);
|
|
for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
|
|
if (f2fs_test_bit(b, (const char*)se->ckpt_valid_map))
|
|
return b + (s << sbi->log_blocks_per_seg);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int check_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct blk_zone blkz;
|
|
block_t cs_block, wp_block, zone_last_vblock;
|
|
u_int64_t cs_sector, wp_sector;
|
|
int i, ret;
|
|
unsigned int zone_segno;
|
|
int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
|
|
|
|
/* get the device the curseg points to */
|
|
cs_block = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
|
|
for (i = 0; i < MAX_DEVICES; i++) {
|
|
if (!c.devices[i].path)
|
|
break;
|
|
if (c.devices[i].start_blkaddr <= cs_block &&
|
|
cs_block <= c.devices[i].end_blkaddr)
|
|
break;
|
|
}
|
|
|
|
if (i >= MAX_DEVICES)
|
|
return -EINVAL;
|
|
|
|
/* get write pointer position of the zone the curseg points to */
|
|
cs_sector = (cs_block - c.devices[i].start_blkaddr)
|
|
<< log_sectors_per_block;
|
|
ret = f2fs_report_zone(i, cs_sector, &blkz);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (blk_zone_type(&blkz) != BLK_ZONE_TYPE_SEQWRITE_REQ)
|
|
return 0;
|
|
|
|
/* check consistency between the curseg and the write pointer */
|
|
wp_block = c.devices[i].start_blkaddr +
|
|
(blk_zone_wp_sector(&blkz) >> log_sectors_per_block);
|
|
wp_sector = blk_zone_wp_sector(&blkz);
|
|
|
|
if (cs_sector == wp_sector)
|
|
return 0;
|
|
|
|
if (cs_sector > wp_sector) {
|
|
MSG(0, "Inconsistent write pointer with curseg %d: "
|
|
"curseg %d[0x%x,0x%x] > wp[0x%x,0x%x]\n",
|
|
type, type, curseg->segno, curseg->next_blkoff,
|
|
GET_SEGNO(sbi, wp_block), OFFSET_IN_SEG(sbi, wp_block));
|
|
fsck->chk.wp_inconsistent_zones++;
|
|
return -EINVAL;
|
|
}
|
|
|
|
MSG(0, "Write pointer goes advance from curseg %d: "
|
|
"curseg %d[0x%x,0x%x] wp[0x%x,0x%x]\n",
|
|
type, type, curseg->segno, curseg->next_blkoff,
|
|
GET_SEGNO(sbi, wp_block), OFFSET_IN_SEG(sbi, wp_block));
|
|
|
|
zone_segno = GET_SEG_FROM_SEC(sbi,
|
|
GET_SEC_FROM_SEG(sbi, curseg->segno));
|
|
zone_last_vblock = START_BLOCK(sbi, zone_segno) +
|
|
last_vblk_off_in_zone(sbi, zone_segno);
|
|
|
|
/*
|
|
* If valid blocks exist between the curseg position and the write
|
|
* pointer, they are fsync data. This is not an error to fix. Leave it
|
|
* for kernel to recover later.
|
|
* If valid blocks exist between the curseg's zone start and the curseg
|
|
* position, or if there is no valid block in the curseg's zone, fix
|
|
* the inconsistency between the curseg and the writ pointer.
|
|
* Of Note is that if there is no valid block in the curseg's zone,
|
|
* last_vblk_off_in_zone() returns -1 and zone_last_vblock is always
|
|
* smaller than cs_block.
|
|
*/
|
|
if (cs_block <= zone_last_vblock && zone_last_vblock < wp_block) {
|
|
MSG(0, "Curseg has fsync data: curseg %d[0x%x,0x%x] "
|
|
"last valid block in zone[0x%x,0x%x]\n",
|
|
type, curseg->segno, curseg->next_blkoff,
|
|
GET_SEGNO(sbi, zone_last_vblock),
|
|
OFFSET_IN_SEG(sbi, zone_last_vblock));
|
|
return 0;
|
|
}
|
|
|
|
fsck->chk.wp_inconsistent_zones++;
|
|
return -EINVAL;
|
|
}
|
|
|
|
#else
|
|
|
|
static int check_curseg_write_pointer(struct f2fs_sb_info *UNUSED(sbi),
|
|
int UNUSED(type))
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
int check_curseg_offset(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
struct seg_entry *se;
|
|
int j, nblocks;
|
|
|
|
if ((curseg->next_blkoff >> 3) >= SIT_VBLOCK_MAP_SIZE) {
|
|
ASSERT_MSG("Next block offset:%u is invalid, type:%d",
|
|
curseg->next_blkoff, type);
|
|
return -EINVAL;
|
|
}
|
|
se = get_seg_entry(sbi, curseg->segno);
|
|
if (f2fs_test_bit(curseg->next_blkoff,
|
|
(const char *)se->cur_valid_map)) {
|
|
ASSERT_MSG("Next block offset is not free, type:%d", type);
|
|
return -EINVAL;
|
|
}
|
|
if (curseg->alloc_type == SSR)
|
|
return 0;
|
|
|
|
nblocks = sbi->blocks_per_seg;
|
|
for (j = curseg->next_blkoff + 1; j < nblocks; j++) {
|
|
if (f2fs_test_bit(j, (const char *)se->cur_valid_map)) {
|
|
ASSERT_MSG("For LFS curseg, space after .next_blkoff "
|
|
"should be unused, type:%d", type);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (c.zoned_model == F2FS_ZONED_HM)
|
|
return check_curseg_write_pointer(sbi, type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int check_curseg_offsets(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
ret = check_curseg_offset(sbi, i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void fix_curseg_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i, need_update = 0;
|
|
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
if (check_curseg_offset(sbi, i)) {
|
|
update_curseg_info(sbi, i);
|
|
need_update = 1;
|
|
}
|
|
}
|
|
|
|
if (need_update) {
|
|
write_curseg_info(sbi);
|
|
flush_curseg_sit_entries(sbi);
|
|
}
|
|
}
|
|
|
|
int check_sit_types(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int i;
|
|
int err = 0;
|
|
|
|
for (i = 0; i < TOTAL_SEGS(sbi); i++) {
|
|
struct seg_entry *se;
|
|
|
|
se = get_seg_entry(sbi, i);
|
|
if (se->orig_type != se->type) {
|
|
if (se->orig_type == CURSEG_COLD_DATA &&
|
|
se->type <= CURSEG_COLD_DATA) {
|
|
se->type = se->orig_type;
|
|
} else {
|
|
FIX_MSG("Wrong segment type [0x%x] %x -> %x",
|
|
i, se->orig_type, se->type);
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct f2fs_node *fsck_get_lpf(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_node *node;
|
|
struct node_info ni;
|
|
nid_t lpf_ino;
|
|
int err;
|
|
|
|
/* read root inode first */
|
|
node = calloc(F2FS_BLKSIZE, 1);
|
|
ASSERT(node);
|
|
get_node_info(sbi, F2FS_ROOT_INO(sbi), &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
/* lookup lost+found in root directory */
|
|
lpf_ino = f2fs_lookup(sbi, node, (u8 *)LPF, strlen(LPF));
|
|
if (lpf_ino) { /* found */
|
|
get_node_info(sbi, lpf_ino, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
DBG(1, "Found lost+found 0x%x at blkaddr [0x%x]\n",
|
|
lpf_ino, ni.blk_addr);
|
|
if (!S_ISDIR(le16_to_cpu(node->i.i_mode))) {
|
|
ASSERT_MSG("lost+found is not directory [0%o]\n",
|
|
le16_to_cpu(node->i.i_mode));
|
|
/* FIXME: give up? */
|
|
goto out;
|
|
}
|
|
} else { /* not found, create it */
|
|
struct dentry de;
|
|
|
|
memset(&de, 0, sizeof(de));
|
|
de.name = (u8 *) LPF;
|
|
de.len = strlen(LPF);
|
|
de.mode = 0x41c0;
|
|
de.pino = F2FS_ROOT_INO(sbi),
|
|
de.file_type = F2FS_FT_DIR,
|
|
de.uid = getuid();
|
|
de.gid = getgid();
|
|
de.mtime = time(NULL);
|
|
|
|
err = f2fs_mkdir(sbi, &de);
|
|
if (err) {
|
|
ASSERT_MSG("Failed create lost+found");
|
|
goto out;
|
|
}
|
|
|
|
get_node_info(sbi, de.ino, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
DBG(1, "Create lost+found 0x%x at blkaddr [0x%x]\n",
|
|
de.ino, ni.blk_addr);
|
|
}
|
|
|
|
c.lpf_ino = le32_to_cpu(node->footer.ino);
|
|
return node;
|
|
out:
|
|
free(node);
|
|
return NULL;
|
|
}
|
|
|
|
static int fsck_do_reconnect_file(struct f2fs_sb_info *sbi,
|
|
struct f2fs_node *lpf,
|
|
struct f2fs_node *fnode)
|
|
{
|
|
char name[80];
|
|
size_t namelen;
|
|
nid_t ino = le32_to_cpu(fnode->footer.ino);
|
|
struct node_info ni;
|
|
int ftype, ret;
|
|
|
|
namelen = snprintf(name, 80, "%u", ino);
|
|
if (namelen >= 80)
|
|
/* ignore terminating '\0', should never happen */
|
|
namelen = 79;
|
|
|
|
if (f2fs_lookup(sbi, lpf, (u8 *)name, namelen)) {
|
|
ASSERT_MSG("Name %s already exist in lost+found", name);
|
|
return -EEXIST;
|
|
}
|
|
|
|
get_node_info(sbi, le32_to_cpu(lpf->footer.ino), &ni);
|
|
ftype = map_de_type(le16_to_cpu(fnode->i.i_mode));
|
|
ret = f2fs_add_link(sbi, lpf, (unsigned char *)name, namelen,
|
|
ino, ftype, ni.blk_addr, 0);
|
|
if (ret) {
|
|
ASSERT_MSG("Failed to add inode [0x%x] to lost+found", ino);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* update fnode */
|
|
memcpy(fnode->i.i_name, name, namelen);
|
|
fnode->i.i_namelen = cpu_to_le32(namelen);
|
|
fnode->i.i_pino = c.lpf_ino;
|
|
get_node_info(sbi, le32_to_cpu(fnode->footer.ino), &ni);
|
|
ret = dev_write_block(fnode, ni.blk_addr);
|
|
ASSERT(ret >= 0);
|
|
|
|
DBG(1, "Reconnect inode [0x%x] to lost+found\n", ino);
|
|
return 0;
|
|
}
|
|
|
|
static void fsck_failed_reconnect_file_dnode(struct f2fs_sb_info *sbi,
|
|
nid_t nid)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_node *node;
|
|
struct node_info ni;
|
|
u32 addr;
|
|
int i, err;
|
|
|
|
node = calloc(F2FS_BLKSIZE, 1);
|
|
ASSERT(node);
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
fsck->chk.valid_node_cnt--;
|
|
fsck->chk.valid_blk_cnt--;
|
|
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
|
|
|
|
for (i = 0; i < ADDRS_PER_BLOCK(&node->i); i++) {
|
|
addr = le32_to_cpu(node->dn.addr[i]);
|
|
if (!addr)
|
|
continue;
|
|
fsck->chk.valid_blk_cnt--;
|
|
if (addr == NEW_ADDR)
|
|
continue;
|
|
f2fs_clear_main_bitmap(sbi, addr);
|
|
}
|
|
|
|
free(node);
|
|
}
|
|
|
|
static void fsck_failed_reconnect_file_idnode(struct f2fs_sb_info *sbi,
|
|
nid_t nid)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_node *node;
|
|
struct node_info ni;
|
|
nid_t tmp;
|
|
int i, err;
|
|
|
|
node = calloc(F2FS_BLKSIZE, 1);
|
|
ASSERT(node);
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
fsck->chk.valid_node_cnt--;
|
|
fsck->chk.valid_blk_cnt--;
|
|
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
|
|
|
|
for (i = 0; i < NIDS_PER_BLOCK; i++) {
|
|
tmp = le32_to_cpu(node->in.nid[i]);
|
|
if (!tmp)
|
|
continue;
|
|
fsck_failed_reconnect_file_dnode(sbi, tmp);
|
|
}
|
|
|
|
free(node);
|
|
}
|
|
|
|
static void fsck_failed_reconnect_file_didnode(struct f2fs_sb_info *sbi,
|
|
nid_t nid)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_node *node;
|
|
struct node_info ni;
|
|
nid_t tmp;
|
|
int i, err;
|
|
|
|
node = calloc(F2FS_BLKSIZE, 1);
|
|
ASSERT(node);
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
fsck->chk.valid_node_cnt--;
|
|
fsck->chk.valid_blk_cnt--;
|
|
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
|
|
|
|
for (i = 0; i < NIDS_PER_BLOCK; i++) {
|
|
tmp = le32_to_cpu(node->in.nid[i]);
|
|
if (!tmp)
|
|
continue;
|
|
fsck_failed_reconnect_file_idnode(sbi, tmp);
|
|
}
|
|
|
|
free(node);
|
|
}
|
|
|
|
/*
|
|
* Counters and main_area_bitmap are already changed during checking
|
|
* inode block, so clear them. There is no need to clear new blocks
|
|
* allocted to lost+found.
|
|
*/
|
|
static void fsck_failed_reconnect_file(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_node *node;
|
|
struct node_info ni;
|
|
nid_t nid;
|
|
int ofs, i, err;
|
|
|
|
node = calloc(F2FS_BLKSIZE, 1);
|
|
ASSERT(node);
|
|
|
|
get_node_info(sbi, ino, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
/* clear inode counters */
|
|
fsck->chk.valid_inode_cnt--;
|
|
fsck->chk.valid_node_cnt--;
|
|
fsck->chk.valid_blk_cnt--;
|
|
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
|
|
|
|
/* clear xnid counters */
|
|
if (node->i.i_xattr_nid) {
|
|
nid = le32_to_cpu(node->i.i_xattr_nid);
|
|
fsck->chk.valid_node_cnt--;
|
|
fsck->chk.valid_blk_cnt--;
|
|
get_node_info(sbi, nid, &ni);
|
|
f2fs_clear_main_bitmap(sbi, ni.blk_addr);
|
|
}
|
|
|
|
/* clear data counters */
|
|
if(!(node->i.i_inline & F2FS_INLINE_DATA)) {
|
|
ofs = get_extra_isize(node);
|
|
for (i = 0; i < ADDRS_PER_INODE(&node->i); i++) {
|
|
block_t addr = le32_to_cpu(node->i.i_addr[ofs + i]);
|
|
if (!addr)
|
|
continue;
|
|
fsck->chk.valid_blk_cnt--;
|
|
if (addr == NEW_ADDR)
|
|
continue;
|
|
f2fs_clear_main_bitmap(sbi, addr);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
nid = le32_to_cpu(node->i.i_nid[i]);
|
|
if (!nid)
|
|
continue;
|
|
|
|
switch (i) {
|
|
case 0: /* direct node */
|
|
case 1:
|
|
fsck_failed_reconnect_file_dnode(sbi, nid);
|
|
break;
|
|
case 2: /* indirect node */
|
|
case 3:
|
|
fsck_failed_reconnect_file_idnode(sbi, nid);
|
|
break;
|
|
case 4: /* double indirect node */
|
|
fsck_failed_reconnect_file_didnode(sbi, nid);
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(node);
|
|
}
|
|
|
|
/*
|
|
* Scan unreachable nids and find only regular file inodes. If these files
|
|
* are not corrupted, reconnect them to lost+found.
|
|
*
|
|
* Since all unreachable nodes are already checked, we can allocate new
|
|
* blocks safely.
|
|
*
|
|
* This function returns the number of files been reconnected.
|
|
*/
|
|
static int fsck_reconnect_file(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct f2fs_node *lpf_node, *node;
|
|
struct node_info ni;
|
|
char *reconnect_bitmap;
|
|
u32 blk_cnt;
|
|
nid_t nid;
|
|
int err, cnt = 0, ftype;
|
|
|
|
node = calloc(F2FS_BLKSIZE, 1);
|
|
ASSERT(node);
|
|
|
|
reconnect_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
|
|
ASSERT(reconnect_bitmap);
|
|
|
|
for (nid = 0; nid < fsck->nr_nat_entries; nid++) {
|
|
if (f2fs_test_bit(nid, fsck->nat_area_bitmap)) {
|
|
if (is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) {
|
|
DBG(1, "Not support quota inode [0x%x]\n",
|
|
nid);
|
|
continue;
|
|
}
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
/* reconnection will restore these nodes if needed */
|
|
if (node->footer.ino != node->footer.nid) {
|
|
DBG(1, "Not support non-inode node [0x%x]\n",
|
|
nid);
|
|
continue;
|
|
}
|
|
|
|
if (S_ISDIR(le16_to_cpu(node->i.i_mode))) {
|
|
DBG(1, "Not support directory inode [0x%x]\n",
|
|
nid);
|
|
continue;
|
|
}
|
|
|
|
ftype = map_de_type(le16_to_cpu(node->i.i_mode));
|
|
if (sanity_check_nid(sbi, nid, node, ftype,
|
|
TYPE_INODE, &ni)) {
|
|
ASSERT_MSG("Invalid nid [0x%x]\n", nid);
|
|
continue;
|
|
}
|
|
|
|
DBG(1, "Check inode 0x%x\n", nid);
|
|
blk_cnt = 1;
|
|
fsck_chk_inode_blk(sbi, nid, ftype, node,
|
|
&blk_cnt, &ni, NULL);
|
|
|
|
f2fs_set_bit(nid, reconnect_bitmap);
|
|
}
|
|
}
|
|
|
|
lpf_node = fsck_get_lpf(sbi);
|
|
if (!lpf_node)
|
|
goto out;
|
|
|
|
for (nid = 0; nid < fsck->nr_nat_entries; nid++) {
|
|
if (f2fs_test_bit(nid, reconnect_bitmap)) {
|
|
get_node_info(sbi, nid, &ni);
|
|
err = dev_read_block(node, ni.blk_addr);
|
|
ASSERT(err >= 0);
|
|
|
|
if (fsck_do_reconnect_file(sbi, lpf_node, node)) {
|
|
DBG(1, "Failed to reconnect inode [0x%x]\n",
|
|
nid);
|
|
fsck_failed_reconnect_file(sbi, nid);
|
|
continue;
|
|
}
|
|
|
|
quota_add_inode_usage(fsck->qctx, nid, &node->i);
|
|
|
|
DBG(1, "Reconnected inode [0x%x] to lost+found\n", nid);
|
|
cnt++;
|
|
}
|
|
}
|
|
|
|
out:
|
|
free(node);
|
|
free(lpf_node);
|
|
free(reconnect_bitmap);
|
|
return cnt;
|
|
}
|
|
|
|
#ifdef HAVE_LINUX_BLKZONED_H
|
|
|
|
struct write_pointer_check_data {
|
|
struct f2fs_sb_info *sbi;
|
|
int dev_index;
|
|
};
|
|
|
|
static int chk_and_fix_wp_with_sit(int i, void *blkzone, void *opaque)
|
|
{
|
|
struct blk_zone *blkz = (struct blk_zone *)blkzone;
|
|
struct write_pointer_check_data *wpd = opaque;
|
|
struct f2fs_sb_info *sbi = wpd->sbi;
|
|
struct device_info *dev = c.devices + wpd->dev_index;
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
block_t zone_block, wp_block, wp_blkoff;
|
|
unsigned int zone_segno, wp_segno;
|
|
struct curseg_info *cs;
|
|
int cs_index, ret, last_valid_blkoff;
|
|
int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
|
|
unsigned int segs_per_zone = sbi->segs_per_sec * sbi->secs_per_zone;
|
|
|
|
if (blk_zone_conv(blkz))
|
|
return 0;
|
|
|
|
zone_block = dev->start_blkaddr
|
|
+ (blk_zone_sector(blkz) >> log_sectors_per_block);
|
|
zone_segno = GET_SEGNO(sbi, zone_block);
|
|
if (zone_segno >= MAIN_SEGS(sbi))
|
|
return 0;
|
|
|
|
wp_block = dev->start_blkaddr
|
|
+ (blk_zone_wp_sector(blkz) >> log_sectors_per_block);
|
|
wp_segno = GET_SEGNO(sbi, wp_block);
|
|
wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
|
|
|
|
/* if a curseg points to the zone, skip the check */
|
|
for (cs_index = 0; cs_index < NO_CHECK_TYPE; cs_index++) {
|
|
cs = &SM_I(sbi)->curseg_array[cs_index];
|
|
if (zone_segno <= cs->segno &&
|
|
cs->segno < zone_segno + segs_per_zone)
|
|
return 0;
|
|
}
|
|
|
|
last_valid_blkoff = last_vblk_off_in_zone(sbi, zone_segno);
|
|
|
|
/*
|
|
* When there is no valid block in the zone, check write pointer is
|
|
* at zone start. If not, reset the write pointer.
|
|
*/
|
|
if (last_valid_blkoff < 0 &&
|
|
blk_zone_wp_sector(blkz) != blk_zone_sector(blkz)) {
|
|
if (!c.fix_on) {
|
|
MSG(0, "Inconsistent write pointer: wp[0x%x,0x%x]\n",
|
|
wp_segno, wp_blkoff);
|
|
fsck->chk.wp_inconsistent_zones++;
|
|
return 0;
|
|
}
|
|
|
|
FIX_MSG("Reset write pointer of zone at segment 0x%x",
|
|
zone_segno);
|
|
ret = f2fs_reset_zone(wpd->dev_index, blkz);
|
|
if (ret) {
|
|
printf("[FSCK] Write pointer reset failed: %s\n",
|
|
dev->path);
|
|
return ret;
|
|
}
|
|
fsck->chk.wp_fixed = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If valid blocks exist in the zone beyond the write pointer, it
|
|
* is a bug. No need to fix because the zone is not selected for the
|
|
* write. Just report it.
|
|
*/
|
|
if (last_valid_blkoff + zone_block > wp_block) {
|
|
MSG(0, "Unexpected invalid write pointer: wp[0x%x,0x%x]\n",
|
|
wp_segno, wp_blkoff);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fix_wp_sit_alignment(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int i;
|
|
struct write_pointer_check_data wpd = { sbi, 0 };
|
|
|
|
if (c.zoned_model != F2FS_ZONED_HM)
|
|
return;
|
|
|
|
for (i = 0; i < MAX_DEVICES; i++) {
|
|
if (!c.devices[i].path)
|
|
break;
|
|
if (c.devices[i].zoned_model != F2FS_ZONED_HM)
|
|
break;
|
|
|
|
wpd.dev_index = i;
|
|
if (f2fs_report_zones(i, chk_and_fix_wp_with_sit, &wpd)) {
|
|
printf("[FSCK] Write pointer check failed: %s\n",
|
|
c.devices[i].path);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void fix_wp_sit_alignment(struct f2fs_sb_info *UNUSED(sbi))
|
|
{
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Check and fix consistency with write pointers at the beginning of
|
|
* fsck so that following writes by fsck do not fail.
|
|
*/
|
|
void fsck_chk_and_fix_write_pointers(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
if (c.zoned_model != F2FS_ZONED_HM)
|
|
return;
|
|
|
|
if (check_curseg_offsets(sbi) && c.fix_on) {
|
|
fix_curseg_info(sbi);
|
|
fsck->chk.wp_fixed = 1;
|
|
}
|
|
|
|
fix_wp_sit_alignment(sbi);
|
|
}
|
|
|
|
int fsck_chk_curseg_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *curseg;
|
|
struct seg_entry *se;
|
|
struct f2fs_summary_block *sum_blk;
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
curseg = CURSEG_I(sbi, i);
|
|
se = get_seg_entry(sbi, curseg->segno);
|
|
sum_blk = curseg->sum_blk;
|
|
|
|
if (se->type != i) {
|
|
ASSERT_MSG("Incorrect curseg [%d]: segno [0x%x] "
|
|
"type(SIT) [%d]", i, curseg->segno,
|
|
se->type);
|
|
if (c.fix_on || c.preen_mode)
|
|
se->type = i;
|
|
ret = -1;
|
|
}
|
|
if (i <= CURSEG_COLD_DATA && IS_SUM_DATA_SEG(sum_blk->footer)) {
|
|
continue;
|
|
} else if (i > CURSEG_COLD_DATA && IS_SUM_NODE_SEG(sum_blk->footer)) {
|
|
continue;
|
|
} else {
|
|
ASSERT_MSG("Incorrect curseg [%d]: segno [0x%x] "
|
|
"type(SSA) [%d]", i, curseg->segno,
|
|
sum_blk->footer.entry_type);
|
|
if (c.fix_on || c.preen_mode)
|
|
sum_blk->footer.entry_type =
|
|
i <= CURSEG_COLD_DATA ?
|
|
SUM_TYPE_DATA : SUM_TYPE_NODE;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int fsck_verify(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int i = 0;
|
|
int ret = 0;
|
|
int force = 0;
|
|
u32 nr_unref_nid = 0;
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
struct hard_link_node *node = NULL;
|
|
|
|
printf("\n");
|
|
|
|
if (c.zoned_model == F2FS_ZONED_HM) {
|
|
printf("[FSCK] Write pointers consistency ");
|
|
if (fsck->chk.wp_inconsistent_zones == 0x0) {
|
|
printf(" [Ok..]\n");
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n",
|
|
fsck->chk.wp_inconsistent_zones);
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
if (fsck->chk.wp_fixed && c.fix_on)
|
|
force = 1;
|
|
}
|
|
|
|
if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
|
|
for (i = 0; i < fsck->nr_nat_entries; i++)
|
|
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0)
|
|
break;
|
|
if (i < fsck->nr_nat_entries) {
|
|
i = fsck_reconnect_file(sbi);
|
|
printf("[FSCK] Reconnect %u files to lost+found\n", i);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < fsck->nr_nat_entries; i++) {
|
|
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) {
|
|
struct node_info ni;
|
|
|
|
get_node_info(sbi, i, &ni);
|
|
printf("NID[0x%x] is unreachable, blkaddr:0x%x\n",
|
|
i, ni.blk_addr);
|
|
nr_unref_nid++;
|
|
}
|
|
}
|
|
|
|
if (fsck->hard_link_list_head != NULL) {
|
|
node = fsck->hard_link_list_head;
|
|
while (node) {
|
|
printf("NID[0x%x] has [0x%x] more unreachable links\n",
|
|
node->nid, node->links);
|
|
node = node->next;
|
|
}
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] Unreachable nat entries ");
|
|
if (nr_unref_nid == 0x0) {
|
|
printf(" [Ok..] [0x%x]\n", nr_unref_nid);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", nr_unref_nid);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] SIT valid block bitmap checking ");
|
|
if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap,
|
|
fsck->sit_area_bitmap_sz) == 0x0) {
|
|
printf("[Ok..]\n");
|
|
} else {
|
|
printf("[Fail]\n");
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] Hard link checking for regular file ");
|
|
if (fsck->hard_link_list_head == NULL) {
|
|
printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] valid_block_count matching with CP ");
|
|
if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) {
|
|
printf(" [Ok..] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] valid_node_count matching with CP (de lookup) ");
|
|
if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) {
|
|
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] valid_node_count matching with CP (nat lookup)");
|
|
if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) {
|
|
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] valid_inode_count matched with CP ");
|
|
if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) {
|
|
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] free segment_count matched with CP ");
|
|
if (le32_to_cpu(F2FS_CKPT(sbi)->free_segment_count) ==
|
|
fsck->chk.sit_free_segs) {
|
|
printf(" [Ok..] [0x%x]\n", fsck->chk.sit_free_segs);
|
|
} else {
|
|
printf(" [Fail] [0x%x]\n", fsck->chk.sit_free_segs);
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] next block offset is free ");
|
|
if (check_curseg_offsets(sbi) == 0) {
|
|
printf(" [Ok..]\n");
|
|
} else {
|
|
printf(" [Fail]\n");
|
|
ret = EXIT_ERR_CODE;
|
|
c.bug_on = 1;
|
|
}
|
|
|
|
printf("[FSCK] fixing SIT types\n");
|
|
if (check_sit_types(sbi) != 0)
|
|
force = 1;
|
|
|
|
printf("[FSCK] other corrupted bugs ");
|
|
if (c.bug_on == 0) {
|
|
printf(" [Ok..]\n");
|
|
} else {
|
|
printf(" [Fail]\n");
|
|
ret = EXIT_ERR_CODE;
|
|
}
|
|
|
|
#ifndef WITH_ANDROID
|
|
if (nr_unref_nid && !c.ro) {
|
|
char ans[255] = {0};
|
|
|
|
printf("\nDo you want to restore lost files into ./lost_found/? [Y/N] ");
|
|
ret = scanf("%s", ans);
|
|
ASSERT(ret >= 0);
|
|
if (!strcasecmp(ans, "y")) {
|
|
for (i = 0; i < fsck->nr_nat_entries; i++) {
|
|
if (f2fs_test_bit(i, fsck->nat_area_bitmap))
|
|
dump_node(sbi, i, 1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* fix global metadata */
|
|
if (force || (c.fix_on && f2fs_dev_is_writable())) {
|
|
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
|
|
|
|
if (force || c.bug_on || c.bug_nat_bits) {
|
|
/* flush nats to write_nit_bits below */
|
|
flush_journal_entries(sbi);
|
|
fix_hard_links(sbi);
|
|
fix_nat_entries(sbi);
|
|
rewrite_sit_area_bitmap(sbi);
|
|
fix_wp_sit_alignment(sbi);
|
|
fix_curseg_info(sbi);
|
|
fix_checksum(sbi);
|
|
fix_checkpoints(sbi);
|
|
} else if (is_set_ckpt_flags(cp, CP_FSCK_FLAG) ||
|
|
is_set_ckpt_flags(cp, CP_QUOTA_NEED_FSCK_FLAG)) {
|
|
write_checkpoints(sbi);
|
|
}
|
|
/* to return FSCK_ERROR_CORRECTED */
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void fsck_free(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
|
|
|
|
if (fsck->qctx)
|
|
quota_release_context(&fsck->qctx);
|
|
|
|
if (fsck->main_area_bitmap)
|
|
free(fsck->main_area_bitmap);
|
|
|
|
if (fsck->nat_area_bitmap)
|
|
free(fsck->nat_area_bitmap);
|
|
|
|
if (fsck->sit_area_bitmap)
|
|
free(fsck->sit_area_bitmap);
|
|
|
|
if (fsck->entries)
|
|
free(fsck->entries);
|
|
|
|
if (tree_mark)
|
|
free(tree_mark);
|
|
}
|