third_party_ffmpeg/libavcodec/huffyuv.c

979 lines
31 KiB
C
Raw Normal View History

/*
* huffyuv codec for libavcodec
*
* Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
* the algorithm used
*/
#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#ifndef MAX_INT64
#define MAX_INT64 9223372036854775807LL
#endif
#define VLC_BITS 11
typedef enum Predictor{
LEFT= 0,
PLANE,
MEDIAN,
} Predictor;
typedef struct HYuvContext{
AVCodecContext *avctx;
Predictor predictor;
GetBitContext gb;
PutBitContext pb;
int interlaced;
int decorrelate;
int bitstream_bpp;
int version;
int yuy2; //use yuy2 instead of 422P
int bgr32; //use bgr32 instead of bgr24
int width, height;
int flags;
int picture_number;
int linesize[3];
uint8_t __align8 temp[3][2500];
uint64_t stats[3][256];
uint8_t len[3][256];
uint32_t bits[3][256];
VLC vlc[3];
uint8_t __align8 *picture[3];
uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
DSPContext dsp;
}HYuvContext;
static inline void bswap_buf(uint32_t *dst, uint32_t *src, int w){
int i;
for(i=0; i+8<=w; i+=8){
dst[i+0]= bswap_32(src[i+0]);
dst[i+1]= bswap_32(src[i+1]);
dst[i+2]= bswap_32(src[i+2]);
dst[i+3]= bswap_32(src[i+3]);
dst[i+4]= bswap_32(src[i+4]);
dst[i+5]= bswap_32(src[i+5]);
dst[i+6]= bswap_32(src[i+6]);
dst[i+7]= bswap_32(src[i+7]);
}
for(;i<w; i++){
dst[i+0]= bswap_32(src[i+0]);
}
}
static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
int i;
for(i=0; i<w-1; i++){
acc+= src[i];
dst[i]= acc;
i++;
acc+= src[i];
dst[i]= acc;
}
for(; i<w; i++){
acc+= src[i];
dst[i]= acc;
}
return acc;
}
static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
int i;
uint8_t l, lt;
l= *left;
lt= *left_top;
for(i=0; i<w; i++){
l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
lt= src1[i];
dst[i]= l;
}
*left= l;
*left_top= lt;
}
//FIXME optimize
static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
int i;
uint8_t l, lt;
l= *left;
lt= *left_top;
for(i=0; i<w; i++){
const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
lt= src1[i];
l= src2[i];
dst[i]= l - pred;
}
*left= l;
*left_top= lt;
}
static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
int i;
int r,g,b;
r= *red;
g= *green;
b= *blue;
for(i=0; i<w; i++){
b+= src[4*i+0];
g+= src[4*i+1];
r+= src[4*i+2];
dst[4*i+0]= b;
dst[4*i+1]= g;
dst[4*i+2]= r;
}
*red= r;
*green= g;
*blue= b;
}
//FIXME optimize
static inline int sub_left_prediction(uint8_t *dst, uint8_t *src, int w, int left){
int i;
for(i=0; i<w; i++){
const int temp= src[i];
dst[i]= temp - left;
left= temp;
}
return left;
}
static void read_len_table(uint8_t *dst, GetBitContext *gb){
int i, val, repeat;
for(i=0; i<256;){
repeat= get_bits(gb, 3);
val = get_bits(gb, 5);
if(repeat==0)
repeat= get_bits(gb, 8);
//printf("%d %d\n", val, repeat);
while (repeat--)
dst[i++] = val;
}
}
static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
int len, index;
uint32_t bits=0;
for(len=32; len>0; len--){
int bit= 1<<(32-len);
for(index=0; index<256; index++){
if(len_table[index]==len){
if(bits & (bit-1)){
fprintf(stderr, "Error generating huffman table\n");
return -1;
}
dst[index]= bits>>(32-len);
bits+= bit;
}
}
}
return 0;
}
static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
uint64_t counts[2*size];
int up[2*size];
int offset, i, next;
for(offset=1; ; offset<<=1){
for(i=0; i<size; i++){
counts[i]= stats[i] + offset - 1;
}
for(next=size; next<size*2; next++){
uint64_t min1, min2;
int min1_i, min2_i;
min1=min2= INT64_MAX;
min1_i= min2_i=-1;
for(i=0; i<next; i++){
if(min2 > counts[i]){
if(min1 > counts[i]){
min2= min1;
min2_i= min1_i;
min1= counts[i];
min1_i= i;
}else{
min2= counts[i];
min2_i= i;
}
}
}
if(min2==INT64_MAX) break;
counts[next]= min1 + min2;
counts[min1_i]=
counts[min2_i]= MAX_INT64;
up[min1_i]=
up[min2_i]= next;
up[next]= -1;
}
for(i=0; i<size; i++){
int len;
int index=i;
for(len=0; up[index] != -1; len++)
index= up[index];
if(len > 32) break;
dst[i]= len;
}
if(i==size) break;
}
}
static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
GetBitContext gb;
int i;
init_get_bits(&gb, src, length);
for(i=0; i<3; i++){
read_len_table(s->len[i], &gb);
if(generate_bits_table(s->bits[i], s->len[i])<0){
return -1;
}
#if 0
for(j=0; j<256; j++){
printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
}
#endif
init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
}
return 0;
}
static int read_old_huffman_tables(HYuvContext *s){
#if 0
GetBitContext gb;
int i;
init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma));
read_len_table(s->len[0], &gb);
init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma));
read_len_table(s->len[1], &gb);
for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
if(s->bitstream_bpp >= 24){
memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
}
memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
for(i=0; i<3; i++)
init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
return 0;
#else
fprintf(stderr, "v1 huffyuv is not supported \n");
return -1;
#endif
}
static int decode_init(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int width, height, y_size, c_size, stride;
s->avctx= avctx;
s->flags= avctx->flags;
dsputil_init(&s->dsp, avctx->dsp_mask);
width= s->width= avctx->width;
height= s->height= avctx->height;
s->bgr32=1;
assert(width && height);
//if(avctx->extradata)
// printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
if(avctx->extradata_size){
if(avctx->bits_per_sample&7)
s->version=1; // do such files exist at all?
else
s->version=2;
}else
s->version=0;
if(s->version==2){
int method;
method= ((uint8_t*)avctx->extradata)[0];
s->decorrelate= method&64 ? 1 : 0;
s->predictor= method&63;
s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
if(s->bitstream_bpp==0)
s->bitstream_bpp= avctx->bits_per_sample&~7;
if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
return -1;
}else{
switch(avctx->bits_per_sample&7){
case 1:
s->predictor= LEFT;
s->decorrelate= 0;
break;
case 2:
s->predictor= LEFT;
s->decorrelate= 1;
break;
case 3:
s->predictor= PLANE;
s->decorrelate= avctx->bits_per_sample >= 24;
break;
case 4:
s->predictor= MEDIAN;
s->decorrelate= 0;
break;
default:
s->predictor= LEFT; //OLD
s->decorrelate= 0;
break;
}
s->bitstream_bpp= avctx->bits_per_sample & ~7;
if(read_old_huffman_tables(s) < 0)
return -1;
}
s->interlaced= height > 288;
c_size= 0;
switch(s->bitstream_bpp){
case 12:
avctx->pix_fmt = PIX_FMT_YUV420P;
stride= (width+15)&~15;
c_size= height*stride/4;
break;
case 16:
if(s->yuy2){
avctx->pix_fmt = PIX_FMT_YUV422;
stride= (width*2+15)&~15;
}else{
avctx->pix_fmt = PIX_FMT_YUV422P;
stride= (width+15)&~15;
c_size= height*stride/2;
}
break;
case 24:
case 32:
if(s->bgr32){
avctx->pix_fmt = PIX_FMT_BGRA32;
stride= (width*4+15)&~15;
}else{
avctx->pix_fmt = PIX_FMT_BGR24;
stride= (width*3+15)&~15;
}
break;
default:
assert(0);
stride=0; //gcc fix
}
y_size= height*stride;
s->linesize[0]= stride;
s->picture[0]= av_mallocz(y_size);
if(c_size){
s->picture[1]= av_mallocz(c_size);
s->picture[2]= av_mallocz(c_size);
s->linesize[1]= s->linesize[2]= stride/2;
memset(s->picture[1], 128, c_size);
memset(s->picture[2], 128, c_size);
}
// printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
return 0;
}
static void store_table(HYuvContext *s, uint8_t *len){
int i;
int index= s->avctx->extradata_size;
for(i=0; i<256;){
int cur=i;
int val= len[i];
int repeat;
for(; i<256 && len[i]==val; i++);
repeat= i - cur;
if(repeat>7){
((uint8_t*)s->avctx->extradata)[index++]= val;
((uint8_t*)s->avctx->extradata)[index++]= repeat;
}else{
((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
}
}
s->avctx->extradata_size= index;
}
static int encode_init(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i, j, width, height;
s->avctx= avctx;
s->flags= avctx->flags;
dsputil_init(&s->dsp, avctx->dsp_mask);
width= s->width= avctx->width;
height= s->height= avctx->height;
assert(width && height);
avctx->extradata= av_mallocz(1024*10);
avctx->stats_out= av_mallocz(1024*10);
s->version=2;
switch(avctx->pix_fmt){
case PIX_FMT_YUV422P:
s->bitstream_bpp= 16;
break;
default:
fprintf(stderr, "format not supported\n");
return -1;
}
avctx->bits_per_sample= s->bitstream_bpp;
s->decorrelate= s->bitstream_bpp >= 24;
s->predictor= avctx->prediction_method;
((uint8_t*)avctx->extradata)[0]= s->predictor;
((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
((uint8_t*)avctx->extradata)[2]=
((uint8_t*)avctx->extradata)[3]= 0;
s->avctx->extradata_size= 4;
if(avctx->stats_in){
char *p= avctx->stats_in;
for(i=0; i<3; i++)
for(j=0; j<256; j++)
s->stats[i][j]= 1;
for(;;){
for(i=0; i<3; i++){
char *next;
for(j=0; j<256; j++){
s->stats[i][j]+= strtol(p, &next, 0);
if(next==p) return -1;
p=next;
}
}
if(p[0]==0 || p[1]==0 || p[2]==0) break;
}
}else{
for(i=0; i<3; i++)
for(j=0; j<256; j++){
int d= FFMIN(j, 256-j);
s->stats[i][j]= 100000000/(d+1);
}
}
for(i=0; i<3; i++){
generate_len_table(s->len[i], s->stats[i], 256);
if(generate_bits_table(s->bits[i], s->len[i])<0){
return -1;
}
store_table(s, s->len[i]);
}
for(i=0; i<3; i++)
for(j=0; j<256; j++)
s->stats[i][j]= 0;
s->interlaced= height > 288;
// printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
s->picture_number=0;
return 0;
}
static void decode_422_bitstream(HYuvContext *s, int count){
int i;
count/=2;
for(i=0; i<count; i++){
s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
}
}
static void encode_422_bitstream(HYuvContext *s, int count){
int i;
count/=2;
if(s->flags&CODEC_FLAG_PASS1){
for(i=0; i<count; i++){
s->stats[0][ s->temp[0][2*i ] ]++;
s->stats[1][ s->temp[1][ i ] ]++;
s->stats[0][ s->temp[0][2*i+1] ]++;
s->stats[2][ s->temp[2][ i ] ]++;
}
}else{
for(i=0; i<count; i++){
put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
}
}
}
static void decode_bgr_bitstream(HYuvContext *s, int count){
int i;
if(s->decorrelate){
if(s->bitstream_bpp==24){
for(i=0; i<count; i++){
s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
}
}else{
for(i=0; i<count; i++){
s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
}
}
}else{
if(s->bitstream_bpp==24){
for(i=0; i<count; i++){
s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
}
}else{
for(i=0; i<count; i++){
s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
}
}
}
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
HYuvContext *s = avctx->priv_data;
const int width= s->width;
const int width2= s->width>>1;
const int height= s->height;
const int fake_ystride= s->interlaced ? s->linesize[0]*2 : s->linesize[0];
const int fake_ustride= s->interlaced ? s->linesize[1]*2 : s->linesize[1];
const int fake_vstride= s->interlaced ? s->linesize[2]*2 : s->linesize[2];
int i;
AVPicture *picture = data;
*data_size = 0;
/* no supplementary picture */
if (buf_size == 0)
return 0;
bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
init_get_bits(&s->gb, s->bitstream_buffer, buf_size);
if(s->bitstream_bpp<24){
int y;
int lefty, leftu, leftv;
int lefttopy, lefttopu, lefttopv;
if(s->yuy2){
s->picture[0][3]= get_bits(&s->gb, 8);
s->picture[0][2]= get_bits(&s->gb, 8);
s->picture[0][1]= get_bits(&s->gb, 8);
s->picture[0][0]= get_bits(&s->gb, 8);
fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
return -1;
}else{
leftv= s->picture[2][0]= get_bits(&s->gb, 8);
lefty= s->picture[0][1]= get_bits(&s->gb, 8);
leftu= s->picture[1][0]= get_bits(&s->gb, 8);
s->picture[0][0]= get_bits(&s->gb, 8);
switch(s->predictor){
case LEFT:
case PLANE:
decode_422_bitstream(s, width-2);
lefty= add_left_prediction(s->picture[0] + 2, s->temp[0], width-2, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= add_left_prediction(s->picture[1] + 1, s->temp[1], width2-1, leftu);
leftv= add_left_prediction(s->picture[2] + 1, s->temp[2], width2-1, leftv);
}
for(y=1; y<s->height; y++){
uint8_t *ydst, *udst, *vdst;
decode_422_bitstream(s, width);
ydst= s->picture[0] + s->linesize[0]*y;
udst= s->picture[1] + s->linesize[1]*y;
vdst= s->picture[2] + s->linesize[2]*y;
lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
}
if(s->predictor == PLANE){
if(y>s->interlaced){
s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
if(!(s->flags&CODEC_FLAG_GRAY)){
s->dsp.add_bytes(udst, udst - fake_ustride, width2);
s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
}
}
}
}
break;
case MEDIAN:
/* first line except first 2 pixels is left predicted */
decode_422_bitstream(s, width-2);
lefty= add_left_prediction(s->picture[0] + 2, s->temp[0], width-2, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= add_left_prediction(s->picture[1] + 1, s->temp[1], width2-1, leftu);
leftv= add_left_prediction(s->picture[2] + 1, s->temp[2], width2-1, leftv);
}
y=1;
/* second line is left predicted for interlaced case */
if(s->interlaced){
decode_422_bitstream(s, width);
lefty= add_left_prediction(s->picture[0] + s->linesize[0], s->temp[0], width, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= add_left_prediction(s->picture[1] + s->linesize[2], s->temp[1], width2, leftu);
leftv= add_left_prediction(s->picture[2] + s->linesize[1], s->temp[2], width2, leftv);
}
y++;
}
/* next 4 pixels are left predicted too */
decode_422_bitstream(s, 4);
lefty= add_left_prediction(s->picture[0] + fake_ystride, s->temp[0], 4, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= add_left_prediction(s->picture[1] + fake_ustride, s->temp[1], 2, leftu);
leftv= add_left_prediction(s->picture[2] + fake_vstride, s->temp[2], 2, leftv);
}
/* next line except the first 4 pixels is median predicted */
lefttopy= s->picture[0][3];
decode_422_bitstream(s, width-4);
add_median_prediction(s->picture[0] + fake_ystride+4, s->picture[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
if(!(s->flags&CODEC_FLAG_GRAY)){
lefttopu= s->picture[1][1];
lefttopv= s->picture[2][1];
add_median_prediction(s->picture[1] + fake_ustride+2, s->picture[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
add_median_prediction(s->picture[2] + fake_vstride+2, s->picture[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
}
y++;
for(; y<height; y++){
uint8_t *ydst, *udst, *vdst;
decode_422_bitstream(s, width);
ydst= s->picture[0] + s->linesize[0]*y;
udst= s->picture[1] + s->linesize[1]*y;
vdst= s->picture[2] + s->linesize[2]*y;
add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
if(!(s->flags&CODEC_FLAG_GRAY)){
add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
}
}
break;
}
}
}else{
int y;
int leftr, leftg, leftb;
const int last_line= (height-1)*s->linesize[0];
if(s->bitstream_bpp==32){
s->picture[0][last_line+3]= get_bits(&s->gb, 8);
leftr= s->picture[0][last_line+2]= get_bits(&s->gb, 8);
leftg= s->picture[0][last_line+1]= get_bits(&s->gb, 8);
leftb= s->picture[0][last_line+0]= get_bits(&s->gb, 8);
}else{
leftr= s->picture[0][last_line+2]= get_bits(&s->gb, 8);
leftg= s->picture[0][last_line+1]= get_bits(&s->gb, 8);
leftb= s->picture[0][last_line+0]= get_bits(&s->gb, 8);
skip_bits(&s->gb, 8);
}
if(s->bgr32){
switch(s->predictor){
case LEFT:
case PLANE:
decode_bgr_bitstream(s, width-1);
add_left_prediction_bgr32(s->picture[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
for(y=s->height-2; y>=0; y--){ //yes its stored upside down
decode_bgr_bitstream(s, width);
add_left_prediction_bgr32(s->picture[0] + s->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
if(s->predictor == PLANE){
if((y&s->interlaced)==0){
s->dsp.add_bytes(s->picture[0] + s->linesize[0]*y,
s->picture[0] + s->linesize[0]*y + fake_ystride, fake_ystride);
}
}
}
break;
default:
fprintf(stderr, "prediction type not supported!\n");
}
}else{
fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
return -1;
}
}
emms_c();
for(i=0;i<3;i++) {
picture->data[i] = s->picture[i];
picture->linesize[i]= s->linesize[i];
}
*data_size = sizeof(AVPicture);
return (get_bits_count(&s->gb)+7)>>3;
}
static int decode_end(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i;
for(i=0; i<3; i++){
av_freep(&s->picture[i]);
free_vlc(&s->vlc[i]);
}
return 0;
}
static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
HYuvContext *s = avctx->priv_data;
AVPicture *pict = data;
const int width= s->width;
const int width2= s->width>>1;
const int height= s->height;
const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
int i, size;
init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
for(i=0; i<3; i++){
s->picture[i]= pict->data[i];
s->linesize[i]= pict->linesize[i];
}
if(avctx->pix_fmt == PIX_FMT_YUV422P){
int lefty, leftu, leftv, y;
put_bits(&s->pb, 8, leftv= s->picture[2][0]);
put_bits(&s->pb, 8, lefty= s->picture[0][1]);
put_bits(&s->pb, 8, leftu= s->picture[1][0]);
put_bits(&s->pb, 8, s->picture[0][0]);
lefty= sub_left_prediction(s->temp[0], s->picture[0]+2, width-2 , lefty);
leftu= sub_left_prediction(s->temp[1], s->picture[1]+1, width2-1, leftu);
leftv= sub_left_prediction(s->temp[2], s->picture[2]+1, width2-1, leftv);
encode_422_bitstream(s, width-2);
if(s->predictor==MEDIAN){
int lefttopy, lefttopu, lefttopv;
y=1;
if(s->interlaced){
lefty= sub_left_prediction(s->temp[0], s->picture[0]+s->linesize[0], width , lefty);
leftu= sub_left_prediction(s->temp[1], s->picture[1]+s->linesize[1], width2, leftu);
leftv= sub_left_prediction(s->temp[2], s->picture[2]+s->linesize[2], width2, leftv);
encode_422_bitstream(s, width);
y++;
}
lefty= sub_left_prediction(s->temp[0], s->picture[0]+fake_ystride, 4, lefty);
leftu= sub_left_prediction(s->temp[1], s->picture[1]+fake_ystride, 2, leftu);
leftv= sub_left_prediction(s->temp[2], s->picture[2]+fake_ystride, 2, leftv);
encode_422_bitstream(s, 4);
lefttopy= s->picture[0][3];
lefttopu= s->picture[1][1];
lefttopv= s->picture[2][1];
sub_median_prediction(s->temp[0], s->picture[0]+4, s->picture[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
sub_median_prediction(s->temp[1], s->picture[1]+2, s->picture[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
sub_median_prediction(s->temp[2], s->picture[2]+2, s->picture[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
encode_422_bitstream(s, width-4);
y++;
for(; y<height; y++){
uint8_t *ydst, *udst, *vdst;
ydst= s->picture[0] + s->linesize[0]*y;
udst= s->picture[1] + s->linesize[1]*y;
vdst= s->picture[2] + s->linesize[2]*y;
sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
encode_422_bitstream(s, width);
}
}else{
for(y=1; y<height; y++){
uint8_t *ydst, *udst, *vdst;
ydst= s->picture[0] + s->linesize[0]*y;
udst= s->picture[1] + s->linesize[1]*y;
vdst= s->picture[2] + s->linesize[2]*y;
if(s->predictor == PLANE && s->interlaced < y){
s->dsp.diff_bytes(s->temp[0], ydst, ydst - fake_ystride, width);
s->dsp.diff_bytes(s->temp[1], udst, udst - fake_ustride, width2);
s->dsp.diff_bytes(s->temp[2], vdst, vdst - fake_vstride, width2);
lefty= sub_left_prediction(s->temp[0], s->temp[0], width , lefty);
leftu= sub_left_prediction(s->temp[1], s->temp[1], width2, leftu);
leftv= sub_left_prediction(s->temp[2], s->temp[2], width2, leftv);
}else{
lefty= sub_left_prediction(s->temp[0], ydst, width , lefty);
leftu= sub_left_prediction(s->temp[1], udst, width2, leftu);
leftv= sub_left_prediction(s->temp[2], vdst, width2, leftv);
}
encode_422_bitstream(s, width);
}
}
}else{
fprintf(stderr, "Format not supported!\n");
}
emms_c();
size= (get_bit_count(&s->pb)+31)/32;
if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
int j;
char *p= avctx->stats_out;
for(i=0; i<3; i++){
for(j=0; j<256; j++){
sprintf(p, "%Ld ", s->stats[i][j]);
p+= strlen(p);
s->stats[i][j]= 0;
}
sprintf(p, "\n");
p++;
}
}else{
bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
}
avctx->key_frame= 1;
avctx->pict_type= I_TYPE;
s->picture_number++;
return size*4;
}
static int encode_end(AVCodecContext *avctx)
{
// HYuvContext *s = avctx->priv_data;
av_freep(&avctx->extradata);
av_freep(&avctx->stats_out);
return 0;
}
AVCodec huffyuv_decoder = {
"huffyuv",
CODEC_TYPE_VIDEO,
CODEC_ID_HUFFYUV,
sizeof(HYuvContext),
decode_init,
NULL,
decode_end,
decode_frame,
0,
NULL
};
AVCodec huffyuv_encoder = {
"huffyuv",
CODEC_TYPE_VIDEO,
CODEC_ID_HUFFYUV,
sizeof(HYuvContext),
encode_init,
encode_frame,
encode_end,
};