third_party_f2fs-tools/fsck/mount.c
Aravind Ramesh f8410857b7 f2fs-tools: zns zone-capacity support
NVM Express Zoned Namespace (ZNS) devices can have zone-capacity(zc) less
than the zone-size. ZNS defines a per zone capacity which can be equal
or less than the zone-size. Zone-capacity is the number of usable blocks
in the zone. If zone-capacity is less than zone-size, then the segments
which start at/after zone-capacity are considered unusable. Only those
segments which start before the zone-capacity are considered as usable
and added to the free_segment_count and free_segment_bitmap of the kernel.
In such cases, the filesystem should not write/read beyond the
zone-capacity.

Update the super block with the usable number of blocks and free segment
count in the ZNS device zones, if zone-capacity is less than zone-size.
Set reserved segment count and overprovision ratio based on the usable
segments in the zone.

Allow fsck to find the free_segment_count based on the zone-capacity and
compare with checkpoint values.

Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com>
Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
[Jaegeuk Kim: add UNUSED to is_usable_seg()]
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-08-20 09:08:34 -07:00

3686 lines
94 KiB
C

/**
* mount.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "fsck.h"
#include "node.h"
#include "xattr.h"
#include <locale.h>
#include <stdbool.h>
#ifdef HAVE_LINUX_POSIX_ACL_H
#include <linux/posix_acl.h>
#endif
#ifdef HAVE_SYS_ACL_H
#include <sys/acl.h>
#endif
#ifndef ACL_UNDEFINED_TAG
#define ACL_UNDEFINED_TAG (0x00)
#define ACL_USER_OBJ (0x01)
#define ACL_USER (0x02)
#define ACL_GROUP_OBJ (0x04)
#define ACL_GROUP (0x08)
#define ACL_MASK (0x10)
#define ACL_OTHER (0x20)
#endif
static int get_device_idx(struct f2fs_sb_info *sbi, u_int32_t segno)
{
block_t seg_start_blkaddr;
int i;
seg_start_blkaddr = SM_I(sbi)->main_blkaddr +
segno * DEFAULT_BLOCKS_PER_SEGMENT;
for (i = 0; i < c.ndevs; i++)
if (c.devices[i].start_blkaddr <= seg_start_blkaddr &&
c.devices[i].end_blkaddr > seg_start_blkaddr)
return i;
return 0;
}
#ifdef HAVE_LINUX_BLKZONED_H
static int get_zone_idx_from_dev(struct f2fs_sb_info *sbi,
u_int32_t segno, u_int32_t dev_idx)
{
block_t seg_start_blkaddr = START_BLOCK(sbi, segno);
return (seg_start_blkaddr - c.devices[dev_idx].start_blkaddr) >>
log_base_2(sbi->segs_per_sec * sbi->blocks_per_seg);
}
bool is_usable_seg(struct f2fs_sb_info *sbi, unsigned int segno)
{
unsigned int secno = segno / sbi->segs_per_sec;
block_t seg_start = START_BLOCK(sbi, segno);
block_t blocks_per_sec = sbi->blocks_per_seg * sbi->segs_per_sec;
unsigned int dev_idx = get_device_idx(sbi, segno);
unsigned int zone_idx = get_zone_idx_from_dev(sbi, segno, dev_idx);
unsigned int sec_off = SM_I(sbi)->main_blkaddr >>
log_base_2(blocks_per_sec);
if (zone_idx < c.devices[dev_idx].nr_rnd_zones)
return true;
if (c.devices[dev_idx].zoned_model != F2FS_ZONED_HM)
return true;
return seg_start < ((sec_off + secno) * blocks_per_sec) +
c.devices[dev_idx].zone_cap_blocks[zone_idx];
}
unsigned int get_usable_seg_count(struct f2fs_sb_info *sbi)
{
unsigned int i, usable_seg_count = 0;
for (i = 0; i < TOTAL_SEGS(sbi); i++)
if (is_usable_seg(sbi, i))
usable_seg_count++;
return usable_seg_count;
}
#else
bool is_usable_seg(struct f2fs_sb_info *UNUSED(sbi), unsigned int UNUSED(segno))
{
return true;
}
unsigned int get_usable_seg_count(struct f2fs_sb_info *sbi)
{
return TOTAL_SEGS(sbi);
}
#endif
u32 get_free_segments(struct f2fs_sb_info *sbi)
{
u32 i, free_segs = 0;
for (i = 0; i < TOTAL_SEGS(sbi); i++) {
struct seg_entry *se = get_seg_entry(sbi, i);
if (se->valid_blocks == 0x0 && !IS_CUR_SEGNO(sbi, i) &&
is_usable_seg(sbi, i))
free_segs++;
}
return free_segs;
}
void update_free_segments(struct f2fs_sb_info *sbi)
{
char *progress = "-*|*-";
static int i = 0;
if (c.dbg_lv)
return;
MSG(0, "\r [ %c ] Free segments: 0x%x", progress[i % 5], get_free_segments(sbi));
fflush(stdout);
i++;
}
#if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H)
static void print_acl(const u8 *value, int size)
{
const struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value;
const struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1);
const u8 *end = value + size;
int i, count;
if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION)) {
MSG(0, "Invalid ACL version [0x%x : 0x%x]\n",
le32_to_cpu(hdr->a_version), F2FS_ACL_VERSION);
return;
}
count = f2fs_acl_count(size);
if (count <= 0) {
MSG(0, "Invalid ACL value size %d\n", size);
return;
}
for (i = 0; i < count; i++) {
if ((u8 *)entry > end) {
MSG(0, "Invalid ACL entries count %d\n", count);
return;
}
switch (le16_to_cpu(entry->e_tag)) {
case ACL_USER_OBJ:
case ACL_GROUP_OBJ:
case ACL_MASK:
case ACL_OTHER:
MSG(0, "tag:0x%x perm:0x%x\n",
le16_to_cpu(entry->e_tag),
le16_to_cpu(entry->e_perm));
entry = (struct f2fs_acl_entry *)((char *)entry +
sizeof(struct f2fs_acl_entry_short));
break;
case ACL_USER:
MSG(0, "tag:0x%x perm:0x%x uid:%u\n",
le16_to_cpu(entry->e_tag),
le16_to_cpu(entry->e_perm),
le32_to_cpu(entry->e_id));
entry = (struct f2fs_acl_entry *)((char *)entry +
sizeof(struct f2fs_acl_entry));
break;
case ACL_GROUP:
MSG(0, "tag:0x%x perm:0x%x gid:%u\n",
le16_to_cpu(entry->e_tag),
le16_to_cpu(entry->e_perm),
le32_to_cpu(entry->e_id));
entry = (struct f2fs_acl_entry *)((char *)entry +
sizeof(struct f2fs_acl_entry));
break;
default:
MSG(0, "Unknown ACL tag 0x%x\n",
le16_to_cpu(entry->e_tag));
return;
}
}
}
#endif /* HAVE_LINUX_POSIX_ACL_H || HAVE_SYS_ACL_H */
static void print_xattr_entry(const struct f2fs_xattr_entry *ent)
{
const u8 *value = (const u8 *)&ent->e_name[ent->e_name_len];
const int size = le16_to_cpu(ent->e_value_size);
const struct fscrypt_context *ctx;
int i;
MSG(0, "\nxattr: e_name_index:%d e_name:", ent->e_name_index);
for (i = 0; i < ent->e_name_len; i++)
MSG(0, "%c", ent->e_name[i]);
MSG(0, " e_name_len:%d e_value_size:%d e_value:\n",
ent->e_name_len, size);
switch (ent->e_name_index) {
#if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H)
case F2FS_XATTR_INDEX_POSIX_ACL_ACCESS:
case F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT:
print_acl(value, size);
return;
#endif
case F2FS_XATTR_INDEX_ENCRYPTION:
ctx = (const struct fscrypt_context *)value;
if (size != sizeof(*ctx) ||
ctx->format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
break;
MSG(0, "format: %d\n", ctx->format);
MSG(0, "contents_encryption_mode: 0x%x\n", ctx->contents_encryption_mode);
MSG(0, "filenames_encryption_mode: 0x%x\n", ctx->filenames_encryption_mode);
MSG(0, "flags: 0x%x\n", ctx->flags);
MSG(0, "master_key_descriptor: ");
for (i = 0; i < FS_KEY_DESCRIPTOR_SIZE; i++)
MSG(0, "%02X", ctx->master_key_descriptor[i]);
MSG(0, "\nnonce: ");
for (i = 0; i < FS_KEY_DERIVATION_NONCE_SIZE; i++)
MSG(0, "%02X", ctx->nonce[i]);
MSG(0, "\n");
return;
}
for (i = 0; i < size; i++)
MSG(0, "%02X", value[i]);
MSG(0, "\n");
}
void print_inode_info(struct f2fs_sb_info *sbi,
struct f2fs_node *node, int name)
{
struct f2fs_inode *inode = &node->i;
void *xattr_addr;
struct f2fs_xattr_entry *ent;
char en[F2FS_PRINT_NAMELEN];
unsigned int i = 0;
u32 namelen = le32_to_cpu(inode->i_namelen);
int enc_name = file_enc_name(inode);
int ofs = get_extra_isize(node);
pretty_print_filename(inode->i_name, namelen, en, enc_name);
if (name && en[0]) {
MSG(0, " - File name : %s%s\n", en,
enc_name ? " <encrypted>" : "");
setlocale(LC_ALL, "");
MSG(0, " - File size : %'llu (bytes)\n",
le64_to_cpu(inode->i_size));
return;
}
DISP_u32(inode, i_mode);
DISP_u32(inode, i_advise);
DISP_u32(inode, i_uid);
DISP_u32(inode, i_gid);
DISP_u32(inode, i_links);
DISP_u64(inode, i_size);
DISP_u64(inode, i_blocks);
DISP_u64(inode, i_atime);
DISP_u32(inode, i_atime_nsec);
DISP_u64(inode, i_ctime);
DISP_u32(inode, i_ctime_nsec);
DISP_u64(inode, i_mtime);
DISP_u32(inode, i_mtime_nsec);
DISP_u32(inode, i_generation);
DISP_u32(inode, i_current_depth);
DISP_u32(inode, i_xattr_nid);
DISP_u32(inode, i_flags);
DISP_u32(inode, i_inline);
DISP_u32(inode, i_pino);
DISP_u32(inode, i_dir_level);
if (en[0]) {
DISP_u32(inode, i_namelen);
printf("%-30s\t\t[%s]\n", "i_name", en);
}
printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
le32_to_cpu(inode->i_ext.fofs),
le32_to_cpu(inode->i_ext.blk_addr),
le32_to_cpu(inode->i_ext.len));
if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
DISP_u16(inode, i_extra_isize);
if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR))
DISP_u16(inode, i_inline_xattr_size);
if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
DISP_u32(inode, i_projid);
if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
DISP_u32(inode, i_inode_checksum);
if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
DISP_u64(inode, i_crtime);
DISP_u32(inode, i_crtime_nsec);
}
if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
DISP_u64(inode, i_compr_blocks);
DISP_u32(inode, i_compress_algrithm);
DISP_u32(inode, i_log_cluster_size);
DISP_u32(inode, i_padding);
}
}
for (i = 0; i < ADDRS_PER_INODE(inode); i++) {
block_t blkaddr;
char *flag = "";
if (i + ofs >= DEF_ADDRS_PER_INODE)
break;
blkaddr = le32_to_cpu(inode->i_addr[i + ofs]);
if (blkaddr == 0x0)
continue;
if (blkaddr == COMPRESS_ADDR)
flag = "cluster flag";
else if (blkaddr == NEW_ADDR)
flag = "reserved flag";
printf("i_addr[0x%x] %-16s\t\t[0x%8x : %u]\n", i + ofs, flag,
blkaddr, blkaddr);
}
DISP_u32(inode, i_nid[0]); /* direct */
DISP_u32(inode, i_nid[1]); /* direct */
DISP_u32(inode, i_nid[2]); /* indirect */
DISP_u32(inode, i_nid[3]); /* indirect */
DISP_u32(inode, i_nid[4]); /* double indirect */
xattr_addr = read_all_xattrs(sbi, node);
if (xattr_addr) {
list_for_each_xattr(ent, xattr_addr) {
print_xattr_entry(ent);
}
free(xattr_addr);
}
printf("\n");
}
void print_node_info(struct f2fs_sb_info *sbi,
struct f2fs_node *node_block, int verbose)
{
nid_t ino = le32_to_cpu(node_block->footer.ino);
nid_t nid = le32_to_cpu(node_block->footer.nid);
/* Is this inode? */
if (ino == nid) {
DBG(verbose, "Node ID [0x%x:%u] is inode\n", nid, nid);
print_inode_info(sbi, node_block, verbose);
} else {
int i;
u32 *dump_blk = (u32 *)node_block;
DBG(verbose,
"Node ID [0x%x:%u] is direct node or indirect node.\n",
nid, nid);
for (i = 0; i < DEF_ADDRS_PER_BLOCK; i++)
MSG(verbose, "[%d]\t\t\t[0x%8x : %d]\n",
i, dump_blk[i], dump_blk[i]);
}
}
static void DISP_label(u_int16_t *name)
{
char buffer[MAX_VOLUME_NAME];
utf16_to_utf8(buffer, name, MAX_VOLUME_NAME, MAX_VOLUME_NAME);
printf("%-30s" "\t\t[%s]\n", "volum_name", buffer);
}
void print_raw_sb_info(struct f2fs_super_block *sb)
{
if (!c.dbg_lv)
return;
printf("\n");
printf("+--------------------------------------------------------+\n");
printf("| Super block |\n");
printf("+--------------------------------------------------------+\n");
DISP_u32(sb, magic);
DISP_u32(sb, major_ver);
DISP_label(sb->volume_name);
DISP_u32(sb, minor_ver);
DISP_u32(sb, log_sectorsize);
DISP_u32(sb, log_sectors_per_block);
DISP_u32(sb, log_blocksize);
DISP_u32(sb, log_blocks_per_seg);
DISP_u32(sb, segs_per_sec);
DISP_u32(sb, secs_per_zone);
DISP_u32(sb, checksum_offset);
DISP_u64(sb, block_count);
DISP_u32(sb, section_count);
DISP_u32(sb, segment_count);
DISP_u32(sb, segment_count_ckpt);
DISP_u32(sb, segment_count_sit);
DISP_u32(sb, segment_count_nat);
DISP_u32(sb, segment_count_ssa);
DISP_u32(sb, segment_count_main);
DISP_u32(sb, segment0_blkaddr);
DISP_u32(sb, cp_blkaddr);
DISP_u32(sb, sit_blkaddr);
DISP_u32(sb, nat_blkaddr);
DISP_u32(sb, ssa_blkaddr);
DISP_u32(sb, main_blkaddr);
DISP_u32(sb, root_ino);
DISP_u32(sb, node_ino);
DISP_u32(sb, meta_ino);
DISP_u32(sb, cp_payload);
DISP_u32(sb, crc);
DISP("%-.256s", sb, version);
printf("\n");
}
void print_ckpt_info(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
if (!c.dbg_lv)
return;
printf("\n");
printf("+--------------------------------------------------------+\n");
printf("| Checkpoint |\n");
printf("+--------------------------------------------------------+\n");
DISP_u64(cp, checkpoint_ver);
DISP_u64(cp, user_block_count);
DISP_u64(cp, valid_block_count);
DISP_u32(cp, rsvd_segment_count);
DISP_u32(cp, overprov_segment_count);
DISP_u32(cp, free_segment_count);
DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
DISP_u32(cp, cur_node_segno[0]);
DISP_u32(cp, cur_node_segno[1]);
DISP_u32(cp, cur_node_segno[2]);
DISP_u32(cp, cur_node_blkoff[0]);
DISP_u32(cp, cur_node_blkoff[1]);
DISP_u32(cp, cur_node_blkoff[2]);
DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
DISP_u32(cp, cur_data_segno[0]);
DISP_u32(cp, cur_data_segno[1]);
DISP_u32(cp, cur_data_segno[2]);
DISP_u32(cp, cur_data_blkoff[0]);
DISP_u32(cp, cur_data_blkoff[1]);
DISP_u32(cp, cur_data_blkoff[2]);
DISP_u32(cp, ckpt_flags);
DISP_u32(cp, cp_pack_total_block_count);
DISP_u32(cp, cp_pack_start_sum);
DISP_u32(cp, valid_node_count);
DISP_u32(cp, valid_inode_count);
DISP_u32(cp, next_free_nid);
DISP_u32(cp, sit_ver_bitmap_bytesize);
DISP_u32(cp, nat_ver_bitmap_bytesize);
DISP_u32(cp, checksum_offset);
DISP_u64(cp, elapsed_time);
DISP_u32(cp, sit_nat_version_bitmap[0]);
printf("\n\n");
}
void print_cp_state(u32 flag)
{
MSG(0, "Info: checkpoint state = %x : ", flag);
if (flag & CP_QUOTA_NEED_FSCK_FLAG)
MSG(0, "%s", " quota_need_fsck");
if (flag & CP_LARGE_NAT_BITMAP_FLAG)
MSG(0, "%s", " large_nat_bitmap");
if (flag & CP_NOCRC_RECOVERY_FLAG)
MSG(0, "%s", " allow_nocrc");
if (flag & CP_TRIMMED_FLAG)
MSG(0, "%s", " trimmed");
if (flag & CP_NAT_BITS_FLAG)
MSG(0, "%s", " nat_bits");
if (flag & CP_CRC_RECOVERY_FLAG)
MSG(0, "%s", " crc");
if (flag & CP_FASTBOOT_FLAG)
MSG(0, "%s", " fastboot");
if (flag & CP_FSCK_FLAG)
MSG(0, "%s", " fsck");
if (flag & CP_ERROR_FLAG)
MSG(0, "%s", " error");
if (flag & CP_COMPACT_SUM_FLAG)
MSG(0, "%s", " compacted_summary");
if (flag & CP_ORPHAN_PRESENT_FLAG)
MSG(0, "%s", " orphan_inodes");
if (flag & CP_DISABLED_FLAG)
MSG(0, "%s", " disabled");
if (flag & CP_RESIZEFS_FLAG)
MSG(0, "%s", " resizefs");
if (flag & CP_UMOUNT_FLAG)
MSG(0, "%s", " unmount");
else
MSG(0, "%s", " sudden-power-off");
MSG(0, "\n");
}
void print_sb_state(struct f2fs_super_block *sb)
{
__le32 f = sb->feature;
int i;
MSG(0, "Info: superblock features = %x : ", f);
if (f & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
MSG(0, "%s", " encrypt");
}
if (f & cpu_to_le32(F2FS_FEATURE_VERITY)) {
MSG(0, "%s", " verity");
}
if (f & cpu_to_le32(F2FS_FEATURE_BLKZONED)) {
MSG(0, "%s", " blkzoned");
}
if (f & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
MSG(0, "%s", " extra_attr");
}
if (f & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) {
MSG(0, "%s", " project_quota");
}
if (f & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) {
MSG(0, "%s", " inode_checksum");
}
if (f & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) {
MSG(0, "%s", " flexible_inline_xattr");
}
if (f & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) {
MSG(0, "%s", " quota_ino");
}
if (f & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
MSG(0, "%s", " inode_crtime");
}
if (f & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
MSG(0, "%s", " lost_found");
}
if (f & cpu_to_le32(F2FS_FEATURE_SB_CHKSUM)) {
MSG(0, "%s", " sb_checksum");
}
if (f & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
MSG(0, "%s", " casefold");
}
if (f & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
MSG(0, "%s", " compression");
}
MSG(0, "\n");
MSG(0, "Info: superblock encrypt level = %d, salt = ",
sb->encryption_level);
for (i = 0; i < 16; i++)
MSG(0, "%02x", sb->encrypt_pw_salt[i]);
MSG(0, "\n");
}
static inline bool is_valid_data_blkaddr(block_t blkaddr)
{
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
blkaddr == COMPRESS_ADDR)
return 0;
return 1;
}
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
block_t blkaddr, int type)
{
switch (type) {
case META_NAT:
break;
case META_SIT:
if (blkaddr >= SIT_BLK_CNT(sbi))
return 0;
break;
case META_SSA:
if (blkaddr >= MAIN_BLKADDR(sbi) ||
blkaddr < SM_I(sbi)->ssa_blkaddr)
return 0;
break;
case META_CP:
if (blkaddr >= SIT_I(sbi)->sit_base_addr ||
blkaddr < __start_cp_addr(sbi))
return 0;
break;
case META_POR:
if (blkaddr >= MAX_BLKADDR(sbi) ||
blkaddr < MAIN_BLKADDR(sbi))
return 0;
break;
default:
ASSERT(0);
}
return 1;
}
static inline block_t current_sit_addr(struct f2fs_sb_info *sbi,
unsigned int start);
/*
* Readahead CP/NAT/SIT/SSA pages
*/
int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
int type)
{
block_t blkno = start;
block_t blkaddr, start_blk = 0, len = 0;
for (; nrpages-- > 0; blkno++) {
if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
goto out;
switch (type) {
case META_NAT:
if (blkno >= NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))
blkno = 0;
/* get nat block addr */
blkaddr = current_nat_addr(sbi,
blkno * NAT_ENTRY_PER_BLOCK, NULL);
break;
case META_SIT:
/* get sit block addr */
blkaddr = current_sit_addr(sbi,
blkno * SIT_ENTRY_PER_BLOCK);
break;
case META_SSA:
case META_CP:
case META_POR:
blkaddr = blkno;
break;
default:
ASSERT(0);
}
if (!len) {
start_blk = blkaddr;
len = 1;
} else if (start_blk + len == blkaddr) {
len++;
} else {
dev_readahead(start_blk << F2FS_BLKSIZE_BITS,
len << F2FS_BLKSIZE_BITS);
}
}
out:
if (len)
dev_readahead(start_blk << F2FS_BLKSIZE_BITS,
len << F2FS_BLKSIZE_BITS);
return blkno - start;
}
void update_superblock(struct f2fs_super_block *sb, int sb_mask)
{
int addr, ret;
u_int8_t *buf;
u32 old_crc, new_crc;
buf = calloc(BLOCK_SZ, 1);
ASSERT(buf);
if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
old_crc = get_sb(crc);
new_crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
SB_CHKSUM_OFFSET);
set_sb(crc, new_crc);
MSG(1, "Info: SB CRC is updated (0x%x -> 0x%x)\n",
old_crc, new_crc);
}
memcpy(buf + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
for (addr = SB0_ADDR; addr < SB_MAX_ADDR; addr++) {
if (SB_MASK(addr) & sb_mask) {
ret = dev_write_block(buf, addr);
ASSERT(ret >= 0);
}
}
free(buf);
DBG(0, "Info: Done to update superblock\n");
}
static inline int sanity_check_area_boundary(struct f2fs_super_block *sb,
enum SB_ADDR sb_addr)
{
u32 segment0_blkaddr = get_sb(segment0_blkaddr);
u32 cp_blkaddr = get_sb(cp_blkaddr);
u32 sit_blkaddr = get_sb(sit_blkaddr);
u32 nat_blkaddr = get_sb(nat_blkaddr);
u32 ssa_blkaddr = get_sb(ssa_blkaddr);
u32 main_blkaddr = get_sb(main_blkaddr);
u32 segment_count_ckpt = get_sb(segment_count_ckpt);
u32 segment_count_sit = get_sb(segment_count_sit);
u32 segment_count_nat = get_sb(segment_count_nat);
u32 segment_count_ssa = get_sb(segment_count_ssa);
u32 segment_count_main = get_sb(segment_count_main);
u32 segment_count = get_sb(segment_count);
u32 log_blocks_per_seg = get_sb(log_blocks_per_seg);
u64 main_end_blkaddr = main_blkaddr +
(segment_count_main << log_blocks_per_seg);
u64 seg_end_blkaddr = segment0_blkaddr +
(segment_count << log_blocks_per_seg);
if (segment0_blkaddr != cp_blkaddr) {
MSG(0, "\tMismatch segment0(%u) cp_blkaddr(%u)\n",
segment0_blkaddr, cp_blkaddr);
return -1;
}
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
sit_blkaddr) {
MSG(0, "\tWrong CP boundary, start(%u) end(%u) blocks(%u)\n",
cp_blkaddr, sit_blkaddr,
segment_count_ckpt << log_blocks_per_seg);
return -1;
}
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
nat_blkaddr) {
MSG(0, "\tWrong SIT boundary, start(%u) end(%u) blocks(%u)\n",
sit_blkaddr, nat_blkaddr,
segment_count_sit << log_blocks_per_seg);
return -1;
}
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
ssa_blkaddr) {
MSG(0, "\tWrong NAT boundary, start(%u) end(%u) blocks(%u)\n",
nat_blkaddr, ssa_blkaddr,
segment_count_nat << log_blocks_per_seg);
return -1;
}
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
main_blkaddr) {
MSG(0, "\tWrong SSA boundary, start(%u) end(%u) blocks(%u)\n",
ssa_blkaddr, main_blkaddr,
segment_count_ssa << log_blocks_per_seg);
return -1;
}
if (main_end_blkaddr > seg_end_blkaddr) {
MSG(0, "\tWrong MAIN_AREA, start(%u) end(%u) block(%u)\n",
main_blkaddr,
segment0_blkaddr +
(segment_count << log_blocks_per_seg),
segment_count_main << log_blocks_per_seg);
return -1;
} else if (main_end_blkaddr < seg_end_blkaddr) {
set_sb(segment_count, (main_end_blkaddr -
segment0_blkaddr) >> log_blocks_per_seg);
update_superblock(sb, SB_MASK(sb_addr));
MSG(0, "Info: Fix alignment: start(%u) end(%u) block(%u)\n",
main_blkaddr,
segment0_blkaddr +
(segment_count << log_blocks_per_seg),
segment_count_main << log_blocks_per_seg);
}
return 0;
}
static int verify_sb_chksum(struct f2fs_super_block *sb)
{
if (SB_CHKSUM_OFFSET != get_sb(checksum_offset)) {
MSG(0, "\tInvalid SB CRC offset: %u\n",
get_sb(checksum_offset));
return -1;
}
if (f2fs_crc_valid(get_sb(crc), sb,
get_sb(checksum_offset))) {
MSG(0, "\tInvalid SB CRC: 0x%x\n", get_sb(crc));
return -1;
}
return 0;
}
int sanity_check_raw_super(struct f2fs_super_block *sb, enum SB_ADDR sb_addr)
{
unsigned int blocksize;
unsigned int segment_count, segs_per_sec, secs_per_zone;
unsigned int total_sections, blocks_per_seg;
if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) &&
verify_sb_chksum(sb))
return -1;
if (F2FS_SUPER_MAGIC != get_sb(magic)) {
MSG(0, "Magic Mismatch, valid(0x%x) - read(0x%x)\n",
F2FS_SUPER_MAGIC, get_sb(magic));
return -1;
}
if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
MSG(0, "Invalid page_cache_size (%d), supports only 4KB\n",
PAGE_CACHE_SIZE);
return -1;
}
blocksize = 1 << get_sb(log_blocksize);
if (F2FS_BLKSIZE != blocksize) {
MSG(0, "Invalid blocksize (%u), supports only 4KB\n",
blocksize);
return -1;
}
/* check log blocks per segment */
if (get_sb(log_blocks_per_seg) != 9) {
MSG(0, "Invalid log blocks per segment (%u)\n",
get_sb(log_blocks_per_seg));
return -1;
}
/* Currently, support 512/1024/2048/4096 bytes sector size */
if (get_sb(log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE ||
get_sb(log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE) {
MSG(0, "Invalid log sectorsize (%u)\n", get_sb(log_sectorsize));
return -1;
}
if (get_sb(log_sectors_per_block) + get_sb(log_sectorsize) !=
F2FS_MAX_LOG_SECTOR_SIZE) {
MSG(0, "Invalid log sectors per block(%u) log sectorsize(%u)\n",
get_sb(log_sectors_per_block),
get_sb(log_sectorsize));
return -1;
}
segment_count = get_sb(segment_count);
segs_per_sec = get_sb(segs_per_sec);
secs_per_zone = get_sb(secs_per_zone);
total_sections = get_sb(section_count);
/* blocks_per_seg should be 512, given the above check */
blocks_per_seg = 1 << get_sb(log_blocks_per_seg);
if (segment_count > F2FS_MAX_SEGMENT ||
segment_count < F2FS_MIN_SEGMENTS) {
MSG(0, "\tInvalid segment count (%u)\n", segment_count);
return -1;
}
if (total_sections > segment_count ||
total_sections < F2FS_MIN_SEGMENTS ||
segs_per_sec > segment_count || !segs_per_sec) {
MSG(0, "\tInvalid segment/section count (%u, %u x %u)\n",
segment_count, total_sections, segs_per_sec);
return 1;
}
if ((segment_count / segs_per_sec) < total_sections) {
MSG(0, "Small segment_count (%u < %u * %u)\n",
segment_count, segs_per_sec, total_sections);
return 1;
}
if (segment_count > (get_sb(block_count) >> 9)) {
MSG(0, "Wrong segment_count / block_count (%u > %llu)\n",
segment_count, get_sb(block_count));
return 1;
}
if (sb->devs[0].path[0]) {
unsigned int dev_segs = le32_to_cpu(sb->devs[0].total_segments);
int i = 1;
while (i < MAX_DEVICES && sb->devs[i].path[0]) {
dev_segs += le32_to_cpu(sb->devs[i].total_segments);
i++;
}
if (segment_count != dev_segs) {
MSG(0, "Segment count (%u) mismatch with total segments from devices (%u)",
segment_count, dev_segs);
return 1;
}
}
if (secs_per_zone > total_sections || !secs_per_zone) {
MSG(0, "Wrong secs_per_zone / total_sections (%u, %u)\n",
secs_per_zone, total_sections);
return 1;
}
if (get_sb(extension_count) > F2FS_MAX_EXTENSION ||
sb->hot_ext_count > F2FS_MAX_EXTENSION ||
get_sb(extension_count) +
sb->hot_ext_count > F2FS_MAX_EXTENSION) {
MSG(0, "Corrupted extension count (%u + %u > %u)\n",
get_sb(extension_count),
sb->hot_ext_count,
F2FS_MAX_EXTENSION);
return 1;
}
if (get_sb(cp_payload) > (blocks_per_seg - F2FS_CP_PACKS)) {
MSG(0, "Insane cp_payload (%u > %u)\n",
get_sb(cp_payload), blocks_per_seg - F2FS_CP_PACKS);
return 1;
}
/* check reserved ino info */
if (get_sb(node_ino) != 1 || get_sb(meta_ino) != 2 ||
get_sb(root_ino) != 3) {
MSG(0, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)\n",
get_sb(node_ino), get_sb(meta_ino), get_sb(root_ino));
return -1;
}
/* Check zoned block device feature */
if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
!(sb->feature & cpu_to_le32(F2FS_FEATURE_BLKZONED))) {
MSG(0, "\tMissing zoned block device feature\n");
return -1;
}
if (sanity_check_area_boundary(sb, sb_addr))
return -1;
return 0;
}
int validate_super_block(struct f2fs_sb_info *sbi, enum SB_ADDR sb_addr)
{
char buf[F2FS_BLKSIZE];
sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
if (!sbi->raw_super)
return -ENOMEM;
if (dev_read_block(buf, sb_addr))
return -1;
memcpy(sbi->raw_super, buf + F2FS_SUPER_OFFSET,
sizeof(struct f2fs_super_block));
if (!sanity_check_raw_super(sbi->raw_super, sb_addr)) {
/* get kernel version */
if (c.kd >= 0) {
dev_read_version(c.version, 0, VERSION_LEN);
get_kernel_version(c.version);
} else {
get_kernel_uname_version(c.version);
}
/* build sb version */
memcpy(c.sb_version, sbi->raw_super->version, VERSION_LEN);
get_kernel_version(c.sb_version);
memcpy(c.init_version, sbi->raw_super->init_version, VERSION_LEN);
get_kernel_version(c.init_version);
MSG(0, "Info: MKFS version\n \"%s\"\n", c.init_version);
MSG(0, "Info: FSCK version\n from \"%s\"\n to \"%s\"\n",
c.sb_version, c.version);
if (!c.no_kernel_check &&
memcmp(c.sb_version, c.version, VERSION_LEN)) {
memcpy(sbi->raw_super->version,
c.version, VERSION_LEN);
update_superblock(sbi->raw_super, SB_MASK(sb_addr));
c.auto_fix = 0;
c.fix_on = 1;
}
print_sb_state(sbi->raw_super);
return 0;
}
free(sbi->raw_super);
sbi->raw_super = NULL;
MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", sb_addr);
return -EINVAL;
}
int init_sb_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
u64 total_sectors;
int i;
sbi->log_sectors_per_block = get_sb(log_sectors_per_block);
sbi->log_blocksize = get_sb(log_blocksize);
sbi->blocksize = 1 << sbi->log_blocksize;
sbi->log_blocks_per_seg = get_sb(log_blocks_per_seg);
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
sbi->segs_per_sec = get_sb(segs_per_sec);
sbi->secs_per_zone = get_sb(secs_per_zone);
sbi->total_sections = get_sb(section_count);
sbi->total_node_count = (get_sb(segment_count_nat) / 2) *
sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
sbi->root_ino_num = get_sb(root_ino);
sbi->node_ino_num = get_sb(node_ino);
sbi->meta_ino_num = get_sb(meta_ino);
sbi->cur_victim_sec = NULL_SEGNO;
for (i = 0; i < MAX_DEVICES; i++) {
if (!sb->devs[i].path[0])
break;
if (i) {
c.devices[i].path = strdup((char *)sb->devs[i].path);
if (get_device_info(i))
ASSERT(0);
} else {
ASSERT(!strcmp((char *)sb->devs[i].path,
(char *)c.devices[i].path));
}
c.devices[i].total_segments =
le32_to_cpu(sb->devs[i].total_segments);
if (i)
c.devices[i].start_blkaddr =
c.devices[i - 1].end_blkaddr + 1;
c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
c.devices[i].total_segments *
c.blks_per_seg - 1;
if (i == 0)
c.devices[i].end_blkaddr += get_sb(segment0_blkaddr);
c.ndevs = i + 1;
MSG(0, "Info: Device[%d] : %s blkaddr = %"PRIx64"--%"PRIx64"\n",
i, c.devices[i].path,
c.devices[i].start_blkaddr,
c.devices[i].end_blkaddr);
}
total_sectors = get_sb(block_count) << sbi->log_sectors_per_block;
MSG(0, "Info: total FS sectors = %"PRIu64" (%"PRIu64" MB)\n",
total_sectors, total_sectors >>
(20 - get_sb(log_sectorsize)));
return 0;
}
static int verify_checksum_chksum(struct f2fs_checkpoint *cp)
{
unsigned int chksum_offset = get_cp(checksum_offset);
unsigned int crc, cal_crc;
if (chksum_offset < CP_MIN_CHKSUM_OFFSET ||
chksum_offset > CP_CHKSUM_OFFSET) {
MSG(0, "\tInvalid CP CRC offset: %u\n", chksum_offset);
return -1;
}
crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + chksum_offset));
cal_crc = f2fs_checkpoint_chksum(cp);
if (cal_crc != crc) {
MSG(0, "\tInvalid CP CRC: offset:%u, crc:0x%x, calc:0x%x\n",
chksum_offset, crc, cal_crc);
return -1;
}
return 0;
}
static void *get_checkpoint_version(block_t cp_addr)
{
void *cp_page;
cp_page = malloc(PAGE_SIZE);
ASSERT(cp_page);
if (dev_read_block(cp_page, cp_addr) < 0)
ASSERT(0);
if (verify_checksum_chksum((struct f2fs_checkpoint *)cp_page))
goto out;
return cp_page;
out:
free(cp_page);
return NULL;
}
void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr,
unsigned long long *version)
{
void *cp_page_1, *cp_page_2;
struct f2fs_checkpoint *cp;
unsigned long long cur_version = 0, pre_version = 0;
/* Read the 1st cp block in this CP pack */
cp_page_1 = get_checkpoint_version(cp_addr);
if (!cp_page_1)
return NULL;
cp = (struct f2fs_checkpoint *)cp_page_1;
if (get_cp(cp_pack_total_block_count) > sbi->blocks_per_seg)
goto invalid_cp1;
pre_version = get_cp(checkpoint_ver);
/* Read the 2nd cp block in this CP pack */
cp_addr += get_cp(cp_pack_total_block_count) - 1;
cp_page_2 = get_checkpoint_version(cp_addr);
if (!cp_page_2)
goto invalid_cp1;
cp = (struct f2fs_checkpoint *)cp_page_2;
cur_version = get_cp(checkpoint_ver);
if (cur_version == pre_version) {
*version = cur_version;
free(cp_page_2);
return cp_page_1;
}
free(cp_page_2);
invalid_cp1:
free(cp_page_1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
void *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0, version;
unsigned long long cp_start_blk_no;
unsigned int cp_payload, cp_blks;
int ret;
cp_payload = get_sb(cp_payload);
if (cp_payload > F2FS_BLK_ALIGN(MAX_SIT_BITMAP_SIZE))
return -EINVAL;
cp_blks = 1 + cp_payload;
sbi->ckpt = malloc(cp_blks * blk_size);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = get_sb(cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += 1 << get_sb(log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version)) {
cur_page = cp2;
sbi->cur_cp = 2;
version = cp2_version;
} else {
cur_page = cp1;
sbi->cur_cp = 1;
version = cp1_version;
}
} else if (cp1) {
cur_page = cp1;
sbi->cur_cp = 1;
version = cp1_version;
} else if (cp2) {
cur_page = cp2;
sbi->cur_cp = 2;
version = cp2_version;
} else
goto fail_no_cp;
MSG(0, "Info: CKPT version = %llx\n", version);
memcpy(sbi->ckpt, cur_page, blk_size);
if (cp_blks > 1) {
unsigned int i;
unsigned long long cp_blk_no;
cp_blk_no = get_sb(cp_blkaddr);
if (cur_page == cp2)
cp_blk_no += 1 << get_sb(log_blocks_per_seg);
/* copy sit bitmap */
for (i = 1; i < cp_blks; i++) {
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
ret = dev_read_block(cur_page, cp_blk_no + i);
ASSERT(ret >= 0);
memcpy(ckpt + i * blk_size, cur_page, blk_size);
}
}
if (cp1)
free(cp1);
if (cp2)
free(cp2);
return 0;
fail_no_cp:
free(sbi->ckpt);
sbi->ckpt = NULL;
return -EINVAL;
}
/*
* For a return value of 1, caller should further check for c.fix_on state
* and take appropriate action.
*/
static int f2fs_should_proceed(struct f2fs_super_block *sb, u32 flag)
{
if (!c.fix_on && (c.auto_fix || c.preen_mode)) {
if (flag & CP_FSCK_FLAG ||
flag & CP_QUOTA_NEED_FSCK_FLAG ||
(exist_qf_ino(sb) && (flag & CP_ERROR_FLAG))) {
c.fix_on = 1;
} else if (!c.preen_mode) {
print_cp_state(flag);
return 0;
}
}
return 1;
}
int sanity_check_ckpt(struct f2fs_sb_info *sbi)
{
unsigned int total, fsmeta;
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
unsigned int flag = get_cp(ckpt_flags);
unsigned int ovp_segments, reserved_segments;
unsigned int main_segs, blocks_per_seg;
unsigned int sit_segs, nat_segs;
unsigned int sit_bitmap_size, nat_bitmap_size;
unsigned int log_blocks_per_seg;
unsigned int segment_count_main;
unsigned int cp_pack_start_sum, cp_payload;
block_t user_block_count;
int i;
total = get_sb(segment_count);
fsmeta = get_sb(segment_count_ckpt);
sit_segs = get_sb(segment_count_sit);
fsmeta += sit_segs;
nat_segs = get_sb(segment_count_nat);
fsmeta += nat_segs;
fsmeta += get_cp(rsvd_segment_count);
fsmeta += get_sb(segment_count_ssa);
if (fsmeta >= total)
return 1;
ovp_segments = get_cp(overprov_segment_count);
reserved_segments = get_cp(rsvd_segment_count);
if (fsmeta < F2FS_MIN_SEGMENT || ovp_segments == 0 ||
reserved_segments == 0) {
MSG(0, "\tWrong layout: check mkfs.f2fs version\n");
return 1;
}
user_block_count = get_cp(user_block_count);
segment_count_main = get_sb(segment_count_main);
log_blocks_per_seg = get_sb(log_blocks_per_seg);
if (!user_block_count || user_block_count >=
segment_count_main << log_blocks_per_seg) {
ASSERT_MSG("\tWrong user_block_count(%u)\n", user_block_count);
if (!f2fs_should_proceed(sb, flag))
return 1;
if (!c.fix_on)
return 1;
if (flag & (CP_FSCK_FLAG | CP_RESIZEFS_FLAG)) {
u32 valid_user_block_cnt;
u32 seg_cnt_main = get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat) +
get_sb(segment_count_ssa));
/* validate segment_count_main in sb first */
if (seg_cnt_main != get_sb(segment_count_main)) {
MSG(0, "Inconsistent segment_cnt_main %u in sb\n",
segment_count_main << log_blocks_per_seg);
return 1;
}
valid_user_block_cnt = ((get_sb(segment_count_main) -
get_cp(overprov_segment_count)) * c.blks_per_seg);
MSG(0, "Info: Fix wrong user_block_count in CP: (%u) -> (%u)\n",
user_block_count, valid_user_block_cnt);
set_cp(user_block_count, valid_user_block_cnt);
c.bug_on = 1;
}
}
main_segs = get_sb(segment_count_main);
blocks_per_seg = sbi->blocks_per_seg;
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
if (get_cp(cur_node_segno[i]) >= main_segs ||
get_cp(cur_node_blkoff[i]) >= blocks_per_seg)
return 1;
}
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
if (get_cp(cur_data_segno[i]) >= main_segs ||
get_cp(cur_data_blkoff[i]) >= blocks_per_seg)
return 1;
}
sit_bitmap_size = get_cp(sit_ver_bitmap_bytesize);
nat_bitmap_size = get_cp(nat_ver_bitmap_bytesize);
if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
MSG(0, "\tWrong bitmap size: sit(%u), nat(%u)\n",
sit_bitmap_size, nat_bitmap_size);
return 1;
}
cp_pack_start_sum = __start_sum_addr(sbi);
cp_payload = __cp_payload(sbi);
if (cp_pack_start_sum < cp_payload + 1 ||
cp_pack_start_sum > blocks_per_seg - 1 -
NR_CURSEG_TYPE) {
MSG(0, "\tWrong cp_pack_start_sum(%u) or cp_payload(%u)\n",
cp_pack_start_sum, cp_payload);
if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM))
return 1;
set_sb(cp_payload, cp_pack_start_sum - 1);
update_superblock(sb, SB_MASK_ALL);
}
return 0;
}
pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start, int *pack)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
pgoff_t block_off;
pgoff_t block_addr;
int seg_off;
block_off = NAT_BLOCK_OFFSET(start);
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) -1)));
if (pack)
*pack = 1;
if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) {
block_addr += sbi->blocks_per_seg;
if (pack)
*pack = 2;
}
return block_addr;
}
/* will not init nid_bitmap from nat */
static int f2fs_early_init_nid_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
int nid_bitmap_size = (nm_i->max_nid + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
struct f2fs_journal *journal = &sum->journal;
nid_t nid;
int i;
if (!(c.func == SLOAD || c.func == FSCK))
return 0;
nm_i->nid_bitmap = (char *)calloc(nid_bitmap_size, 1);
if (!nm_i->nid_bitmap)
return -ENOMEM;
/* arbitrarily set 0 bit */
f2fs_set_bit(0, nm_i->nid_bitmap);
if (nats_in_cursum(journal) > NAT_JOURNAL_ENTRIES) {
MSG(0, "\tError: f2fs_init_nid_bitmap truncate n_nats(%u) to "
"NAT_JOURNAL_ENTRIES(%lu)\n",
nats_in_cursum(journal), NAT_JOURNAL_ENTRIES);
journal->n_nats = cpu_to_le16(NAT_JOURNAL_ENTRIES);
c.fix_on = 1;
}
for (i = 0; i < nats_in_cursum(journal); i++) {
block_t addr;
addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
if (!IS_VALID_BLK_ADDR(sbi, addr)) {
MSG(0, "\tError: f2fs_init_nid_bitmap: addr(%u) is invalid!!!\n", addr);
journal->n_nats = cpu_to_le16(i);
c.fix_on = 1;
continue;
}
nid = le32_to_cpu(nid_in_journal(journal, i));
if (!IS_VALID_NID(sbi, nid)) {
MSG(0, "\tError: f2fs_init_nid_bitmap: nid(%u) is invalid!!!\n", nid);
journal->n_nats = cpu_to_le16(i);
c.fix_on = 1;
continue;
}
if (addr != NULL_ADDR)
f2fs_set_bit(nid, nm_i->nid_bitmap);
}
return 0;
}
/* will init nid_bitmap from nat */
static int f2fs_late_init_nid_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct f2fs_nat_block *nat_block;
block_t start_blk;
nid_t nid;
if (!(c.func == SLOAD || c.func == FSCK))
return 0;
nat_block = malloc(F2FS_BLKSIZE);
if (!nat_block) {
free(nm_i->nid_bitmap);
return -ENOMEM;
}
f2fs_ra_meta_pages(sbi, 0, NAT_BLOCK_OFFSET(nm_i->max_nid),
META_NAT);
for (nid = 0; nid < nm_i->max_nid; nid++) {
if (!(nid % NAT_ENTRY_PER_BLOCK)) {
int ret;
start_blk = current_nat_addr(sbi, nid, NULL);
ret = dev_read_block(nat_block, start_blk);
ASSERT(ret >= 0);
}
if (nat_block->entries[nid % NAT_ENTRY_PER_BLOCK].block_addr)
f2fs_set_bit(nid, nm_i->nid_bitmap);
}
free(nat_block);
return 0;
}
u32 update_nat_bits_flags(struct f2fs_super_block *sb,
struct f2fs_checkpoint *cp, u32 flags)
{
u_int32_t nat_bits_bytes, nat_bits_blocks;
nat_bits_bytes = get_sb(segment_count_nat) << 5;
nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
F2FS_BLKSIZE - 1);
if (get_cp(cp_pack_total_block_count) <=
(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
flags |= CP_NAT_BITS_FLAG;
else
flags &= (~CP_NAT_BITS_FLAG);
return flags;
}
/* should call flush_journal_entries() bfore this */
void write_nat_bits(struct f2fs_sb_info *sbi,
struct f2fs_super_block *sb, struct f2fs_checkpoint *cp, int set)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
u_int32_t nat_blocks = get_sb(segment_count_nat) <<
(get_sb(log_blocks_per_seg) - 1);
u_int32_t nat_bits_bytes = nat_blocks >> 3;
u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
8 + F2FS_BLKSIZE - 1);
unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
struct f2fs_nat_block *nat_block;
u_int32_t i, j;
block_t blkaddr;
int ret;
nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
ASSERT(nat_bits);
nat_block = malloc(F2FS_BLKSIZE);
ASSERT(nat_block);
full_nat_bits = nat_bits + 8;
empty_nat_bits = full_nat_bits + nat_bits_bytes;
memset(full_nat_bits, 0, nat_bits_bytes);
memset(empty_nat_bits, 0, nat_bits_bytes);
for (i = 0; i < nat_blocks; i++) {
int seg_off = i >> get_sb(log_blocks_per_seg);
int valid = 0;
blkaddr = (pgoff_t)(get_sb(nat_blkaddr) +
(seg_off << get_sb(log_blocks_per_seg) << 1) +
(i & ((1 << get_sb(log_blocks_per_seg)) - 1)));
/*
* Should consider new nat_blocks is larger than old
* nm_i->nat_blocks, since nm_i->nat_bitmap is based on
* old one.
*/
if (i < nm_i->nat_blocks && f2fs_test_bit(i, nm_i->nat_bitmap))
blkaddr += (1 << get_sb(log_blocks_per_seg));
ret = dev_read_block(nat_block, blkaddr);
ASSERT(ret >= 0);
for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
if ((i == 0 && j == 0) ||
nat_block->entries[j].block_addr != NULL_ADDR)
valid++;
}
if (valid == 0)
test_and_set_bit_le(i, empty_nat_bits);
else if (valid == NAT_ENTRY_PER_BLOCK)
test_and_set_bit_le(i, full_nat_bits);
}
*(__le64 *)nat_bits = get_cp_crc(cp);
free(nat_block);
blkaddr = get_sb(segment0_blkaddr) + (set <<
get_sb(log_blocks_per_seg)) - nat_bits_blocks;
DBG(1, "\tWriting NAT bits pages, at offset 0x%08x\n", blkaddr);
for (i = 0; i < nat_bits_blocks; i++) {
if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
ASSERT_MSG("\tError: write NAT bits to disk!!!\n");
}
MSG(0, "Info: Write valid nat_bits in checkpoint\n");
free(nat_bits);
}
static int check_nat_bits(struct f2fs_sb_info *sbi,
struct f2fs_super_block *sb, struct f2fs_checkpoint *cp)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
u_int32_t nat_blocks = get_sb(segment_count_nat) <<
(get_sb(log_blocks_per_seg) - 1);
u_int32_t nat_bits_bytes = nat_blocks >> 3;
u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
8 + F2FS_BLKSIZE - 1);
unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
u_int32_t i, j;
block_t blkaddr;
int err = 0;
nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
ASSERT(nat_bits);
full_nat_bits = nat_bits + 8;
empty_nat_bits = full_nat_bits + nat_bits_bytes;
blkaddr = get_sb(segment0_blkaddr) + (sbi->cur_cp <<
get_sb(log_blocks_per_seg)) - nat_bits_blocks;
for (i = 0; i < nat_bits_blocks; i++) {
if (dev_read_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
ASSERT_MSG("\tError: read NAT bits to disk!!!\n");
}
if (*(__le64 *)nat_bits != get_cp_crc(cp) || nats_in_cursum(journal)) {
/*
* if there is a journal, f2fs was not shutdown cleanly. Let's
* flush them with nat_bits.
*/
if (c.fix_on)
err = -1;
/* Otherwise, kernel will disable nat_bits */
goto out;
}
for (i = 0; i < nat_blocks; i++) {
u_int32_t start_nid = i * NAT_ENTRY_PER_BLOCK;
u_int32_t valid = 0;
int empty = test_bit_le(i, empty_nat_bits);
int full = test_bit_le(i, full_nat_bits);
for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
if (f2fs_test_bit(start_nid + j, nm_i->nid_bitmap))
valid++;
}
if (valid == 0) {
if (!empty || full) {
err = -1;
goto out;
}
} else if (valid == NAT_ENTRY_PER_BLOCK) {
if (empty || !full) {
err = -1;
goto out;
}
} else {
if (empty || full) {
err = -1;
goto out;
}
}
}
out:
free(nat_bits);
if (!err) {
MSG(0, "Info: Checked valid nat_bits in checkpoint\n");
} else {
c.bug_nat_bits = 1;
MSG(0, "Info: Corrupted valid nat_bits in checkpoint\n");
}
return err;
}
int init_node_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned char *version_bitmap;
unsigned int nat_segs;
nm_i->nat_blkaddr = get_sb(nat_blkaddr);
/* segment_count_nat includes pair segment so divide to 2. */
nat_segs = get_sb(segment_count_nat) >> 1;
nm_i->nat_blocks = nat_segs << get_sb(log_blocks_per_seg);
nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
nm_i->fcnt = 0;
nm_i->nat_cnt = 0;
nm_i->init_scan_nid = get_cp(next_free_nid);
nm_i->next_scan_nid = get_cp(next_free_nid);
nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
if (!nm_i->nat_bitmap)
return -ENOMEM;
version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
if (!version_bitmap)
return -EFAULT;
/* copy version bitmap */
memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
return f2fs_early_init_nid_bitmap(sbi);
}
int build_node_manager(struct f2fs_sb_info *sbi)
{
int err;
sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
if (!sbi->nm_info)
return -ENOMEM;
err = init_node_manager(sbi);
if (err)
return err;
return 0;
}
int build_sit_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct sit_info *sit_i;
unsigned int sit_segs;
int start;
char *src_bitmap, *dst_bitmap;
unsigned char *bitmap;
unsigned int bitmap_size;
sit_i = malloc(sizeof(struct sit_info));
if (!sit_i) {
MSG(1, "\tError: Malloc failed for build_sit_info!\n");
return -ENOMEM;
}
SM_I(sbi)->sit_info = sit_i;
sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
if (!sit_i->sentries) {
MSG(1, "\tError: Calloc failed for build_sit_info!\n");
goto free_sit_info;
}
bitmap_size = TOTAL_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE;
if (need_fsync_data_record(sbi))
bitmap_size += bitmap_size;
sit_i->bitmap = calloc(bitmap_size, 1);
if (!sit_i->bitmap) {
MSG(1, "\tError: Calloc failed for build_sit_info!!\n");
goto free_sentries;
}
bitmap = sit_i->bitmap;
for (start = 0; start < TOTAL_SEGS(sbi); start++) {
sit_i->sentries[start].cur_valid_map = bitmap;
bitmap += SIT_VBLOCK_MAP_SIZE;
if (need_fsync_data_record(sbi)) {
sit_i->sentries[start].ckpt_valid_map = bitmap;
bitmap += SIT_VBLOCK_MAP_SIZE;
}
}
sit_segs = get_sb(segment_count_sit) >> 1;
bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
dst_bitmap = malloc(bitmap_size);
if (!dst_bitmap) {
MSG(1, "\tError: Malloc failed for build_sit_info!!\n");
goto free_validity_maps;
}
memcpy(dst_bitmap, src_bitmap, bitmap_size);
sit_i->sit_base_addr = get_sb(sit_blkaddr);
sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
sit_i->written_valid_blocks = get_cp(valid_block_count);
sit_i->sit_bitmap = dst_bitmap;
sit_i->bitmap_size = bitmap_size;
sit_i->dirty_sentries = 0;
sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
sit_i->elapsed_time = get_cp(elapsed_time);
return 0;
free_validity_maps:
free(sit_i->bitmap);
free_sentries:
free(sit_i->sentries);
free_sit_info:
free(sit_i);
return -ENOMEM;
}
void reset_curseg(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct summary_footer *sum_footer;
struct seg_entry *se;
sum_footer = &(curseg->sum_blk->footer);
memset(sum_footer, 0, sizeof(struct summary_footer));
if (IS_DATASEG(type))
SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
if (IS_NODESEG(type))
SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
se = get_seg_entry(sbi, curseg->segno);
se->type = type;
se->dirty = 1;
}
static void read_compacted_summaries(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg;
unsigned int i, j, offset;
block_t start;
char *kaddr;
int ret;
start = start_sum_block(sbi);
kaddr = (char *)malloc(PAGE_SIZE);
ASSERT(kaddr);
ret = dev_read_block(kaddr, start++);
ASSERT(ret >= 0);
curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
memcpy(&curseg->sum_blk->journal.n_nats, kaddr, SUM_JOURNAL_SIZE);
curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
memcpy(&curseg->sum_blk->journal.n_sits, kaddr + SUM_JOURNAL_SIZE,
SUM_JOURNAL_SIZE);
offset = 2 * SUM_JOURNAL_SIZE;
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
unsigned short blk_off;
struct curseg_info *curseg = CURSEG_I(sbi, i);
reset_curseg(sbi, i);
if (curseg->alloc_type == SSR)
blk_off = sbi->blocks_per_seg;
else
blk_off = curseg->next_blkoff;
ASSERT(blk_off <= ENTRIES_IN_SUM);
for (j = 0; j < blk_off; j++) {
struct f2fs_summary *s;
s = (struct f2fs_summary *)(kaddr + offset);
curseg->sum_blk->entries[j] = *s;
offset += SUMMARY_SIZE;
if (offset + SUMMARY_SIZE <=
PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
continue;
memset(kaddr, 0, PAGE_SIZE);
ret = dev_read_block(kaddr, start++);
ASSERT(ret >= 0);
offset = 0;
}
}
free(kaddr);
}
static void restore_node_summary(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_summary_block *sum_blk)
{
struct f2fs_node *node_blk;
struct f2fs_summary *sum_entry;
block_t addr;
unsigned int i;
int ret;
node_blk = malloc(F2FS_BLKSIZE);
ASSERT(node_blk);
/* scan the node segment */
addr = START_BLOCK(sbi, segno);
sum_entry = &sum_blk->entries[0];
for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
ret = dev_read_block(node_blk, addr);
ASSERT(ret >= 0);
sum_entry->nid = node_blk->footer.nid;
addr++;
}
free(node_blk);
}
static void read_normal_summaries(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_summary_block *sum_blk;
struct curseg_info *curseg;
unsigned int segno = 0;
block_t blk_addr = 0;
int ret;
if (IS_DATASEG(type)) {
segno = get_cp(cur_data_segno[type]);
if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
else
blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
} else {
segno = get_cp(cur_node_segno[type - CURSEG_HOT_NODE]);
if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
type - CURSEG_HOT_NODE);
else
blk_addr = GET_SUM_BLKADDR(sbi, segno);
}
sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
ASSERT(sum_blk);
ret = dev_read_block(sum_blk, blk_addr);
ASSERT(ret >= 0);
if (IS_NODESEG(type) && !is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
restore_node_summary(sbi, segno, sum_blk);
curseg = CURSEG_I(sbi, type);
memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
reset_curseg(sbi, type);
free(sum_blk);
}
void update_sum_entry(struct f2fs_sb_info *sbi, block_t blk_addr,
struct f2fs_summary *sum)
{
struct f2fs_summary_block *sum_blk;
u32 segno, offset;
int type, ret;
struct seg_entry *se;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
se = get_seg_entry(sbi, segno);
sum_blk = get_sum_block(sbi, segno, &type);
memcpy(&sum_blk->entries[offset], sum, sizeof(*sum));
sum_blk->footer.entry_type = IS_NODESEG(se->type) ? SUM_TYPE_NODE :
SUM_TYPE_DATA;
/* write SSA all the time */
ret = dev_write_block(sum_blk, GET_SUM_BLKADDR(sbi, segno));
ASSERT(ret >= 0);
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX)
free(sum_blk);
}
static void restore_curseg_summaries(struct f2fs_sb_info *sbi)
{
int type = CURSEG_HOT_DATA;
if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
read_compacted_summaries(sbi);
type = CURSEG_HOT_NODE;
}
for (; type <= CURSEG_COLD_NODE; type++)
read_normal_summaries(sbi, type);
}
static int build_curseg(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct curseg_info *array;
unsigned short blk_off;
unsigned int segno;
int i;
array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
if (!array) {
MSG(1, "\tError: Malloc failed for build_curseg!\n");
return -ENOMEM;
}
SM_I(sbi)->curseg_array = array;
for (i = 0; i < NR_CURSEG_TYPE; i++) {
array[i].sum_blk = calloc(PAGE_CACHE_SIZE, 1);
if (!array[i].sum_blk) {
MSG(1, "\tError: Calloc failed for build_curseg!!\n");
goto seg_cleanup;
}
if (i <= CURSEG_COLD_DATA) {
blk_off = get_cp(cur_data_blkoff[i]);
segno = get_cp(cur_data_segno[i]);
}
if (i > CURSEG_COLD_DATA) {
blk_off = get_cp(cur_node_blkoff[i - CURSEG_HOT_NODE]);
segno = get_cp(cur_node_segno[i - CURSEG_HOT_NODE]);
}
ASSERT(segno < TOTAL_SEGS(sbi));
ASSERT(blk_off < DEFAULT_BLOCKS_PER_SEGMENT);
array[i].segno = segno;
array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno);
array[i].next_segno = NULL_SEGNO;
array[i].next_blkoff = blk_off;
array[i].alloc_type = cp->alloc_type[i];
}
restore_curseg_summaries(sbi);
return 0;
seg_cleanup:
for(--i ; i >=0; --i)
free(array[i].sum_blk);
free(array);
return -ENOMEM;
}
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
unsigned int end_segno = SM_I(sbi)->segment_count - 1;
ASSERT(segno <= end_segno);
}
static inline block_t current_sit_addr(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
block_t blk_addr = sit_i->sit_base_addr + offset;
check_seg_range(sbi, segno);
/* calculate sit block address */
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
blk_addr += sit_i->sit_blocks;
return blk_addr;
}
void get_current_sit_page(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_sit_block *sit_blk)
{
block_t blk_addr = current_sit_addr(sbi, segno);
ASSERT(dev_read_block(sit_blk, blk_addr) >= 0);
}
void rewrite_current_sit_page(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_sit_block *sit_blk)
{
block_t blk_addr = current_sit_addr(sbi, segno);
ASSERT(dev_write_block(sit_blk, blk_addr) >= 0);
}
void check_block_count(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_sit_entry *raw_sit)
{
struct f2fs_sm_info *sm_info = SM_I(sbi);
unsigned int end_segno = sm_info->segment_count - 1;
int valid_blocks = 0;
unsigned int i;
/* check segment usage */
if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u",
segno, GET_SIT_VBLOCKS(raw_sit));
/* check boundary of a given segment number */
if (segno > end_segno)
ASSERT_MSG("Invalid SEGNO: 0x%x", segno);
/* check bitmap with valid block count */
for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]);
if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks)
ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u",
segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks);
if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE)
ASSERT_MSG("Wrong SIT type: segno=0x%x, %u",
segno, GET_SIT_TYPE(raw_sit));
}
void __seg_info_from_raw_sit(struct seg_entry *se,
struct f2fs_sit_entry *raw_sit)
{
se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
se->type = GET_SIT_TYPE(raw_sit);
se->orig_type = GET_SIT_TYPE(raw_sit);
se->mtime = le64_to_cpu(raw_sit->mtime);
}
void seg_info_from_raw_sit(struct f2fs_sb_info *sbi, struct seg_entry *se,
struct f2fs_sit_entry *raw_sit)
{
__seg_info_from_raw_sit(se, raw_sit);
if (!need_fsync_data_record(sbi))
return;
se->ckpt_valid_blocks = se->valid_blocks;
memcpy(se->ckpt_valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
se->ckpt_type = se->type;
}
struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
return &sit_i->sentries[segno];
}
unsigned short get_seg_vblocks(struct f2fs_sb_info *sbi, struct seg_entry *se)
{
if (!need_fsync_data_record(sbi))
return se->valid_blocks;
else
return se->ckpt_valid_blocks;
}
unsigned char *get_seg_bitmap(struct f2fs_sb_info *sbi, struct seg_entry *se)
{
if (!need_fsync_data_record(sbi))
return se->cur_valid_map;
else
return se->ckpt_valid_map;
}
unsigned char get_seg_type(struct f2fs_sb_info *sbi, struct seg_entry *se)
{
if (!need_fsync_data_record(sbi))
return se->type;
else
return se->ckpt_type;
}
struct f2fs_summary_block *get_sum_block(struct f2fs_sb_info *sbi,
unsigned int segno, int *ret_type)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_summary_block *sum_blk;
struct curseg_info *curseg;
int type, ret;
u64 ssa_blk;
*ret_type= SEG_TYPE_MAX;
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
if (segno == get_cp(cur_node_segno[type])) {
curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type);
if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
ASSERT_MSG("segno [0x%x] indicates a data "
"segment, but should be node",
segno);
*ret_type = -SEG_TYPE_CUR_NODE;
} else {
*ret_type = SEG_TYPE_CUR_NODE;
}
return curseg->sum_blk;
}
}
for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
if (segno == get_cp(cur_data_segno[type])) {
curseg = CURSEG_I(sbi, type);
if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
ASSERT_MSG("segno [0x%x] indicates a node "
"segment, but should be data",
segno);
*ret_type = -SEG_TYPE_CUR_DATA;
} else {
*ret_type = SEG_TYPE_CUR_DATA;
}
return curseg->sum_blk;
}
}
sum_blk = calloc(BLOCK_SZ, 1);
ASSERT(sum_blk);
ret = dev_read_block(sum_blk, ssa_blk);
ASSERT(ret >= 0);
if (IS_SUM_NODE_SEG(sum_blk->footer))
*ret_type = SEG_TYPE_NODE;
else if (IS_SUM_DATA_SEG(sum_blk->footer))
*ret_type = SEG_TYPE_DATA;
return sum_blk;
}
int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr,
struct f2fs_summary *sum_entry)
{
struct f2fs_summary_block *sum_blk;
u32 segno, offset;
int type;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
sum_blk = get_sum_block(sbi, segno, &type);
memcpy(sum_entry, &(sum_blk->entries[offset]),
sizeof(struct f2fs_summary));
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX)
free(sum_blk);
return type;
}
static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
struct f2fs_nat_entry *raw_nat)
{
struct f2fs_nat_block *nat_block;
pgoff_t block_addr;
int entry_off;
int ret;
if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
return;
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
ASSERT(nat_block);
entry_off = nid % NAT_ENTRY_PER_BLOCK;
block_addr = current_nat_addr(sbi, nid, NULL);
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
memcpy(raw_nat, &nat_block->entries[entry_off],
sizeof(struct f2fs_nat_entry));
free(nat_block);
}
void update_data_blkaddr(struct f2fs_sb_info *sbi, nid_t nid,
u16 ofs_in_node, block_t newaddr)
{
struct f2fs_node *node_blk = NULL;
struct node_info ni;
block_t oldaddr, startaddr, endaddr;
int ret;
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk);
get_node_info(sbi, nid, &ni);
/* read node_block */
ret = dev_read_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
/* check its block address */
if (node_blk->footer.nid == node_blk->footer.ino) {
int ofs = get_extra_isize(node_blk);
oldaddr = le32_to_cpu(node_blk->i.i_addr[ofs + ofs_in_node]);
node_blk->i.i_addr[ofs + ofs_in_node] = cpu_to_le32(newaddr);
ret = write_inode(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
} else {
oldaddr = le32_to_cpu(node_blk->dn.addr[ofs_in_node]);
node_blk->dn.addr[ofs_in_node] = cpu_to_le32(newaddr);
ret = dev_write_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
}
/* check extent cache entry */
if (node_blk->footer.nid != node_blk->footer.ino) {
get_node_info(sbi, le32_to_cpu(node_blk->footer.ino), &ni);
/* read inode block */
ret = dev_read_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
}
startaddr = le32_to_cpu(node_blk->i.i_ext.blk_addr);
endaddr = startaddr + le32_to_cpu(node_blk->i.i_ext.len);
if (oldaddr >= startaddr && oldaddr < endaddr) {
node_blk->i.i_ext.len = 0;
/* update inode block */
ASSERT(write_inode(node_blk, ni.blk_addr) >= 0);
}
free(node_blk);
}
void update_nat_blkaddr(struct f2fs_sb_info *sbi, nid_t ino,
nid_t nid, block_t newaddr)
{
struct f2fs_nat_block *nat_block;
pgoff_t block_addr;
int entry_off;
int ret;
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
ASSERT(nat_block);
entry_off = nid % NAT_ENTRY_PER_BLOCK;
block_addr = current_nat_addr(sbi, nid, NULL);
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
if (ino)
nat_block->entries[entry_off].ino = cpu_to_le32(ino);
nat_block->entries[entry_off].block_addr = cpu_to_le32(newaddr);
if (c.func == FSCK)
F2FS_FSCK(sbi)->entries[nid] = nat_block->entries[entry_off];
ret = dev_write_block(nat_block, block_addr);
ASSERT(ret >= 0);
free(nat_block);
}
void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
{
struct f2fs_nat_entry raw_nat;
ni->nid = nid;
if (c.func == FSCK && F2FS_FSCK(sbi)->nr_nat_entries) {
node_info_from_raw_nat(ni, &(F2FS_FSCK(sbi)->entries[nid]));
if (ni->blk_addr)
return;
/* nat entry is not cached, read it */
}
get_nat_entry(sbi, nid, &raw_nat);
node_info_from_raw_nat(ni, &raw_nat);
}
static int build_sit_entries(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
struct f2fs_sit_block *sit_blk;
struct seg_entry *se;
struct f2fs_sit_entry sit;
int sit_blk_cnt = SIT_BLK_CNT(sbi);
unsigned int i, segno, end;
unsigned int readed, start_blk = 0;
sit_blk = calloc(BLOCK_SZ, 1);
if (!sit_blk) {
MSG(1, "\tError: Calloc failed for build_sit_entries!\n");
return -ENOMEM;
}
do {
readed = f2fs_ra_meta_pages(sbi, start_blk, MAX_RA_BLOCKS,
META_SIT);
segno = start_blk * sit_i->sents_per_block;
end = (start_blk + readed) * sit_i->sents_per_block;
for (; segno < end && segno < TOTAL_SEGS(sbi); segno++) {
se = &sit_i->sentries[segno];
get_current_sit_page(sbi, segno, sit_blk);
sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
check_block_count(sbi, segno, &sit);
seg_info_from_raw_sit(sbi, se, &sit);
}
start_blk += readed;
} while (start_blk < sit_blk_cnt);
free(sit_blk);
if (sits_in_cursum(journal) > SIT_JOURNAL_ENTRIES) {
MSG(0, "\tError: build_sit_entries truncate n_sits(%u) to "
"SIT_JOURNAL_ENTRIES(%lu)\n",
sits_in_cursum(journal), SIT_JOURNAL_ENTRIES);
journal->n_sits = cpu_to_le16(SIT_JOURNAL_ENTRIES);
c.fix_on = 1;
}
for (i = 0; i < sits_in_cursum(journal); i++) {
segno = le32_to_cpu(segno_in_journal(journal, i));
if (segno >= TOTAL_SEGS(sbi)) {
MSG(0, "\tError: build_sit_entries: segno(%u) is invalid!!!\n", segno);
journal->n_sits = cpu_to_le16(i);
c.fix_on = 1;
continue;
}
se = &sit_i->sentries[segno];
sit = sit_in_journal(journal, i);
check_block_count(sbi, segno, &sit);
seg_info_from_raw_sit(sbi, se, &sit);
}
return 0;
}
static int early_build_segment_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_sm_info *sm_info;
sm_info = malloc(sizeof(struct f2fs_sm_info));
if (!sm_info) {
MSG(1, "\tError: Malloc failed for build_segment_manager!\n");
return -ENOMEM;
}
/* init sm info */
sbi->sm_info = sm_info;
sm_info->seg0_blkaddr = get_sb(segment0_blkaddr);
sm_info->main_blkaddr = get_sb(main_blkaddr);
sm_info->segment_count = get_sb(segment_count);
sm_info->reserved_segments = get_cp(rsvd_segment_count);
sm_info->ovp_segments = get_cp(overprov_segment_count);
sm_info->main_segments = get_sb(segment_count_main);
sm_info->ssa_blkaddr = get_sb(ssa_blkaddr);
if (build_sit_info(sbi) || build_curseg(sbi)) {
free(sm_info);
return -ENOMEM;
}
return 0;
}
static int late_build_segment_manager(struct f2fs_sb_info *sbi)
{
if (sbi->seg_manager_done)
return 1; /* this function was already called */
sbi->seg_manager_done = true;
if (build_sit_entries(sbi)) {
free (sbi->sm_info);
return -ENOMEM;
}
return 0;
}
void build_sit_area_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
unsigned int segno = 0;
char *ptr = NULL;
u32 sum_vblocks = 0;
u32 free_segs = 0;
struct seg_entry *se;
fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
ASSERT(fsck->sit_area_bitmap);
ptr = fsck->sit_area_bitmap;
ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
se = get_seg_entry(sbi, segno);
memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
ptr += SIT_VBLOCK_MAP_SIZE;
if (se->valid_blocks == 0x0 && is_usable_seg(sbi, segno)) {
if (le32_to_cpu(sbi->ckpt->cur_node_segno[0]) == segno ||
le32_to_cpu(sbi->ckpt->cur_data_segno[0]) == segno ||
le32_to_cpu(sbi->ckpt->cur_node_segno[1]) == segno ||
le32_to_cpu(sbi->ckpt->cur_data_segno[1]) == segno ||
le32_to_cpu(sbi->ckpt->cur_node_segno[2]) == segno ||
le32_to_cpu(sbi->ckpt->cur_data_segno[2]) == segno) {
continue;
} else {
free_segs++;
}
} else {
sum_vblocks += se->valid_blocks;
}
}
fsck->chk.sit_valid_blocks = sum_vblocks;
fsck->chk.sit_free_segs = free_segs;
DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n",
sum_vblocks, sum_vblocks,
free_segs, free_segs);
}
void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct sit_info *sit_i = SIT_I(sbi);
struct f2fs_sit_block *sit_blk;
unsigned int segno = 0;
struct f2fs_summary_block *sum = curseg->sum_blk;
char *ptr = NULL;
sit_blk = calloc(BLOCK_SZ, 1);
ASSERT(sit_blk);
/* remove sit journal */
sum->journal.n_sits = 0;
ptr = fsck->main_area_bitmap;
for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
struct f2fs_sit_entry *sit;
struct seg_entry *se;
u16 valid_blocks = 0;
u16 type;
int i;
get_current_sit_page(sbi, segno, sit_blk);
sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
/* update valid block count */
for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
valid_blocks += get_bits_in_byte(sit->valid_map[i]);
se = get_seg_entry(sbi, segno);
memcpy(se->cur_valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
se->valid_blocks = valid_blocks;
type = se->type;
if (type >= NO_CHECK_TYPE) {
ASSERT_MSG("Invalide type and valid blocks=%x,%x",
segno, valid_blocks);
type = 0;
}
sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) |
valid_blocks);
rewrite_current_sit_page(sbi, segno, sit_blk);
ptr += SIT_VBLOCK_MAP_SIZE;
}
free(sit_blk);
}
static int flush_sit_journal_entries(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
struct sit_info *sit_i = SIT_I(sbi);
struct f2fs_sit_block *sit_blk;
unsigned int segno;
int i;
sit_blk = calloc(BLOCK_SZ, 1);
ASSERT(sit_blk);
for (i = 0; i < sits_in_cursum(journal); i++) {
struct f2fs_sit_entry *sit;
struct seg_entry *se;
segno = segno_in_journal(journal, i);
se = get_seg_entry(sbi, segno);
get_current_sit_page(sbi, segno, sit_blk);
sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
se->valid_blocks);
sit->mtime = cpu_to_le64(se->mtime);
rewrite_current_sit_page(sbi, segno, sit_blk);
}
free(sit_blk);
journal->n_sits = 0;
return i;
}
static int flush_nat_journal_entries(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
struct f2fs_nat_block *nat_block;
pgoff_t block_addr;
int entry_off;
nid_t nid;
int ret;
int i = 0;
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
ASSERT(nat_block);
next:
if (i >= nats_in_cursum(journal)) {
free(nat_block);
journal->n_nats = 0;
return i;
}
nid = le32_to_cpu(nid_in_journal(journal, i));
entry_off = nid % NAT_ENTRY_PER_BLOCK;
block_addr = current_nat_addr(sbi, nid, NULL);
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
memcpy(&nat_block->entries[entry_off], &nat_in_journal(journal, i),
sizeof(struct f2fs_nat_entry));
ret = dev_write_block(nat_block, block_addr);
ASSERT(ret >= 0);
i++;
goto next;
}
void flush_journal_entries(struct f2fs_sb_info *sbi)
{
int n_nats = flush_nat_journal_entries(sbi);
int n_sits = flush_sit_journal_entries(sbi);
if (n_nats || n_sits)
write_checkpoints(sbi);
}
void flush_sit_entries(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct f2fs_sit_block *sit_blk;
unsigned int segno = 0;
sit_blk = calloc(BLOCK_SZ, 1);
ASSERT(sit_blk);
/* update free segments */
for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
struct f2fs_sit_entry *sit;
struct seg_entry *se;
se = get_seg_entry(sbi, segno);
if (!se->dirty)
continue;
get_current_sit_page(sbi, segno, sit_blk);
sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
se->valid_blocks);
rewrite_current_sit_page(sbi, segno, sit_blk);
}
free(sit_blk);
}
int relocate_curseg_offset(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
unsigned int i;
if (c.zoned_model == F2FS_ZONED_HM)
return -EINVAL;
for (i = 0; i < sbi->blocks_per_seg; i++) {
if (!f2fs_test_bit(i, (const char *)se->cur_valid_map))
break;
}
if (i == sbi->blocks_per_seg)
return -EINVAL;
DBG(1, "Update curseg[%d].next_blkoff %u -> %u, alloc_type %s -> SSR\n",
type, curseg->next_blkoff, i,
curseg->alloc_type == LFS ? "LFS" : "SSR");
curseg->next_blkoff = i;
curseg->alloc_type = SSR;
return 0;
}
void set_section_type(struct f2fs_sb_info *sbi, unsigned int segno, int type)
{
unsigned int i;
if (sbi->segs_per_sec == 1)
return;
for (i = 0; i < sbi->segs_per_sec; i++) {
struct seg_entry *se = get_seg_entry(sbi, segno + i);
se->type = type;
}
}
#ifdef HAVE_LINUX_BLKZONED_H
static bool write_pointer_at_zone_start(struct f2fs_sb_info *sbi,
unsigned int zone_segno)
{
u_int64_t sector;
struct blk_zone blkz;
block_t block = START_BLOCK(sbi, zone_segno);
int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
int ret, j;
if (c.zoned_model != F2FS_ZONED_HM)
return true;
for (j = 0; j < MAX_DEVICES; j++) {
if (!c.devices[j].path)
break;
if (c.devices[j].start_blkaddr <= block &&
block <= c.devices[j].end_blkaddr)
break;
}
if (j >= MAX_DEVICES)
return false;
sector = (block - c.devices[j].start_blkaddr) << log_sectors_per_block;
ret = f2fs_report_zone(j, sector, &blkz);
if (ret)
return false;
if (blk_zone_type(&blkz) != BLK_ZONE_TYPE_SEQWRITE_REQ)
return true;
return blk_zone_sector(&blkz) == blk_zone_wp_sector(&blkz);
}
#else
static bool write_pointer_at_zone_start(struct f2fs_sb_info *UNUSED(sbi),
unsigned int UNUSED(zone_segno))
{
return true;
}
#endif
int find_next_free_block(struct f2fs_sb_info *sbi, u64 *to, int left,
int want_type, bool new_sec)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct seg_entry *se;
u32 segno;
u32 offset;
int not_enough = 0;
u64 end_blkaddr = (get_sb(segment_count_main) <<
get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
if (*to > 0)
*to -= left;
if (get_free_segments(sbi) <= SM_I(sbi)->reserved_segments + 1)
not_enough = 1;
while (*to >= SM_I(sbi)->main_blkaddr && *to < end_blkaddr) {
unsigned short vblocks;
unsigned char *bitmap;
unsigned char type;
segno = GET_SEGNO(sbi, *to);
offset = OFFSET_IN_SEG(sbi, *to);
se = get_seg_entry(sbi, segno);
vblocks = get_seg_vblocks(sbi, se);
bitmap = get_seg_bitmap(sbi, se);
type = get_seg_type(sbi, se);
if (vblocks == sbi->blocks_per_seg ||
IS_CUR_SEGNO(sbi, segno)) {
*to = left ? START_BLOCK(sbi, segno) - 1:
START_BLOCK(sbi, segno + 1);
continue;
}
if (vblocks == 0 && not_enough) {
*to = left ? START_BLOCK(sbi, segno) - 1:
START_BLOCK(sbi, segno + 1);
continue;
}
if (vblocks == 0 && !(segno % sbi->segs_per_sec)) {
struct seg_entry *se2;
unsigned int i;
for (i = 1; i < sbi->segs_per_sec; i++) {
se2 = get_seg_entry(sbi, segno + i);
if (get_seg_vblocks(sbi, se2))
break;
}
if (i == sbi->segs_per_sec &&
write_pointer_at_zone_start(sbi, segno)) {
set_section_type(sbi, segno, want_type);
return 0;
}
}
if (type == want_type && !new_sec &&
!f2fs_test_bit(offset, (const char *)bitmap))
return 0;
*to = left ? *to - 1: *to + 1;
}
return -1;
}
static void move_one_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left,
int i)
{
struct curseg_info *curseg = CURSEG_I(sbi, i);
struct f2fs_summary_block buf;
u32 old_segno;
u64 ssa_blk, to;
int ret;
/* update original SSA too */
ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
ret = dev_write_block(curseg->sum_blk, ssa_blk);
ASSERT(ret >= 0);
to = from;
ret = find_next_free_block(sbi, &to, left, i,
c.zoned_model == F2FS_ZONED_HM);
ASSERT(ret == 0);
old_segno = curseg->segno;
curseg->segno = GET_SEGNO(sbi, to);
curseg->next_blkoff = OFFSET_IN_SEG(sbi, to);
curseg->alloc_type = c.zoned_model == F2FS_ZONED_HM ? LFS : SSR;
/* update new segno */
ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
ret = dev_read_block(&buf, ssa_blk);
ASSERT(ret >= 0);
memcpy(curseg->sum_blk, &buf, SUM_ENTRIES_SIZE);
/* update se->types */
reset_curseg(sbi, i);
FIX_MSG("Move curseg[%d] %x -> %x after %"PRIx64"\n",
i, old_segno, curseg->segno, from);
}
void move_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left)
{
int i;
/* update summary blocks having nullified journal entries */
for (i = 0; i < NO_CHECK_TYPE; i++)
move_one_curseg_info(sbi, from, left, i);
}
void update_curseg_info(struct f2fs_sb_info *sbi, int type)
{
if (!relocate_curseg_offset(sbi, type))
return;
move_one_curseg_info(sbi, SM_I(sbi)->main_blkaddr, 0, type);
}
void zero_journal_entries(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < NO_CHECK_TYPE; i++)
CURSEG_I(sbi, i)->sum_blk->journal.n_nats = 0;
}
void write_curseg_info(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
int i;
for (i = 0; i < NO_CHECK_TYPE; i++) {
cp->alloc_type[i] = CURSEG_I(sbi, i)->alloc_type;
if (i < CURSEG_HOT_NODE) {
set_cp(cur_data_segno[i], CURSEG_I(sbi, i)->segno);
set_cp(cur_data_blkoff[i],
CURSEG_I(sbi, i)->next_blkoff);
} else {
int n = i - CURSEG_HOT_NODE;
set_cp(cur_node_segno[n], CURSEG_I(sbi, i)->segno);
set_cp(cur_node_blkoff[n],
CURSEG_I(sbi, i)->next_blkoff);
}
}
}
int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid,
struct f2fs_nat_entry *raw_nat)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
int i = 0;
for (i = 0; i < nats_in_cursum(journal); i++) {
if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
memcpy(raw_nat, &nat_in_journal(journal, i),
sizeof(struct f2fs_nat_entry));
DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
return i;
}
}
return -1;
}
void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
struct f2fs_nat_block *nat_block;
pgoff_t block_addr;
int entry_off;
int ret;
int i = 0;
/* check in journal */
for (i = 0; i < nats_in_cursum(journal); i++) {
if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
memset(&nat_in_journal(journal, i), 0,
sizeof(struct f2fs_nat_entry));
FIX_MSG("Remove nid [0x%x] in nat journal", nid);
return;
}
}
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
ASSERT(nat_block);
entry_off = nid % NAT_ENTRY_PER_BLOCK;
block_addr = current_nat_addr(sbi, nid, NULL);
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
if (nid == F2FS_NODE_INO(sbi) || nid == F2FS_META_INO(sbi)) {
FIX_MSG("nid [0x%x] block_addr= 0x%x -> 0x1", nid,
le32_to_cpu(nat_block->entries[entry_off].block_addr));
nat_block->entries[entry_off].block_addr = cpu_to_le32(0x1);
} else {
memset(&nat_block->entries[entry_off], 0,
sizeof(struct f2fs_nat_entry));
FIX_MSG("Remove nid [0x%x] in NAT", nid);
}
ret = dev_write_block(nat_block, block_addr);
ASSERT(ret >= 0);
free(nat_block);
}
void duplicate_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
unsigned long long dst, src;
void *buf;
unsigned int seg_size = 1 << get_sb(log_blocks_per_seg);
int ret;
if (sbi->cp_backuped)
return;
buf = malloc(F2FS_BLKSIZE * seg_size);
ASSERT(buf);
if (sbi->cur_cp == 1) {
src = get_sb(cp_blkaddr);
dst = src + seg_size;
} else {
dst = get_sb(cp_blkaddr);
src = dst + seg_size;
}
ret = dev_read(buf, src << F2FS_BLKSIZE_BITS,
seg_size << F2FS_BLKSIZE_BITS);
ASSERT(ret >= 0);
ret = dev_write(buf, dst << F2FS_BLKSIZE_BITS,
seg_size << F2FS_BLKSIZE_BITS);
ASSERT(ret >= 0);
free(buf);
ret = f2fs_fsync_device();
ASSERT(ret >= 0);
sbi->cp_backuped = 1;
MSG(0, "Info: Duplicate valid checkpoint to mirror position "
"%llu -> %llu\n", src, dst);
}
void write_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
block_t orphan_blks = 0;
unsigned long long cp_blk_no;
u32 flags = CP_UMOUNT_FLAG;
int i, ret;
u_int32_t crc = 0;
if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
orphan_blks = __start_sum_addr(sbi) - 1;
flags |= CP_ORPHAN_PRESENT_FLAG;
}
if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG))
flags |= CP_TRIMMED_FLAG;
if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG))
flags |= CP_DISABLED_FLAG;
if (is_set_ckpt_flags(cp, CP_LARGE_NAT_BITMAP_FLAG)) {
flags |= CP_LARGE_NAT_BITMAP_FLAG;
set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
} else {
set_cp(checksum_offset, CP_CHKSUM_OFFSET);
}
set_cp(free_segment_count, get_free_segments(sbi));
if (c.func == FSCK) {
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
set_cp(valid_block_count, fsck->chk.valid_blk_cnt);
set_cp(valid_node_count, fsck->chk.valid_node_cnt);
set_cp(valid_inode_count, fsck->chk.valid_inode_cnt);
} else {
set_cp(valid_block_count, sbi->total_valid_block_count);
set_cp(valid_node_count, sbi->total_valid_node_count);
set_cp(valid_inode_count, sbi->total_valid_inode_count);
}
set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_sb(cp_payload));
flags = update_nat_bits_flags(sb, cp, flags);
set_cp(ckpt_flags, flags);
crc = f2fs_checkpoint_chksum(cp);
*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
cpu_to_le32(crc);
cp_blk_no = get_sb(cp_blkaddr);
if (sbi->cur_cp == 2)
cp_blk_no += 1 << get_sb(log_blocks_per_seg);
/* write the first cp */
ret = dev_write_block(cp, cp_blk_no++);
ASSERT(ret >= 0);
/* skip payload */
cp_blk_no += get_sb(cp_payload);
/* skip orphan blocks */
cp_blk_no += orphan_blks;
/* update summary blocks having nullified journal entries */
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
u64 ssa_blk;
ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
ASSERT(ret >= 0);
/* update original SSA too */
ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
ret = dev_write_block(curseg->sum_blk, ssa_blk);
ASSERT(ret >= 0);
}
/* Write nat bits */
if (flags & CP_NAT_BITS_FLAG)
write_nat_bits(sbi, sb, cp, sbi->cur_cp);
/* in case of sudden power off */
ret = f2fs_fsync_device();
ASSERT(ret >= 0);
/* write the last cp */
ret = dev_write_block(cp, cp_blk_no++);
ASSERT(ret >= 0);
ret = f2fs_fsync_device();
ASSERT(ret >= 0);
}
void write_checkpoints(struct f2fs_sb_info *sbi)
{
/* copy valid checkpoint to its mirror position */
duplicate_checkpoint(sbi);
/* repair checkpoint at CP #0 position */
sbi->cur_cp = 1;
write_checkpoint(sbi);
}
void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = &curseg->sum_blk->journal;
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct f2fs_nat_block *nat_block;
struct node_info ni;
u32 nid, nr_nat_blks;
pgoff_t block_off;
pgoff_t block_addr;
int seg_off;
int ret;
unsigned int i;
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
ASSERT(nat_block);
/* Alloc & build nat entry bitmap */
nr_nat_blks = (get_sb(segment_count_nat) / 2) <<
sbi->log_blocks_per_seg;
fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
ASSERT(fsck->nat_area_bitmap);
fsck->entries = calloc(sizeof(struct f2fs_nat_entry),
fsck->nr_nat_entries);
ASSERT(fsck->entries);
for (block_off = 0; block_off < nr_nat_blks; block_off++) {
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
nid = block_off * NAT_ENTRY_PER_BLOCK;
for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
ni.nid = nid + i;
if ((nid + i) == F2FS_NODE_INO(sbi) ||
(nid + i) == F2FS_META_INO(sbi)) {
/*
* block_addr of node/meta inode should be 0x1.
* Set this bit, and fsck_verify will fix it.
*/
if (le32_to_cpu(nat_block->entries[i].block_addr) != 0x1) {
ASSERT_MSG("\tError: ino[0x%x] block_addr[0x%x] is invalid\n",
nid + i, le32_to_cpu(nat_block->entries[i].block_addr));
f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
}
continue;
}
node_info_from_raw_nat(&ni, &nat_block->entries[i]);
if (ni.blk_addr == 0x0)
continue;
if (ni.ino == 0x0) {
ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
" is invalid\n", ni.ino, ni.blk_addr);
}
if (ni.ino == (nid + i)) {
fsck->nat_valid_inode_cnt++;
DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
}
if (nid + i == 0) {
/*
* nat entry [0] must be null. If
* it is corrupted, set its bit in
* nat_area_bitmap, fsck_verify will
* nullify it
*/
ASSERT_MSG("Invalid nat entry[0]: "
"blk_addr[0x%x]\n", ni.blk_addr);
fsck->chk.valid_nat_entry_cnt--;
}
DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n",
nid + i, ni.blk_addr, ni.ino);
f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
fsck->chk.valid_nat_entry_cnt++;
fsck->entries[nid + i] = nat_block->entries[i];
}
}
/* Traverse nat journal, update the corresponding entries */
for (i = 0; i < nats_in_cursum(journal); i++) {
struct f2fs_nat_entry raw_nat;
nid = le32_to_cpu(nid_in_journal(journal, i));
ni.nid = nid;
DBG(3, "==> Found nid [0x%x] in nat cache, update it\n", nid);
/* Clear the original bit and count */
if (fsck->entries[nid].block_addr != 0x0) {
fsck->chk.valid_nat_entry_cnt--;
f2fs_clear_bit(nid, fsck->nat_area_bitmap);
if (fsck->entries[nid].ino == nid)
fsck->nat_valid_inode_cnt--;
}
/* Use nat entries in journal */
memcpy(&raw_nat, &nat_in_journal(journal, i),
sizeof(struct f2fs_nat_entry));
node_info_from_raw_nat(&ni, &raw_nat);
if (ni.blk_addr != 0x0) {
if (ni.ino == 0x0)
ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
" is invalid\n", ni.ino, ni.blk_addr);
if (ni.ino == nid) {
fsck->nat_valid_inode_cnt++;
DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
}
f2fs_set_bit(nid, fsck->nat_area_bitmap);
fsck->chk.valid_nat_entry_cnt++;
DBG(3, "nid[0x%x] in nat cache\n", nid);
}
fsck->entries[nid] = raw_nat;
}
free(nat_block);
DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
fsck->chk.valid_nat_entry_cnt,
fsck->chk.valid_nat_entry_cnt);
}
static int check_sector_size(struct f2fs_super_block *sb)
{
u_int32_t log_sectorsize, log_sectors_per_block;
log_sectorsize = log_base_2(c.sector_size);
log_sectors_per_block = log_base_2(c.sectors_per_blk);
if (log_sectorsize == get_sb(log_sectorsize) &&
log_sectors_per_block == get_sb(log_sectors_per_block))
return 0;
set_sb(log_sectorsize, log_sectorsize);
set_sb(log_sectors_per_block, log_sectors_per_block);
update_superblock(sb, SB_MASK_ALL);
return 0;
}
static int tune_sb_features(struct f2fs_sb_info *sbi)
{
int sb_changed = 0;
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) &&
c.feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
sb->feature |= cpu_to_le32(F2FS_FEATURE_ENCRYPT);
MSG(0, "Info: Set Encryption feature\n");
sb_changed = 1;
}
if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) &&
c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
if (!c.s_encoding) {
ERR_MSG("ERROR: Must specify encoding to enable casefolding.\n");
return -1;
}
sb->feature |= cpu_to_le32(F2FS_FEATURE_CASEFOLD);
MSG(0, "Info: Set Casefold feature\n");
sb_changed = 1;
}
/* TODO: quota needs to allocate inode numbers */
c.feature = sb->feature;
if (!sb_changed)
return 0;
update_superblock(sb, SB_MASK_ALL);
return 0;
}
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
nid_t ino)
{
struct fsync_inode_entry *entry;
list_for_each_entry(entry, head, list)
if (entry->ino == ino)
return entry;
return NULL;
}
static struct fsync_inode_entry *add_fsync_inode(struct list_head *head,
nid_t ino)
{
struct fsync_inode_entry *entry;
entry = calloc(sizeof(struct fsync_inode_entry), 1);
if (!entry)
return NULL;
entry->ino = ino;
list_add_tail(&entry->list, head);
return entry;
}
static void del_fsync_inode(struct fsync_inode_entry *entry)
{
list_del(&entry->list);
free(entry);
}
static void destroy_fsync_dnodes(struct list_head *head)
{
struct fsync_inode_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, head, list)
del_fsync_inode(entry);
}
static int find_fsync_inode(struct f2fs_sb_info *sbi, struct list_head *head)
{
struct curseg_info *curseg;
struct f2fs_node *node_blk;
block_t blkaddr;
unsigned int loop_cnt = 0;
unsigned int free_blocks = TOTAL_SEGS(sbi) * sbi->blocks_per_seg -
sbi->total_valid_block_count;
int err = 0;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
node_blk = calloc(F2FS_BLKSIZE, 1);
ASSERT(node_blk);
while (1) {
struct fsync_inode_entry *entry;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
break;
err = dev_read_block(node_blk, blkaddr);
if (err)
break;
if (!is_recoverable_dnode(sbi, node_blk))
break;
if (!is_fsync_dnode(node_blk))
goto next;
entry = get_fsync_inode(head, ino_of_node(node_blk));
if (!entry) {
entry = add_fsync_inode(head, ino_of_node(node_blk));
if (!entry) {
err = -1;
break;
}
}
entry->blkaddr = blkaddr;
if (IS_INODE(node_blk) && is_dent_dnode(node_blk))
entry->last_dentry = blkaddr;
next:
/* sanity check in order to detect looped node chain */
if (++loop_cnt >= free_blocks ||
blkaddr == next_blkaddr_of_node(node_blk)) {
MSG(0, "\tdetect looped node chain, blkaddr:%u, next:%u\n",
blkaddr,
next_blkaddr_of_node(node_blk));
err = -1;
break;
}
blkaddr = next_blkaddr_of_node(node_blk);
}
free(node_blk);
return err;
}
static int do_record_fsync_data(struct f2fs_sb_info *sbi,
struct f2fs_node *node_blk,
block_t blkaddr)
{
unsigned int segno, offset;
struct seg_entry *se;
unsigned int ofs_in_node = 0;
unsigned int start, end;
int err = 0, recorded = 0;
segno = GET_SEGNO(sbi, blkaddr);
se = get_seg_entry(sbi, segno);
offset = OFFSET_IN_SEG(sbi, blkaddr);
if (f2fs_test_bit(offset, (char *)se->cur_valid_map)) {
ASSERT(0);
return -1;
}
if (f2fs_test_bit(offset, (char *)se->ckpt_valid_map)) {
ASSERT(0);
return -1;
}
if (!se->ckpt_valid_blocks)
se->ckpt_type = CURSEG_WARM_NODE;
se->ckpt_valid_blocks++;
f2fs_set_bit(offset, (char *)se->ckpt_valid_map);
MSG(1, "do_record_fsync_data: [node] ino = %u, nid = %u, blkaddr = %u\n",
ino_of_node(node_blk), ofs_of_node(node_blk), blkaddr);
/* inline data */
if (IS_INODE(node_blk) && (node_blk->i.i_inline & F2FS_INLINE_DATA))
return 0;
/* xattr node */
if (ofs_of_node(node_blk) == XATTR_NODE_OFFSET)
return 0;
/* step 3: recover data indices */
start = start_bidx_of_node(ofs_of_node(node_blk), node_blk);
end = start + ADDRS_PER_PAGE(sbi, node_blk, NULL);
for (; start < end; start++, ofs_in_node++) {
blkaddr = datablock_addr(node_blk, ofs_in_node);
if (!is_valid_data_blkaddr(blkaddr))
continue;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) {
err = -1;
goto out;
}
segno = GET_SEGNO(sbi, blkaddr);
se = get_seg_entry(sbi, segno);
offset = OFFSET_IN_SEG(sbi, blkaddr);
if (f2fs_test_bit(offset, (char *)se->cur_valid_map))
continue;
if (f2fs_test_bit(offset, (char *)se->ckpt_valid_map))
continue;
if (!se->ckpt_valid_blocks)
se->ckpt_type = CURSEG_WARM_DATA;
se->ckpt_valid_blocks++;
f2fs_set_bit(offset, (char *)se->ckpt_valid_map);
MSG(1, "do_record_fsync_data: [data] ino = %u, nid = %u, blkaddr = %u\n",
ino_of_node(node_blk), ofs_of_node(node_blk), blkaddr);
recorded++;
}
out:
MSG(1, "recover_data: ino = %u, nid = %u, recorded = %d, err = %d\n",
ino_of_node(node_blk), ofs_of_node(node_blk),
recorded, err);
return err;
}
static int traverse_dnodes(struct f2fs_sb_info *sbi,
struct list_head *inode_list)
{
struct curseg_info *curseg;
struct f2fs_node *node_blk;
block_t blkaddr;
int err = 0;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
node_blk = calloc(F2FS_BLKSIZE, 1);
ASSERT(node_blk);
while (1) {
struct fsync_inode_entry *entry;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
break;
err = dev_read_block(node_blk, blkaddr);
if (err)
break;
if (!is_recoverable_dnode(sbi, node_blk))
break;
entry = get_fsync_inode(inode_list,
ino_of_node(node_blk));
if (!entry)
goto next;
err = do_record_fsync_data(sbi, node_blk, blkaddr);
if (err)
break;
if (entry->blkaddr == blkaddr)
del_fsync_inode(entry);
next:
blkaddr = next_blkaddr_of_node(node_blk);
}
free(node_blk);
return err;
}
static int record_fsync_data(struct f2fs_sb_info *sbi)
{
struct list_head inode_list = LIST_HEAD_INIT(inode_list);
int ret;
if (!need_fsync_data_record(sbi))
return 0;
ret = find_fsync_inode(sbi, &inode_list);
if (ret)
goto out;
ret = late_build_segment_manager(sbi);
if (ret < 0) {
ERR_MSG("late_build_segment_manager failed\n");
goto out;
}
ret = traverse_dnodes(sbi, &inode_list);
out:
destroy_fsync_dnodes(&inode_list);
return ret;
}
int f2fs_do_mount(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = NULL;
struct f2fs_super_block *sb = NULL;
int ret;
sbi->active_logs = NR_CURSEG_TYPE;
ret = validate_super_block(sbi, SB0_ADDR);
if (ret) {
ret = validate_super_block(sbi, SB1_ADDR);
if (ret)
return -1;
}
sb = F2FS_RAW_SUPER(sbi);
ret = check_sector_size(sb);
if (ret)
return -1;
print_raw_sb_info(sb);
init_sb_info(sbi);
ret = get_valid_checkpoint(sbi);
if (ret) {
ERR_MSG("Can't find valid checkpoint\n");
return -1;
}
c.bug_on = 0;
if (sanity_check_ckpt(sbi)) {
ERR_MSG("Checkpoint is polluted\n");
return -1;
}
cp = F2FS_CKPT(sbi);
if (c.func != FSCK && c.func != DUMP &&
!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
ERR_MSG("Mount unclean image to replay log first\n");
return -1;
}
print_ckpt_info(sbi);
if (c.quota_fix) {
if (get_cp(ckpt_flags) & CP_QUOTA_NEED_FSCK_FLAG)
c.fix_on = 1;
}
if (tune_sb_features(sbi))
return -1;
/* precompute checksum seed for metadata */
if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
sbi->total_valid_node_count = get_cp(valid_node_count);
sbi->total_valid_inode_count = get_cp(valid_inode_count);
sbi->user_block_count = get_cp(user_block_count);
sbi->total_valid_block_count = get_cp(valid_block_count);
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
if (early_build_segment_manager(sbi)) {
ERR_MSG("early_build_segment_manager failed\n");
return -1;
}
if (build_node_manager(sbi)) {
ERR_MSG("build_node_manager failed\n");
return -1;
}
if (record_fsync_data(sbi)) {
ERR_MSG("record_fsync_data failed\n");
return -1;
}
if (!f2fs_should_proceed(sb, get_cp(ckpt_flags)))
return 1;
if (late_build_segment_manager(sbi) < 0) {
ERR_MSG("late_build_segment_manager failed\n");
return -1;
}
if (f2fs_late_init_nid_bitmap(sbi)) {
ERR_MSG("f2fs_late_init_nid_bitmap failed\n");
return -1;
}
/* Check nat_bits */
if (c.func == FSCK && is_set_ckpt_flags(cp, CP_NAT_BITS_FLAG)) {
if (check_nat_bits(sbi, sb, cp) && c.fix_on)
write_nat_bits(sbi, sb, cp, sbi->cur_cp);
}
return 0;
}
void f2fs_do_umount(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned int i;
/* free nm_info */
if (c.func == SLOAD || c.func == FSCK)
free(nm_i->nid_bitmap);
free(nm_i->nat_bitmap);
free(sbi->nm_info);
/* free sit_info */
free(sit_i->bitmap);
free(sit_i->sit_bitmap);
free(sit_i->sentries);
free(sm_i->sit_info);
/* free sm_info */
for (i = 0; i < NR_CURSEG_TYPE; i++)
free(sm_i->curseg_array[i].sum_blk);
free(sm_i->curseg_array);
free(sbi->sm_info);
free(sbi->ckpt);
free(sbi->raw_super);
}
#ifdef WITH_ANDROID
int f2fs_sparse_initialize_meta(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = sbi->raw_super;
u_int32_t sit_seg_count, sit_size;
u_int32_t nat_seg_count, nat_size;
u_int64_t sit_seg_addr, nat_seg_addr, payload_addr;
u_int32_t seg_size = 1 << get_sb(log_blocks_per_seg);
int ret;
if (!c.sparse_mode)
return 0;
sit_seg_addr = get_sb(sit_blkaddr);
sit_seg_count = get_sb(segment_count_sit);
sit_size = sit_seg_count * seg_size;
DBG(1, "\tSparse: filling sit area at block offset: 0x%08"PRIx64" len: %u\n",
sit_seg_addr, sit_size);
ret = dev_fill(NULL, sit_seg_addr * F2FS_BLKSIZE,
sit_size * F2FS_BLKSIZE);
if (ret) {
MSG(1, "\tError: While zeroing out the sit area "
"on disk!!!\n");
return -1;
}
nat_seg_addr = get_sb(nat_blkaddr);
nat_seg_count = get_sb(segment_count_nat);
nat_size = nat_seg_count * seg_size;
DBG(1, "\tSparse: filling nat area at block offset 0x%08"PRIx64" len: %u\n",
nat_seg_addr, nat_size);
ret = dev_fill(NULL, nat_seg_addr * F2FS_BLKSIZE,
nat_size * F2FS_BLKSIZE);
if (ret) {
MSG(1, "\tError: While zeroing out the nat area "
"on disk!!!\n");
return -1;
}
payload_addr = get_sb(segment0_blkaddr) + 1;
DBG(1, "\tSparse: filling bitmap area at block offset 0x%08"PRIx64" len: %u\n",
payload_addr, get_sb(cp_payload));
ret = dev_fill(NULL, payload_addr * F2FS_BLKSIZE,
get_sb(cp_payload) * F2FS_BLKSIZE);
if (ret) {
MSG(1, "\tError: While zeroing out the nat/sit bitmap area "
"on disk!!!\n");
return -1;
}
payload_addr += seg_size;
DBG(1, "\tSparse: filling bitmap area at block offset 0x%08"PRIx64" len: %u\n",
payload_addr, get_sb(cp_payload));
ret = dev_fill(NULL, payload_addr * F2FS_BLKSIZE,
get_sb(cp_payload) * F2FS_BLKSIZE);
if (ret) {
MSG(1, "\tError: While zeroing out the nat/sit bitmap area "
"on disk!!!\n");
return -1;
}
return 0;
}
#else
int f2fs_sparse_initialize_meta(struct f2fs_sb_info *sbi) { return 0; }
#endif