* sync with main liba52 sources

Originally committed as revision 1590 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Zdenek Kabelac 2003-02-18 11:48:57 +00:00
parent ca390e727d
commit c947dec982
10 changed files with 594 additions and 525 deletions

View File

@ -1,6 +1,6 @@
/*
* a52.h
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -30,10 +30,15 @@
#undef free
#undef realloc
#ifndef LIBA52_DOUBLE
typedef float sample_t;
#else
#if defined(LIBA52_FIXED)
typedef int32_t sample_t;
typedef int32_t level_t;
#elif defined(LIBA52_DOUBLE)
typedef double sample_t;
typedef double level_t;
#else
typedef float sample_t;
typedef float level_t;
#endif
typedef struct a52_state_s a52_state_t;
@ -59,9 +64,9 @@ sample_t * a52_samples (a52_state_t * state);
int a52_syncinfo (uint8_t * buf, int * flags,
int * sample_rate, int * bit_rate);
int a52_frame (a52_state_t * state, uint8_t * buf, int * flags,
sample_t * level, sample_t bias);
level_t * level, sample_t bias);
void a52_dynrng (a52_state_t * state,
sample_t (* call) (sample_t, void *), void * data);
level_t (* call) (level_t, void *), void * data);
int a52_block (a52_state_t * state);
void a52_free (a52_state_t * state);

View File

@ -1,6 +1,6 @@
/*
* a52_internal.h
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -37,24 +37,24 @@ struct a52_state_s {
uint8_t halfrate; /* halfrate factor */
uint8_t acmod; /* coded channels */
uint8_t lfeon; /* coded lfe channel */
sample_t clev; /* centre channel mix level */
sample_t slev; /* surround channels mix level */
level_t clev; /* centre channel mix level */
level_t slev; /* surround channels mix level */
int output; /* type of output */
sample_t level; /* output level */
level_t level; /* output level */
sample_t bias; /* output bias */
int dynrnge; /* apply dynamic range */
sample_t dynrng; /* dynamic range */
level_t dynrng; /* dynamic range */
void * dynrngdata; /* dynamic range callback funtion and data */
sample_t (* dynrngcall) (sample_t range, void * dynrngdata);
level_t (* dynrngcall) (level_t range, void * dynrngdata);
uint8_t chincpl; /* channel coupled */
uint8_t phsflginu; /* phase flags in use (stereo only) */
uint8_t cplstrtmant; /* coupling channel start mantissa */
uint8_t cplendmant; /* coupling channel end mantissa */
uint32_t cplbndstrc; /* coupling band structure */
sample_t cplco[5][18]; /* coupling coordinates */
level_t cplco[5][18]; /* coupling coordinates */
/* derived information */
uint8_t cplstrtbnd; /* coupling start band (for bit allocation) */
@ -66,6 +66,11 @@ struct a52_state_s {
uint16_t bai; /* bit allocation information */
uint32_t * buffer_start;
uint16_t lfsr_state; /* dither state */
uint32_t bits_left;
uint32_t current_word;
uint8_t csnroffst; /* coarse SNR offset */
ba_t cplba; /* coupling bit allocation parameters */
ba_t ba[5]; /* channel bit allocation parameters */
@ -102,14 +107,54 @@ void a52_bit_allocate (a52_state_t * state, ba_t * ba, int bndstart,
int start, int end, int fastleak, int slowleak,
expbap_t * expbap);
int a52_downmix_init (int input, int flags, sample_t * level,
sample_t clev, sample_t slev);
int a52_downmix_coeff (sample_t * coeff, int acmod, int output, sample_t level,
sample_t clev, sample_t slev);
int a52_downmix_init (int input, int flags, level_t * level,
level_t clev, level_t slev);
int a52_downmix_coeff (level_t * coeff, int acmod, int output, level_t level,
level_t clev, level_t slev);
void a52_downmix (sample_t * samples, int acmod, int output, sample_t bias,
sample_t clev, sample_t slev);
level_t clev, level_t slev);
void a52_upmix (sample_t * samples, int acmod, int output);
void a52_imdct_init (uint32_t mm_accel);
void a52_imdct_256 (sample_t * data, sample_t * delay, sample_t bias);
void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias);
#define ROUND(x) ((int)((x) + ((x) > 0 ? 0.5 : -0.5)))
#ifndef LIBA52_FIXED
typedef sample_t quantizer_t;
#define SAMPLE(x) (x)
#define LEVEL(x) (x)
#define MUL(a,b) ((a) * (b))
#define MUL_L(a,b) ((a) * (b))
#define MUL_C(a,b) ((a) * (b))
#define DIV(a,b) ((a) / (b))
#define BIAS(x) ((x) + bias)
#else /* LIBA52_FIXED */
typedef int16_t quantizer_t;
#define SAMPLE(x) (sample_t)((x) * (1 << 30))
#define LEVEL(x) (level_t)((x) * (1 << 26))
#if 0
#define MUL(a,b) ((int)(((int64_t)(a) * (b) + (1 << 29)) >> 30))
#define MUL_L(a,b) ((int)(((int64_t)(a) * (b) + (1 << 25)) >> 26))
#elif 1
#define MUL(a,b) \
({ int32_t _ta=(a), _tb=(b), _tc; \
_tc=(_ta & 0xffff)*(_tb >> 16)+(_ta >> 16)*(_tb & 0xffff); (int32_t)(((_tc >> 14))+ (((_ta >> 16)*(_tb >> 16)) << 2 )); })
#define MUL_L(a,b) \
({ int32_t _ta=(a), _tb=(b), _tc; \
_tc=(_ta & 0xffff)*(_tb >> 16)+(_ta >> 16)*(_tb & 0xffff); (int32_t)((_tc >> 10) + (((_ta >> 16)*(_tb >> 16)) << 6)); })
#else
#define MUL(a,b) (((a) >> 15) * ((b) >> 15))
#define MUL_L(a,b) (((a) >> 13) * ((b) >> 13))
#endif
#define MUL_C(a,b) MUL_L (a, LEVEL (b))
#define DIV(a,b) ((((int64_t)LEVEL (a)) << 26) / (b))
#define BIAS(x) (x)
#endif

View File

@ -1,64 +0,0 @@
/*
* audio_out.h
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
* See http://liba52.sourceforge.net/ for updates.
*
* a52dec is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* a52dec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
typedef struct ao_instance_s ao_instance_t;
struct ao_instance_s {
int (* setup) (ao_instance_t * instance, int sample_rate, int * flags,
sample_t * level, sample_t * bias);
int (* play) (ao_instance_t * instance, int flags, sample_t * samples);
void (* close) (ao_instance_t * instance);
};
typedef ao_instance_t * ao_open_t (void);
typedef struct ao_driver_s {
char * name;
ao_open_t * open;
} ao_driver_t;
/* return NULL terminated array of all drivers */
ao_driver_t * ao_drivers (void);
static inline ao_instance_t * ao_open (ao_open_t * open)
{
return open ();
}
static inline int ao_setup (ao_instance_t * instance, int sample_rate,
int * flags, sample_t * level, sample_t * bias)
{
return instance->setup (instance, sample_rate, flags, level, bias);
}
static inline int ao_play (ao_instance_t * instance, int flags,
sample_t * samples)
{
return instance->play (instance, flags, samples);
}
static inline void ao_close (ao_instance_t * instance)
{
if (instance->close)
instance->close (instance);
}

View File

@ -1,6 +1,6 @@
/*
* bit_allocate.c
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -20,6 +20,11 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
@ -226,7 +231,7 @@ void a52_bit_allocate (a52_state_t * state, ba_t * ba, int bndstart,
int startband, endband;
startband = j;
endband = ((bndtab-20)[i] < end) ? (bndtab-20)[i] : end;
endband = (bndtab[i-20] < end) ? bndtab[i-20] : end;
psd = 128 * exp[j++];
while (j < endband) {
int next, delta;

View File

@ -1,6 +1,6 @@
/*
* bitstream.c
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -21,34 +21,33 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
#include "bitstream.h"
#define BUFFER_SIZE 4096
static uint32_t * buffer_start;
uint32_t a52_bits_left;
uint32_t a52_current_word;
void a52_bitstream_set_ptr (uint8_t * buf)
void a52_bitstream_set_ptr (a52_state_t * state, uint8_t * buf)
{
int align;
align = (long)buf & 3;
buffer_start = (uint32_t *) (buf - align);
a52_bits_left = 0;
bitstream_get (align * 8);
state->buffer_start = (uint32_t *) (buf - align);
state->bits_left = 0;
state->current_word = 0;
bitstream_get (state, align * 8);
}
static inline void
bitstream_fill_current()
static inline void bitstream_fill_current (a52_state_t * state)
{
uint32_t tmp;
tmp = *(buffer_start++);
a52_current_word = swab32 (tmp);
tmp = *(state->buffer_start++);
state->current_word = swab32 (tmp);
}
/*
@ -60,40 +59,38 @@ bitstream_fill_current()
* -ah
*/
uint32_t
a52_bitstream_get_bh(uint32_t num_bits)
uint32_t a52_bitstream_get_bh (a52_state_t * state, uint32_t num_bits)
{
uint32_t result;
num_bits -= a52_bits_left;
result = ((a52_current_word << (32 - a52_bits_left)) >>
(32 - a52_bits_left));
num_bits -= state->bits_left;
result = ((state->current_word << (32 - state->bits_left)) >>
(32 - state->bits_left));
bitstream_fill_current();
bitstream_fill_current (state);
if(num_bits != 0)
result = (result << num_bits) | (a52_current_word >> (32 - num_bits));
if (num_bits != 0)
result = (result << num_bits) | (state->current_word >> (32 - num_bits));
a52_bits_left = 32 - num_bits;
state->bits_left = 32 - num_bits;
return result;
}
int32_t
a52_bitstream_get_bh_2(uint32_t num_bits)
int32_t a52_bitstream_get_bh_2 (a52_state_t * state, uint32_t num_bits)
{
int32_t result;
num_bits -= a52_bits_left;
result = ((((int32_t)a52_current_word) << (32 - a52_bits_left)) >>
(32 - a52_bits_left));
num_bits -= state->bits_left;
result = ((((int32_t)state->current_word) << (32 - state->bits_left)) >>
(32 - state->bits_left));
bitstream_fill_current();
bitstream_fill_current(state);
if(num_bits != 0)
result = (result << num_bits) | (a52_current_word >> (32 - num_bits));
if (num_bits != 0)
result = (result << num_bits) | (state->current_word >> (32 - num_bits));
a52_bits_left = 32 - num_bits;
state->bits_left = 32 - num_bits;
return result;
}

View File

@ -1,6 +1,6 @@
/*
* bitstream.h
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -46,37 +46,32 @@
# endif
#endif
extern uint32_t a52_bits_left;
extern uint32_t a52_current_word;
void a52_bitstream_set_ptr (a52_state_t * state, uint8_t * buf);
uint32_t a52_bitstream_get_bh (a52_state_t * state, uint32_t num_bits);
int32_t a52_bitstream_get_bh_2 (a52_state_t * state, uint32_t num_bits);
void a52_bitstream_set_ptr (uint8_t * buf);
uint32_t a52_bitstream_get_bh(uint32_t num_bits);
int32_t a52_bitstream_get_bh_2(uint32_t num_bits);
static inline uint32_t
bitstream_get(uint32_t num_bits)
static inline uint32_t bitstream_get (a52_state_t * state, uint32_t num_bits)
{
uint32_t result;
if(num_bits < a52_bits_left) {
result = (a52_current_word << (32 - a52_bits_left)) >> (32 - num_bits);
a52_bits_left -= num_bits;
if (num_bits < state->bits_left) {
result = (state->current_word << (32 - state->bits_left)) >> (32 - num_bits);
state->bits_left -= num_bits;
return result;
}
return a52_bitstream_get_bh(num_bits);
return a52_bitstream_get_bh (state, num_bits);
}
static inline int32_t
bitstream_get_2(uint32_t num_bits)
static inline int32_t bitstream_get_2 (a52_state_t * state, uint32_t num_bits)
{
int32_t result;
if(num_bits < a52_bits_left) {
result = (((int32_t)a52_current_word) << (32 - a52_bits_left)) >> (32 - num_bits);
a52_bits_left -= num_bits;
if (num_bits < state->bits_left) {
result = (((int32_t)state->current_word) << (32 - state->bits_left)) >> (32 - num_bits);
state->bits_left -= num_bits;
return result;
}
return a52_bitstream_get_bh_2(num_bits);
return a52_bitstream_get_bh_2 (state, num_bits);
}

View File

@ -1,6 +1,6 @@
/*
* downmix.c
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -21,13 +21,18 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <string.h>
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
#define CONVERT(acmod,output) (((output) << 3) + (acmod))
int a52_downmix_init (int input, int flags, sample_t * level,
sample_t clev, sample_t slev)
int a52_downmix_init (int input, int flags, level_t * level,
level_t clev, level_t slev)
{
static uint8_t table[11][8] = {
{A52_CHANNEL, A52_DOLBY, A52_STEREO, A52_STEREO,
@ -61,94 +66,106 @@ int a52_downmix_init (int input, int flags, sample_t * level,
output = table[output][input & 7];
if ((output == A52_STEREO) &&
((input == A52_DOLBY) || ((input == A52_3F) && (clev == LEVEL_3DB))))
if (output == A52_STEREO &&
(input == A52_DOLBY || (input == A52_3F && clev == LEVEL (LEVEL_3DB))))
output = A52_DOLBY;
if (flags & A52_ADJUST_LEVEL)
if (flags & A52_ADJUST_LEVEL) {
level_t adjust;
switch (CONVERT (input & 7, output)) {
case CONVERT (A52_3F, A52_MONO):
*level *= LEVEL_3DB / (1 + clev);
adjust = DIV (LEVEL_3DB, LEVEL (1) + clev);
break;
case CONVERT (A52_STEREO, A52_MONO):
case CONVERT (A52_2F2R, A52_2F1R):
case CONVERT (A52_3F2R, A52_3F1R):
level_3db:
*level *= LEVEL_3DB;
adjust = LEVEL (LEVEL_3DB);
break;
case CONVERT (A52_3F2R, A52_2F1R):
if (clev < LEVEL_PLUS3DB - 1)
if (clev < LEVEL (LEVEL_PLUS3DB - 1))
goto level_3db;
/* break thru */
case CONVERT (A52_3F, A52_STEREO):
case CONVERT (A52_3F1R, A52_2F1R):
case CONVERT (A52_3F1R, A52_2F2R):
case CONVERT (A52_3F2R, A52_2F2R):
*level /= 1 + clev;
adjust = DIV (1, LEVEL (1) + clev);
break;
case CONVERT (A52_2F1R, A52_MONO):
*level *= LEVEL_PLUS3DB / (2 + slev);
adjust = DIV (LEVEL_PLUS3DB, LEVEL (2) + slev);
break;
case CONVERT (A52_2F1R, A52_STEREO):
case CONVERT (A52_3F1R, A52_3F):
*level /= 1 + slev * LEVEL_3DB;
adjust = DIV (1, LEVEL (1) + MUL_C (slev, LEVEL_3DB));
break;
case CONVERT (A52_3F1R, A52_MONO):
*level *= LEVEL_3DB / (1 + clev + 0.5 * slev);
adjust = DIV (LEVEL_3DB, LEVEL (1) + clev + MUL_C (slev, 0.5));
break;
case CONVERT (A52_3F1R, A52_STEREO):
*level /= 1 + clev + slev * LEVEL_3DB;
adjust = DIV (1, LEVEL (1) + clev + MUL_C (slev, LEVEL_3DB));
break;
case CONVERT (A52_2F2R, A52_MONO):
*level *= LEVEL_3DB / (1 + slev);
adjust = DIV (LEVEL_3DB, LEVEL (1) + slev);
break;
case CONVERT (A52_2F2R, A52_STEREO):
case CONVERT (A52_3F2R, A52_3F):
*level /= 1 + slev;
adjust = DIV (1, LEVEL (1) + slev);
break;
case CONVERT (A52_3F2R, A52_MONO):
*level *= LEVEL_3DB / (1 + clev + slev);
adjust = DIV (LEVEL_3DB, LEVEL (1) + clev + slev);
break;
case CONVERT (A52_3F2R, A52_STEREO):
*level /= 1 + clev + slev;
adjust = DIV (1, LEVEL (1) + clev + slev);
break;
case CONVERT (A52_MONO, A52_DOLBY):
*level *= LEVEL_PLUS3DB;
adjust = LEVEL (LEVEL_PLUS3DB);
break;
case CONVERT (A52_3F, A52_DOLBY):
case CONVERT (A52_2F1R, A52_DOLBY):
*level *= 1 / (1 + LEVEL_3DB);
adjust = LEVEL (1 / (1 + LEVEL_3DB));
break;
case CONVERT (A52_3F1R, A52_DOLBY):
case CONVERT (A52_2F2R, A52_DOLBY):
*level *= 1 / (1 + 2 * LEVEL_3DB);
adjust = LEVEL (1 / (1 + 2 * LEVEL_3DB));
break;
case CONVERT (A52_3F2R, A52_DOLBY):
*level *= 1 / (1 + 3 * LEVEL_3DB);
adjust = LEVEL (1 / (1 + 3 * LEVEL_3DB));
break;
default:
return output;
}
*level = MUL_L (*level, adjust);
}
return output;
}
int a52_downmix_coeff (sample_t * coeff, int acmod, int output, sample_t level,
sample_t clev, sample_t slev)
int a52_downmix_coeff (level_t * coeff, int acmod, int output, level_t level,
level_t clev, level_t slev)
{
level_t level_3db;
level_3db = MUL_C (level, LEVEL_3DB);
switch (CONVERT (acmod, output & A52_CHANNEL_MASK)) {
case CONVERT (A52_CHANNEL, A52_CHANNEL):
@ -164,120 +181,138 @@ int a52_downmix_coeff (sample_t * coeff, int acmod, int output, sample_t level,
return 0;
case CONVERT (A52_CHANNEL, A52_MONO):
coeff[0] = coeff[1] = level * LEVEL_6DB;
coeff[0] = coeff[1] = MUL_C (level, LEVEL_6DB);
return 3;
case CONVERT (A52_STEREO, A52_MONO):
coeff[0] = coeff[1] = level * LEVEL_3DB;
coeff[0] = coeff[1] = level_3db;
return 3;
case CONVERT (A52_3F, A52_MONO):
coeff[0] = coeff[2] = level * LEVEL_3DB;
coeff[1] = level * clev * LEVEL_PLUS3DB;
coeff[0] = coeff[2] = level_3db;
coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB);
return 7;
case CONVERT (A52_2F1R, A52_MONO):
coeff[0] = coeff[1] = level * LEVEL_3DB;
coeff[2] = level * slev * LEVEL_3DB;
coeff[0] = coeff[1] = level_3db;
coeff[2] = MUL_L (level_3db, slev);
return 7;
case CONVERT (A52_2F2R, A52_MONO):
coeff[0] = coeff[1] = level * LEVEL_3DB;
coeff[2] = coeff[3] = level * slev * LEVEL_3DB;
coeff[0] = coeff[1] = level_3db;
coeff[2] = coeff[3] = MUL_L (level_3db, slev);
return 15;
case CONVERT (A52_3F1R, A52_MONO):
coeff[0] = coeff[2] = level * LEVEL_3DB;
coeff[1] = level * clev * LEVEL_PLUS3DB;
coeff[3] = level * slev * LEVEL_3DB;
coeff[0] = coeff[2] = level_3db;
coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB);
coeff[3] = MUL_L (level_3db, slev);
return 15;
case CONVERT (A52_3F2R, A52_MONO):
coeff[0] = coeff[2] = level * LEVEL_3DB;
coeff[1] = level * clev * LEVEL_PLUS3DB;
coeff[3] = coeff[4] = level * slev * LEVEL_3DB;
coeff[0] = coeff[2] = level_3db;
coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB);
coeff[3] = coeff[4] = MUL_L (level_3db, slev);
return 31;
case CONVERT (A52_MONO, A52_DOLBY):
coeff[0] = level * LEVEL_3DB;
coeff[0] = level_3db;
return 0;
case CONVERT (A52_3F, A52_DOLBY):
clev = LEVEL_3DB;
coeff[0] = coeff[2] = coeff[3] = coeff[4] = level;
coeff[1] = level_3db;
return 7;
case CONVERT (A52_3F, A52_STEREO):
case CONVERT (A52_3F1R, A52_2F1R):
case CONVERT (A52_3F2R, A52_2F2R):
coeff[0] = coeff[2] = coeff[3] = coeff[4] = level;
coeff[1] = level * clev;
coeff[1] = MUL_L (level, clev);
return 7;
case CONVERT (A52_2F1R, A52_DOLBY):
slev = 1;
coeff[0] = coeff[1] = level;
coeff[2] = level_3db;
return 7;
case CONVERT (A52_2F1R, A52_STEREO):
coeff[0] = coeff[1] = level;
coeff[2] = level * slev * LEVEL_3DB;
coeff[2] = MUL_L (level_3db, slev);
return 7;
case CONVERT (A52_3F1R, A52_DOLBY):
clev = LEVEL_3DB;
slev = 1;
coeff[0] = coeff[2] = level;
coeff[1] = coeff[3] = level_3db;
return 15;
case CONVERT (A52_3F1R, A52_STEREO):
coeff[0] = coeff[2] = level;
coeff[1] = level * clev;
coeff[3] = level * slev * LEVEL_3DB;
coeff[1] = MUL_L (level, clev);
coeff[3] = MUL_L (level_3db, slev);
return 15;
case CONVERT (A52_2F2R, A52_DOLBY):
slev = LEVEL_3DB;
coeff[0] = coeff[1] = level;
coeff[2] = coeff[3] = level_3db;
return 15;
case CONVERT (A52_2F2R, A52_STEREO):
coeff[0] = coeff[1] = level;
coeff[2] = coeff[3] = level * slev;
coeff[2] = coeff[3] = MUL_L (level, slev);
return 15;
case CONVERT (A52_3F2R, A52_DOLBY):
clev = LEVEL_3DB;
coeff[0] = coeff[2] = level;
coeff[1] = coeff[3] = coeff[4] = level_3db;
return 31;
case CONVERT (A52_3F2R, A52_2F1R):
slev = LEVEL_3DB;
coeff[0] = coeff[2] = level;
coeff[1] = MUL_L (level, clev);
coeff[3] = coeff[4] = level_3db;
return 31;
case CONVERT (A52_3F2R, A52_STEREO):
coeff[0] = coeff[2] = level;
coeff[1] = level * clev;
coeff[3] = coeff[4] = level * slev;
coeff[1] = MUL_L (level, clev);
coeff[3] = coeff[4] = MUL_L (level, slev);
return 31;
case CONVERT (A52_3F1R, A52_3F):
coeff[0] = coeff[1] = coeff[2] = level;
coeff[3] = level * slev * LEVEL_3DB;
coeff[3] = MUL_L (level_3db, slev);
return 13;
case CONVERT (A52_3F2R, A52_3F):
coeff[0] = coeff[1] = coeff[2] = level;
coeff[3] = coeff[4] = level * slev;
coeff[3] = coeff[4] = MUL_L (level, slev);
return 29;
case CONVERT (A52_2F2R, A52_2F1R):
coeff[0] = coeff[1] = level;
coeff[2] = coeff[3] = level * LEVEL_3DB;
coeff[2] = coeff[3] = level_3db;
return 12;
case CONVERT (A52_3F2R, A52_3F1R):
coeff[0] = coeff[1] = coeff[2] = level;
coeff[3] = coeff[4] = level * LEVEL_3DB;
coeff[3] = coeff[4] = level_3db;
return 24;
case CONVERT (A52_2F1R, A52_2F2R):
coeff[0] = coeff[1] = level;
coeff[2] = level * LEVEL_3DB;
coeff[2] = level_3db;
return 0;
case CONVERT (A52_3F1R, A52_2F2R):
coeff[0] = coeff[2] = level;
coeff[1] = level * clev;
coeff[3] = level * LEVEL_3DB;
coeff[1] = MUL_L (level, clev);
coeff[3] = level_3db;
return 7;
case CONVERT (A52_3F1R, A52_3F2R):
coeff[0] = coeff[1] = coeff[2] = level;
coeff[3] = level * LEVEL_3DB;
coeff[3] = level_3db;
return 0;
case CONVERT (A52_CHANNEL, A52_CHANNEL1):
@ -299,7 +334,7 @@ static void mix2to1 (sample_t * dest, sample_t * src, sample_t bias)
int i;
for (i = 0; i < 256; i++)
dest[i] += src[i] + bias;
dest[i] += BIAS (src[i]);
}
static void mix3to1 (sample_t * samples, sample_t bias)
@ -307,7 +342,7 @@ static void mix3to1 (sample_t * samples, sample_t bias)
int i;
for (i = 0; i < 256; i++)
samples[i] += samples[i + 256] + samples[i + 512] + bias;
samples[i] += BIAS (samples[i + 256] + samples[i + 512]);
}
static void mix4to1 (sample_t * samples, sample_t bias)
@ -315,8 +350,8 @@ static void mix4to1 (sample_t * samples, sample_t bias)
int i;
for (i = 0; i < 256; i++)
samples[i] += (samples[i + 256] + samples[i + 512] +
samples[i + 768] + bias);
samples[i] += BIAS (samples[i + 256] + samples[i + 512] +
samples[i + 768]);
}
static void mix5to1 (sample_t * samples, sample_t bias)
@ -324,8 +359,8 @@ static void mix5to1 (sample_t * samples, sample_t bias)
int i;
for (i = 0; i < 256; i++)
samples[i] += (samples[i + 256] + samples[i + 512] +
samples[i + 768] + samples[i + 1024] + bias);
samples[i] += BIAS (samples[i + 256] + samples[i + 512] +
samples[i + 768] + samples[i + 1024]);
}
static void mix3to2 (sample_t * samples, sample_t bias)
@ -334,7 +369,7 @@ static void mix3to2 (sample_t * samples, sample_t bias)
sample_t common;
for (i = 0; i < 256; i++) {
common = samples[i + 256] + bias;
common = BIAS (samples[i + 256]);
samples[i] += common;
samples[i + 256] = samples[i + 512] + common;
}
@ -346,7 +381,7 @@ static void mix21to2 (sample_t * left, sample_t * right, sample_t bias)
sample_t common;
for (i = 0; i < 256; i++) {
common = right[i + 256] + bias;
common = BIAS (right[i + 256]);
left[i] += common;
right[i] += common;
}
@ -359,8 +394,8 @@ static void mix21toS (sample_t * samples, sample_t bias)
for (i = 0; i < 256; i++) {
surround = samples[i + 512];
samples[i] += bias - surround;
samples[i + 256] += bias + surround;
samples[i] += BIAS (-surround);
samples[i + 256] += BIAS (surround);
}
}
@ -370,7 +405,7 @@ static void mix31to2 (sample_t * samples, sample_t bias)
sample_t common;
for (i = 0; i < 256; i++) {
common = samples[i + 256] + samples[i + 768] + bias;
common = BIAS (samples[i + 256] + samples[i + 768]);
samples[i] += common;
samples[i + 256] = samples[i + 512] + common;
}
@ -382,7 +417,7 @@ static void mix31toS (sample_t * samples, sample_t bias)
sample_t common, surround;
for (i = 0; i < 256; i++) {
common = samples[i + 256] + bias;
common = BIAS (samples[i + 256]);
surround = samples[i + 768];
samples[i] += common - surround;
samples[i + 256] = samples[i + 512] + common + surround;
@ -396,8 +431,8 @@ static void mix22toS (sample_t * samples, sample_t bias)
for (i = 0; i < 256; i++) {
surround = samples[i + 512] + samples[i + 768];
samples[i] += bias - surround;
samples[i + 256] += bias + surround;
samples[i] += BIAS (-surround);
samples[i + 256] += BIAS (surround);
}
}
@ -407,7 +442,7 @@ static void mix32to2 (sample_t * samples, sample_t bias)
sample_t common;
for (i = 0; i < 256; i++) {
common = samples[i + 256] + bias;
common = BIAS (samples[i + 256]);
samples[i] += common + samples[i + 768];
samples[i + 256] = common + samples[i + 512] + samples[i + 1024];
}
@ -419,7 +454,7 @@ static void mix32toS (sample_t * samples, sample_t bias)
sample_t common, surround;
for (i = 0; i < 256; i++) {
common = samples[i + 256] + bias;
common = BIAS (samples[i + 256]);
surround = samples[i + 768] + samples[i + 1024];
samples[i] += common - surround;
samples[i + 256] = samples[i + 512] + common + surround;
@ -431,7 +466,7 @@ static void move2to1 (sample_t * src, sample_t * dest, sample_t bias)
int i;
for (i = 0; i < 256; i++)
dest[i] = src[i] + src[i + 256] + bias;
dest[i] = BIAS (src[i] + src[i + 256]);
}
static void zero (sample_t * samples)
@ -443,7 +478,7 @@ static void zero (sample_t * samples)
}
void a52_downmix (sample_t * samples, int acmod, int output, sample_t bias,
sample_t clev, sample_t slev)
level_t clev, level_t slev)
{
switch (CONVERT (acmod, output & A52_CHANNEL_MASK)) {
@ -578,7 +613,7 @@ void a52_downmix (sample_t * samples, int acmod, int output, sample_t bias,
break;
case CONVERT (A52_3F1R, A52_3F2R):
memcpy (samples + 1027, samples + 768, 256 * sizeof (sample_t));
memcpy (samples + 1024, samples + 768, 256 * sizeof (sample_t));
break;
}
}

View File

@ -1,6 +1,6 @@
/*
* imdct.c
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* The ifft algorithms in this file have been largely inspired by Dan
@ -24,6 +24,18 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <math.h>
#include <stdio.h>
#ifdef LIBA52_DJBFFT
#include <fftc4.h>
#endif
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795029
#endif
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
#include "mm_accel.h"
@ -33,8 +45,6 @@ typedef struct complex_s {
sample_t imag;
} complex_t;
static complex_t buf[128];
static uint8_t fftorder[] = {
0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,
8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,
@ -65,7 +75,7 @@ static void (* ifft64) (complex_t * buf);
static inline void ifft2 (complex_t * buf)
{
double r, i;
sample_t r, i;
r = buf[0].real;
i = buf[0].imag;
@ -77,7 +87,7 @@ static inline void ifft2 (complex_t * buf)
static inline void ifft4 (complex_t * buf)
{
double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
tmp1 = buf[0].real + buf[1].real;
tmp2 = buf[3].real + buf[2].real;
@ -98,25 +108,37 @@ static inline void ifft4 (complex_t * buf)
buf[3].imag = tmp6 - tmp8;
}
/* basic radix-2 ifft butterfly */
#define BUTTERFLY_0(t0,t1,W0,W1,d0,d1) do { \
t0 = MUL (W1, d1) + MUL (W0, d0); \
t1 = MUL (W0, d1) - MUL (W1, d0); \
} while (0)
/* radix-2 ifft butterfly with bias */
#define BUTTERFLY_B(t0,t1,W0,W1,d0,d1) do { \
t0 = BIAS (MUL (d1, W1) + MUL (d0, W0)); \
t1 = BIAS (MUL (d1, W0) - MUL (d0, W1)); \
} while (0)
/* the basic split-radix ifft butterfly */
#define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \
tmp5 = a2.real * wr + a2.imag * wi; \
tmp6 = a2.imag * wr - a2.real * wi; \
tmp7 = a3.real * wr - a3.imag * wi; \
tmp8 = a3.imag * wr + a3.real * wi; \
tmp1 = tmp5 + tmp7; \
tmp2 = tmp6 + tmp8; \
tmp3 = tmp6 - tmp8; \
tmp4 = tmp7 - tmp5; \
a2.real = a0.real - tmp1; \
a2.imag = a0.imag - tmp2; \
a3.real = a1.real - tmp3; \
a3.imag = a1.imag - tmp4; \
a0.real += tmp1; \
a0.imag += tmp2; \
a1.real += tmp3; \
a1.imag += tmp4; \
#define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \
BUTTERFLY_0 (tmp5, tmp6, wr, wi, a2.real, a2.imag); \
BUTTERFLY_0 (tmp8, tmp7, wr, wi, a3.imag, a3.real); \
tmp1 = tmp5 + tmp7; \
tmp2 = tmp6 + tmp8; \
tmp3 = tmp6 - tmp8; \
tmp4 = tmp7 - tmp5; \
a2.real = a0.real - tmp1; \
a2.imag = a0.imag - tmp2; \
a3.real = a1.real - tmp3; \
a3.imag = a1.imag - tmp4; \
a0.real += tmp1; \
a0.imag += tmp2; \
a1.real += tmp3; \
a1.imag += tmp4; \
} while (0)
/* split-radix ifft butterfly, specialized for wr=1 wi=0 */
@ -139,10 +161,10 @@ static inline void ifft4 (complex_t * buf)
/* split-radix ifft butterfly, specialized for wr=wi */
#define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \
tmp5 = (a2.real + a2.imag) * w; \
tmp6 = (a2.imag - a2.real) * w; \
tmp7 = (a3.real - a3.imag) * w; \
tmp8 = (a3.imag + a3.real) * w; \
tmp5 = MUL (a2.real + a2.imag, w); \
tmp6 = MUL (a2.imag - a2.real, w); \
tmp7 = MUL (a3.real - a3.imag, w); \
tmp8 = MUL (a3.imag + a3.real, w); \
tmp1 = tmp5 + tmp7; \
tmp2 = tmp6 + tmp8; \
tmp3 = tmp6 - tmp8; \
@ -159,7 +181,7 @@ static inline void ifft4 (complex_t * buf)
static inline void ifft8 (complex_t * buf)
{
double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
ifft4 (buf);
ifft2 (buf + 4);
@ -173,7 +195,7 @@ static void ifft_pass (complex_t * buf, sample_t * weight, int n)
complex_t * buf1;
complex_t * buf2;
complex_t * buf3;
double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
int i;
buf++;
@ -186,7 +208,8 @@ static void ifft_pass (complex_t * buf, sample_t * weight, int n)
i = n - 1;
do {
BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]);
BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0],
weight[0], weight[2*i-n]);
buf++;
buf1++;
buf2++;
@ -200,7 +223,7 @@ static void ifft16 (complex_t * buf)
ifft8 (buf);
ifft4 (buf + 8);
ifft4 (buf + 12);
ifft_pass (buf, roots16 - 4, 4);
ifft_pass (buf, roots16, 4);
}
static void ifft32 (complex_t * buf)
@ -208,7 +231,7 @@ static void ifft32 (complex_t * buf)
ifft16 (buf);
ifft8 (buf + 16);
ifft8 (buf + 24);
ifft_pass (buf, roots32 - 8, 8);
ifft_pass (buf, roots32, 8);
}
static void ifft64_c (complex_t * buf)
@ -216,7 +239,7 @@ static void ifft64_c (complex_t * buf)
ifft32 (buf);
ifft16 (buf + 32);
ifft16 (buf + 48);
ifft_pass (buf, roots64 - 16, 16);
ifft_pass (buf, roots64, 16);
}
static void ifft128_c (complex_t * buf)
@ -224,11 +247,11 @@ static void ifft128_c (complex_t * buf)
ifft32 (buf);
ifft16 (buf + 32);
ifft16 (buf + 48);
ifft_pass (buf, roots64 - 16, 16);
ifft_pass (buf, roots64, 16);
ifft32 (buf + 64);
ifft32 (buf + 96);
ifft_pass (buf, roots128 - 32, 32);
ifft_pass (buf, roots128, 32);
}
void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
@ -236,14 +259,13 @@ void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
int i, k;
sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;
const sample_t * window = a52_imdct_window;
complex_t buf[128];
for (i = 0; i < 128; i++) {
k = fftorder[i];
t_r = pre1[i].real;
t_i = pre1[i].imag;
buf[i].real = t_i * data[255-k] + t_r * data[k];
buf[i].imag = t_r * data[255-k] - t_i * data[k];
BUTTERFLY_0 (buf[i].real, buf[i].imag, t_r, t_i, data[k], data[255-k]);
}
ifft128 (buf);
@ -254,47 +276,35 @@ void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
t_r = post1[i].real;
t_i = post1[i].imag;
a_r = t_r * buf[i].real + t_i * buf[i].imag;
a_i = t_i * buf[i].real - t_r * buf[i].imag;
b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag;
b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag;
BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf[i].imag, buf[i].real);
BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf[127-i].imag, buf[127-i].real);
w_1 = window[2*i];
w_2 = window[255-2*i];
data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias;
data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]);
delay[2*i] = a_i;
w_1 = window[2*i+1];
w_2 = window[254-2*i];
data[2*i+1] = delay[2*i+1] * w_2 + b_r * w_1 + bias;
data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias;
BUTTERFLY_B (data[2*i+1], data[254-2*i], w_1, w_2, b_r, delay[2*i+1]);
delay[2*i+1] = b_i;
}
}
void a52_imdct_256(sample_t data[],sample_t delay[],sample_t bias)
void a52_imdct_256 (sample_t * data, sample_t * delay, sample_t bias)
{
int i, k;
sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;
complex_t * buf1, * buf2;
const sample_t * window = a52_imdct_window;
buf1 = &buf[0];
buf2 = &buf[64];
complex_t buf1[64], buf2[64];
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
for (i = 0; i < 64; i++) {
k = fftorder[i];
t_r = pre2[i].real;
t_i = pre2[i].imag;
buf1[i].real = t_i * data[254-k] + t_r * data[k];
buf1[i].imag = t_r * data[254-k] - t_i * data[k];
buf2[i].real = t_i * data[255-k] + t_r * data[k+1];
buf2[i].imag = t_r * data[255-k] - t_i * data[k+1];
BUTTERFLY_0 (buf1[i].real, buf1[i].imag, t_r, t_i, data[k], data[254-k]);
BUTTERFLY_0 (buf2[i].real, buf2[i].imag, t_r, t_i, data[k+1], data[255-k]);
}
ifft64 (buf1);
@ -306,39 +316,29 @@ void a52_imdct_256(sample_t data[],sample_t delay[],sample_t bias)
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
t_r = post2[i].real;
t_i = post2[i].imag;
a_r = t_r * buf1[i].real + t_i * buf1[i].imag;
a_i = t_i * buf1[i].real - t_r * buf1[i].imag;
b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag;
b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag;
c_r = t_r * buf2[i].real + t_i * buf2[i].imag;
c_i = t_i * buf2[i].real - t_r * buf2[i].imag;
d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag;
d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag;
BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf1[i].imag, buf1[i].real);
BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf1[63-i].imag, buf1[63-i].real);
BUTTERFLY_0 (c_r, c_i, t_i, t_r, buf2[i].imag, buf2[i].real);
BUTTERFLY_0 (d_r, d_i, t_r, t_i, buf2[63-i].imag, buf2[63-i].real);
w_1 = window[2*i];
w_2 = window[255-2*i];
data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias;
data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]);
delay[2*i] = c_i;
w_1 = window[128+2*i];
w_2 = window[127-2*i];
data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias;
data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias;
BUTTERFLY_B (data[128+2*i], data[127-2*i], w_1, w_2, a_i, delay[127-2*i]);
delay[127-2*i] = c_r;
w_1 = window[2*i+1];
w_2 = window[254-2*i];
data[2*i+1] = delay[2*i+1] * w_2 - b_i * w_1 + bias;
data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias;
BUTTERFLY_B (data[254-2*i], data[2*i+1], w_2, w_1, b_i, delay[2*i+1]);
delay[2*i+1] = d_r;
w_1 = window[129+2*i];
w_2 = window[126-2*i];
data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias;
data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias;
BUTTERFLY_B (data[129+2*i], data[126-2*i], w_1, w_2, b_r, delay[126-2*i]);
delay[126-2*i] = d_i;
}
}
@ -358,66 +358,65 @@ void a52_imdct_init (uint32_t mm_accel)
{
int i, k;
double sum;
double local_imdct_window[256];
/* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
sum = 0;
for (i = 0; i < 256; i++) {
sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));
a52_imdct_window[i] = sum;
local_imdct_window[i] = sum;
}
sum++;
for (i = 0; i < 256; i++)
a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum);
a52_imdct_window[i] = SAMPLE (sqrt (local_imdct_window[i] / sum));
for (i = 0; i < 3; i++)
roots16[i] = cos ((M_PI / 8) * (i + 1));
roots16[i] = SAMPLE (cos ((M_PI / 8) * (i + 1)));
for (i = 0; i < 7; i++)
roots32[i] = cos ((M_PI / 16) * (i + 1));
roots32[i] = SAMPLE (cos ((M_PI / 16) * (i + 1)));
for (i = 0; i < 15; i++)
roots64[i] = cos ((M_PI / 32) * (i + 1));
roots64[i] = SAMPLE (cos ((M_PI / 32) * (i + 1)));
for (i = 0; i < 31; i++)
roots128[i] = cos ((M_PI / 64) * (i + 1));
roots128[i] = SAMPLE (cos ((M_PI / 64) * (i + 1)));
for (i = 0; i < 64; i++) {
k = fftorder[i] / 2 + 64;
pre1[i].real = cos ((M_PI / 256) * (k - 0.25));
pre1[i].imag = sin ((M_PI / 256) * (k - 0.25));
pre1[i].real = SAMPLE (cos ((M_PI / 256) * (k - 0.25)));
pre1[i].imag = SAMPLE (sin ((M_PI / 256) * (k - 0.25)));
}
for (i = 64; i < 128; i++) {
k = fftorder[i] / 2 + 64;
pre1[i].real = -cos ((M_PI / 256) * (k - 0.25));
pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25));
pre1[i].real = SAMPLE (-cos ((M_PI / 256) * (k - 0.25)));
pre1[i].imag = SAMPLE (-sin ((M_PI / 256) * (k - 0.25)));
}
for (i = 0; i < 64; i++) {
post1[i].real = cos ((M_PI / 256) * (i + 0.5));
post1[i].imag = sin ((M_PI / 256) * (i + 0.5));
post1[i].real = SAMPLE (cos ((M_PI / 256) * (i + 0.5)));
post1[i].imag = SAMPLE (sin ((M_PI / 256) * (i + 0.5)));
}
for (i = 0; i < 64; i++) {
k = fftorder[i] / 4;
pre2[i].real = cos ((M_PI / 128) * (k - 0.25));
pre2[i].imag = sin ((M_PI / 128) * (k - 0.25));
pre2[i].real = SAMPLE (cos ((M_PI / 128) * (k - 0.25)));
pre2[i].imag = SAMPLE (sin ((M_PI / 128) * (k - 0.25)));
}
for (i = 0; i < 32; i++) {
post2[i].real = cos ((M_PI / 128) * (i + 0.5));
post2[i].imag = sin ((M_PI / 128) * (i + 0.5));
post2[i].real = SAMPLE (cos ((M_PI / 128) * (i + 0.5)));
post2[i].imag = SAMPLE (sin ((M_PI / 128) * (i + 0.5)));
}
#ifdef LIBA52_DJBFFT
if (mm_accel & MM_ACCEL_DJBFFT) {
fprintf (stderr, "Using djbfft for IMDCT transform\n");
ifft128 = (void (*) (complex_t *)) fftc4_un128;
ifft64 = (void (*) (complex_t *)) fftc4_un64;
} else
#endif
{
fprintf (stderr, "No accelerated IMDCT transform found\n");
ifft128 = ifft128_c;
ifft64 = ifft64_c;
}

View File

@ -1,6 +1,6 @@
/*
* parse.c
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -21,12 +21,18 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
#include "bitstream.h"
#include "tables.h"
#ifdef HAVE_MEMALIGN
#if defined(HAVE_MEMALIGN) && !defined(__cplusplus)
/* some systems have memalign() but no declaration for it */
void * memalign (size_t align, size_t size);
#else
@ -35,13 +41,13 @@ void * memalign (size_t align, size_t size);
#endif
typedef struct {
sample_t q1[2];
sample_t q2[2];
sample_t q4;
quantizer_t q1[2];
quantizer_t q2[2];
quantizer_t q4;
int q1_ptr;
int q2_ptr;
int q4_ptr;
} quantizer_t;
} quantizer_set_t;
static uint8_t halfrate[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3};
@ -50,11 +56,11 @@ a52_state_t * a52_init (uint32_t mm_accel)
a52_state_t * state;
int i;
state = malloc (sizeof (a52_state_t));
state = (a52_state_t *) malloc (sizeof (a52_state_t));
if (state == NULL)
return NULL;
state->samples = memalign (16, 256 * 12 * sizeof (sample_t));
state->samples = (sample_t *) memalign (16, 256 * 12 * sizeof (sample_t));
if (state->samples == NULL) {
free (state);
return NULL;
@ -65,6 +71,8 @@ a52_state_t * a52_init (uint32_t mm_accel)
state->downmixed = 1;
state->lfsr_state = 1;
a52_imdct_init (mm_accel);
return state;
@ -121,10 +129,12 @@ int a52_syncinfo (uint8_t * buf, int * flags,
}
int a52_frame (a52_state_t * state, uint8_t * buf, int * flags,
sample_t * level, sample_t bias)
level_t * level, sample_t bias)
{
static sample_t clev[4] = {LEVEL_3DB, LEVEL_45DB, LEVEL_6DB, LEVEL_45DB};
static sample_t slev[4] = {LEVEL_3DB, LEVEL_6DB, 0, LEVEL_6DB};
static level_t clev[4] = { LEVEL (LEVEL_3DB), LEVEL (LEVEL_45DB),
LEVEL (LEVEL_6DB), LEVEL (LEVEL_45DB) };
static level_t slev[4] = { LEVEL (LEVEL_3DB), LEVEL (LEVEL_6DB),
0, LEVEL (LEVEL_6DB) };
int chaninfo;
int acmod;
@ -132,19 +142,21 @@ int a52_frame (a52_state_t * state, uint8_t * buf, int * flags,
state->halfrate = halfrate[buf[5] >> 3];
state->acmod = acmod = buf[6] >> 5;
a52_bitstream_set_ptr (buf + 6);
bitstream_get (3); /* skip acmod we already parsed */
a52_bitstream_set_ptr (state, buf + 6);
bitstream_get (state, 3); /* skip acmod we already parsed */
if ((acmod == 2) && (bitstream_get (2) == 2)) /* dsurmod */
if ((acmod == 2) && (bitstream_get (state, 2) == 2)) /* dsurmod */
acmod = A52_DOLBY;
state->clev = state->slev = 0;
if ((acmod & 1) && (acmod != 1))
state->clev = clev[bitstream_get (2)]; /* cmixlev */
state->clev = clev[bitstream_get (state, 2)]; /* cmixlev */
if (acmod & 4)
state->slev = slev[bitstream_get (2)]; /* surmixlev */
state->slev = slev[bitstream_get (state, 2)]; /* surmixlev */
state->lfeon = bitstream_get (1);
state->lfeon = bitstream_get (state, 1);
state->output = a52_downmix_init (acmod, *flags, level,
state->clev, state->slev);
@ -154,7 +166,7 @@ int a52_frame (a52_state_t * state, uint8_t * buf, int * flags,
state->output |= A52_LFE;
*flags = state->output;
/* the 2* compensates for differences in imdct */
state->dynrng = state->level = 2 * *level;
state->dynrng = state->level = MUL_C (*level, 2);
state->bias = bias;
state->dynrnge = 1;
state->dynrngcall = NULL;
@ -164,28 +176,28 @@ int a52_frame (a52_state_t * state, uint8_t * buf, int * flags,
chaninfo = !acmod;
do {
bitstream_get (5); /* dialnorm */
if (bitstream_get (1)) /* compre */
bitstream_get (8); /* compr */
if (bitstream_get (1)) /* langcode */
bitstream_get (8); /* langcod */
if (bitstream_get (1)) /* audprodie */
bitstream_get (7); /* mixlevel + roomtyp */
bitstream_get (state, 5); /* dialnorm */
if (bitstream_get (state, 1)) /* compre */
bitstream_get (state, 8); /* compr */
if (bitstream_get (state, 1)) /* langcode */
bitstream_get (state, 8); /* langcod */
if (bitstream_get (state, 1)) /* audprodie */
bitstream_get (state, 7); /* mixlevel + roomtyp */
} while (chaninfo--);
bitstream_get (2); /* copyrightb + origbs */
bitstream_get (state, 2); /* copyrightb + origbs */
if (bitstream_get (1)) /* timecod1e */
bitstream_get (14); /* timecod1 */
if (bitstream_get (1)) /* timecod2e */
bitstream_get (14); /* timecod2 */
if (bitstream_get (state, 1)) /* timecod1e */
bitstream_get (state, 14); /* timecod1 */
if (bitstream_get (state, 1)) /* timecod2e */
bitstream_get (state, 14); /* timecod2 */
if (bitstream_get (1)) { /* addbsie */
if (bitstream_get (state, 1)) { /* addbsie */
int addbsil;
addbsil = bitstream_get (6);
addbsil = bitstream_get (state, 6);
do {
bitstream_get (8); /* addbsi */
bitstream_get (state, 8); /* addbsi */
} while (addbsil--);
}
@ -193,7 +205,7 @@ int a52_frame (a52_state_t * state, uint8_t * buf, int * flags,
}
void a52_dynrng (a52_state_t * state,
sample_t (* call) (sample_t, void *), void * data)
level_t (* call) (level_t, void *), void * data)
{
state->dynrnge = 0;
if (call) {
@ -203,13 +215,13 @@ void a52_dynrng (a52_state_t * state,
}
}
static int parse_exponents (int expstr, int ngrps, uint8_t exponent,
uint8_t * dest)
static int parse_exponents (a52_state_t * state, int expstr, int ngrps,
uint8_t exponent, uint8_t * dest)
{
int exps;
while (ngrps--) {
exps = bitstream_get (7);
exps = bitstream_get (state, 7);
exponent += exp_1[exps];
if (exponent > 24)
@ -257,18 +269,18 @@ static int parse_exponents (int expstr, int ngrps, uint8_t exponent,
return 0;
}
static int parse_deltba (int8_t * deltba)
static int parse_deltba (a52_state_t * state, int8_t * deltba)
{
int deltnseg, deltlen, delta, j;
memset (deltba, 0, 50);
deltnseg = bitstream_get (3);
deltnseg = bitstream_get (state, 3);
j = 0;
do {
j += bitstream_get (5);
deltlen = bitstream_get (4);
delta = bitstream_get (3);
j += bitstream_get (state, 5);
deltlen = bitstream_get (state, 4);
delta = bitstream_get (state, 3);
delta -= (delta >= 4) ? 3 : 4;
if (!deltlen)
continue;
@ -295,29 +307,46 @@ static inline int zero_snr_offsets (int nfchans, a52_state_t * state)
return 1;
}
static inline int16_t dither_gen (void)
static inline int16_t dither_gen (a52_state_t * state)
{
static uint16_t lfsr_state = 1;
int16_t state;
int16_t nstate;
state = dither_lut[lfsr_state >> 8] ^ (lfsr_state << 8);
nstate = dither_lut[state->lfsr_state >> 8] ^ (state->lfsr_state << 8);
lfsr_state = (uint16_t) state;
state->lfsr_state = (uint16_t) nstate;
return state;
return (3 * nstate) >> 2;
}
static void coeff_get (sample_t * coeff, expbap_t * expbap,
quantizer_t * quantizer, sample_t level,
int dither, int end)
#ifndef LIBA52_FIXED
#define COEFF(c,t,l,s,e) (c) = (t) * (s)[e]
#else
#define COEFF(c,_t,_l,s,e) do { \
quantizer_t t = (_t); \
level_t l = (_l); \
int shift = e - 5; \
sample_t tmp = t * (l >> 16) + ((t * (l & 0xffff)) >> 16); \
if (shift >= 0) \
(c) = tmp >> shift; \
else \
(c) = tmp << -shift; \
} while (0)
#endif
static void coeff_get (a52_state_t * state, sample_t * coeff,
expbap_t * expbap, quantizer_set_t * quant,
level_t level, int dither, int end)
{
int i;
uint8_t * exp;
int8_t * bap;
#ifndef LIBA52_FIXED
sample_t factor[25];
for (i = 0; i <= 24; i++)
factor[i] = scale_factor[i] * level;
#endif
exp = expbap->exp;
bap = expbap->bap;
@ -329,7 +358,7 @@ static void coeff_get (sample_t * coeff, expbap_t * expbap,
switch (bapi) {
case 0:
if (dither) {
coeff[i] = dither_gen() * LEVEL_3DB * factor[exp[i]];
COEFF (coeff[i], dither_gen (state), level, factor, exp[i]);
continue;
} else {
coeff[i] = 0;
@ -337,76 +366,80 @@ static void coeff_get (sample_t * coeff, expbap_t * expbap,
}
case -1:
if (quantizer->q1_ptr >= 0) {
coeff[i] = quantizer->q1[quantizer->q1_ptr--] * factor[exp[i]];
if (quant->q1_ptr >= 0) {
COEFF (coeff[i], quant->q1[quant->q1_ptr--], level,
factor, exp[i]);
continue;
} else {
int code;
code = bitstream_get (5);
code = bitstream_get (state, 5);
quantizer->q1_ptr = 1;
quantizer->q1[0] = q_1_2[code];
quantizer->q1[1] = q_1_1[code];
coeff[i] = q_1_0[code] * factor[exp[i]];
quant->q1_ptr = 1;
quant->q1[0] = q_1_2[code];
quant->q1[1] = q_1_1[code];
COEFF (coeff[i], q_1_0[code], level, factor, exp[i]);
continue;
}
case -2:
if (quantizer->q2_ptr >= 0) {
coeff[i] = quantizer->q2[quantizer->q2_ptr--] * factor[exp[i]];
if (quant->q2_ptr >= 0) {
COEFF (coeff[i], quant->q2[quant->q2_ptr--], level,
factor, exp[i]);
continue;
} else {
int code;
code = bitstream_get (7);
code = bitstream_get (state, 7);
quantizer->q2_ptr = 1;
quantizer->q2[0] = q_2_2[code];
quantizer->q2[1] = q_2_1[code];
coeff[i] = q_2_0[code] * factor[exp[i]];
quant->q2_ptr = 1;
quant->q2[0] = q_2_2[code];
quant->q2[1] = q_2_1[code];
COEFF (coeff[i], q_2_0[code], level, factor, exp[i]);
continue;
}
case 3:
coeff[i] = q_3[bitstream_get (3)] * factor[exp[i]];
COEFF (coeff[i], q_3[bitstream_get (state, 3)], level,
factor, exp[i]);
continue;
case -3:
if (quantizer->q4_ptr == 0) {
quantizer->q4_ptr = -1;
coeff[i] = quantizer->q4 * factor[exp[i]];
if (quant->q4_ptr == 0) {
quant->q4_ptr = -1;
COEFF (coeff[i], quant->q4, level, factor, exp[i]);
continue;
} else {
int code;
code = bitstream_get (7);
code = bitstream_get (state, 7);
quantizer->q4_ptr = 0;
quantizer->q4 = q_4_1[code];
coeff[i] = q_4_0[code] * factor[exp[i]];
quant->q4_ptr = 0;
quant->q4 = q_4_1[code];
COEFF (coeff[i], q_4_0[code], level, factor, exp[i]);
continue;
}
case 4:
coeff[i] = q_5[bitstream_get (4)] * factor[exp[i]];
COEFF (coeff[i], q_5[bitstream_get (state, 4)], level,
factor, exp[i]);
continue;
default:
coeff[i] = ((bitstream_get_2 (bapi) << (16 - bapi)) *
factor[exp[i]]);
COEFF (coeff[i], bitstream_get_2 (state, bapi) << (16 - bapi),
level, factor, exp[i]);
}
}
}
static void coeff_get_coupling (a52_state_t * state, int nfchans,
sample_t * coeff, sample_t (* samples)[256],
quantizer_t * quantizer, uint8_t dithflag[5])
level_t * coeff, sample_t (* samples)[256],
quantizer_set_t * quant, uint8_t dithflag[5])
{
int cplbndstrc, bnd, i, i_end, ch;
uint8_t * exp;
int8_t * bap;
sample_t cplco[5];
level_t cplco[5];
exp = state->cpl_expbap.exp;
bap = state->cpl_expbap.bap;
@ -421,22 +454,26 @@ static void coeff_get_coupling (a52_state_t * state, int nfchans,
}
cplbndstrc >>= 1;
for (ch = 0; ch < nfchans; ch++)
cplco[ch] = state->cplco[ch][bnd] * coeff[ch];
cplco[ch] = MUL_L (state->cplco[ch][bnd], coeff[ch]);
bnd++;
while (i < i_end) {
sample_t cplcoeff;
quantizer_t cplcoeff;
int bapi;
bapi = bap[i];
switch (bapi) {
case 0:
cplcoeff = LEVEL_3DB * scale_factor[exp[i]];
for (ch = 0; ch < nfchans; ch++)
if ((state->chincpl >> ch) & 1) {
if (dithflag[ch])
samples[ch][i] = (cplcoeff * cplco[ch] *
dither_gen ());
#ifndef LIBA52_FIXED
samples[ch][i] = (scale_factor[exp[i]] *
cplco[ch] * dither_gen (state));
#else
COEFF (samples[ch][i], dither_gen (state),
cplco[ch], scale_factor, exp[i]);
#endif
else
samples[ch][i] = 0;
}
@ -444,69 +481,75 @@ static void coeff_get_coupling (a52_state_t * state, int nfchans,
continue;
case -1:
if (quantizer->q1_ptr >= 0) {
cplcoeff = quantizer->q1[quantizer->q1_ptr--];
if (quant->q1_ptr >= 0) {
cplcoeff = quant->q1[quant->q1_ptr--];
break;
} else {
int code;
code = bitstream_get (5);
code = bitstream_get (state, 5);
quantizer->q1_ptr = 1;
quantizer->q1[0] = q_1_2[code];
quantizer->q1[1] = q_1_1[code];
quant->q1_ptr = 1;
quant->q1[0] = q_1_2[code];
quant->q1[1] = q_1_1[code];
cplcoeff = q_1_0[code];
break;
}
case -2:
if (quantizer->q2_ptr >= 0) {
cplcoeff = quantizer->q2[quantizer->q2_ptr--];
if (quant->q2_ptr >= 0) {
cplcoeff = quant->q2[quant->q2_ptr--];
break;
} else {
int code;
code = bitstream_get (7);
code = bitstream_get (state, 7);
quantizer->q2_ptr = 1;
quantizer->q2[0] = q_2_2[code];
quantizer->q2[1] = q_2_1[code];
quant->q2_ptr = 1;
quant->q2[0] = q_2_2[code];
quant->q2[1] = q_2_1[code];
cplcoeff = q_2_0[code];
break;
}
case 3:
cplcoeff = q_3[bitstream_get (3)];
cplcoeff = q_3[bitstream_get (state, 3)];
break;
case -3:
if (quantizer->q4_ptr == 0) {
quantizer->q4_ptr = -1;
cplcoeff = quantizer->q4;
if (quant->q4_ptr == 0) {
quant->q4_ptr = -1;
cplcoeff = quant->q4;
break;
} else {
int code;
code = bitstream_get (7);
code = bitstream_get (state, 7);
quantizer->q4_ptr = 0;
quantizer->q4 = q_4_1[code];
quant->q4_ptr = 0;
quant->q4 = q_4_1[code];
cplcoeff = q_4_0[code];
break;
}
case 4:
cplcoeff = q_5[bitstream_get (4)];
cplcoeff = q_5[bitstream_get (state, 4)];
break;
default:
cplcoeff = bitstream_get_2 (bapi) << (16 - bapi);
cplcoeff = bitstream_get_2 (state, bapi) << (16 - bapi);
}
#ifndef LIBA52_FIXED
cplcoeff *= scale_factor[exp[i]];
#endif
for (ch = 0; ch < nfchans; ch++)
if ((state->chincpl >> ch) & 1)
if ((state->chincpl >> ch) & 1)
#ifndef LIBA52_FIXED
samples[ch][i] = cplcoeff * cplco[ch];
#else
COEFF (samples[ch][i], cplcoeff, cplco[ch],
scale_factor, exp[i]);
#endif
i++;
}
}
@ -519,40 +562,44 @@ int a52_block (a52_state_t * state)
int i, nfchans, chaninfo;
uint8_t cplexpstr, chexpstr[5], lfeexpstr, do_bit_alloc, done_cpl;
uint8_t blksw[5], dithflag[5];
sample_t coeff[5];
level_t coeff[5];
int chanbias;
quantizer_t quantizer;
quantizer_set_t quant;
sample_t * samples;
nfchans = nfchans_tbl[state->acmod];
for (i = 0; i < nfchans; i++)
blksw[i] = bitstream_get (1);
blksw[i] = bitstream_get (state, 1);
for (i = 0; i < nfchans; i++)
dithflag[i] = bitstream_get (1);
dithflag[i] = bitstream_get (state, 1);
chaninfo = !state->acmod;
do {
if (bitstream_get (1)) { /* dynrnge */
if (bitstream_get (state, 1)) { /* dynrnge */
int dynrng;
dynrng = bitstream_get_2 (8);
dynrng = bitstream_get_2 (state, 8);
if (state->dynrnge) {
sample_t range;
level_t range;
#if !defined(LIBA52_FIXED)
range = ((((dynrng & 0x1f) | 0x20) << 13) *
scale_factor[3 - (dynrng >> 5)]);
#else
range = ((dynrng & 0x1f) | 0x20) << (21 + (dynrng >> 5));
#endif
if (state->dynrngcall)
range = state->dynrngcall (range, state->dynrngdata);
state->dynrng = state->level * range;
state->dynrng = MUL_L (state->level, range);
}
}
} while (chaninfo--);
if (bitstream_get (1)) { /* cplstre */
if (bitstream_get (state, 1)) { /* cplstre */
state->chincpl = 0;
if (bitstream_get (1)) { /* cplinu */
if (bitstream_get (state, 1)) { /* cplinu */
static uint8_t bndtab[16] = {31, 35, 37, 39, 41, 42, 43, 44,
45, 45, 46, 46, 47, 47, 48, 48};
int cplbegf;
@ -560,15 +607,15 @@ int a52_block (a52_state_t * state)
int ncplsubnd;
for (i = 0; i < nfchans; i++)
state->chincpl |= bitstream_get (1) << i;
state->chincpl |= bitstream_get (state, 1) << i;
switch (state->acmod) {
case 0: case 1:
return 1;
case 2:
state->phsflginu = bitstream_get (1);
state->phsflginu = bitstream_get (state, 1);
}
cplbegf = bitstream_get (4);
cplendf = bitstream_get (4);
cplbegf = bitstream_get (state, 4);
cplendf = bitstream_get (state, 4);
if (cplendf + 3 - cplbegf < 0)
return 1;
@ -579,7 +626,7 @@ int a52_block (a52_state_t * state)
state->cplbndstrc = 0;
for (i = 0; i < ncplsubnd - 1; i++)
if (bitstream_get (1)) {
if (bitstream_get (state, 1)) {
state->cplbndstrc |= 1 << i;
state->ncplbnd--;
}
@ -592,47 +639,52 @@ int a52_block (a52_state_t * state)
cplcoe = 0;
for (i = 0; i < nfchans; i++)
if ((state->chincpl) >> i & 1)
if (bitstream_get (1)) { /* cplcoe */
if (bitstream_get (state, 1)) { /* cplcoe */
int mstrcplco, cplcoexp, cplcomant;
cplcoe = 1;
mstrcplco = 3 * bitstream_get (2);
mstrcplco = 3 * bitstream_get (state, 2);
for (j = 0; j < state->ncplbnd; j++) {
cplcoexp = bitstream_get (4);
cplcomant = bitstream_get (4);
cplcoexp = bitstream_get (state, 4);
cplcomant = bitstream_get (state, 4);
if (cplcoexp == 15)
cplcomant <<= 14;
else
cplcomant = (cplcomant | 0x10) << 13;
#ifndef LIBA52_FIXED
state->cplco[i][j] =
cplcomant * scale_factor[cplcoexp + mstrcplco];
#else
state->cplco[i][j] = (cplcomant << 11) >> (cplcoexp + mstrcplco);
#endif
}
}
if ((state->acmod == 2) && state->phsflginu && cplcoe)
for (j = 0; j < state->ncplbnd; j++)
if (bitstream_get (1)) /* phsflg */
if (bitstream_get (state, 1)) /* phsflg */
state->cplco[1][j] = -state->cplco[1][j];
}
if ((state->acmod == 2) && (bitstream_get (1))) { /* rematstr */
if ((state->acmod == 2) && (bitstream_get (state, 1))) { /* rematstr */
int end;
state->rematflg = 0;
end = (state->chincpl) ? state->cplstrtmant : 253; /* cplinu */
i = 0;
do
state->rematflg |= bitstream_get (1) << i;
state->rematflg |= bitstream_get (state, 1) << i;
while (rematrix_band[i++] < end);
}
cplexpstr = EXP_REUSE;
lfeexpstr = EXP_REUSE;
if (state->chincpl) /* cplinu */
cplexpstr = bitstream_get (2);
cplexpstr = bitstream_get (state, 2);
for (i = 0; i < nfchans; i++)
chexpstr[i] = bitstream_get (2);
chexpstr[i] = bitstream_get (state, 2);
if (state->lfeon)
lfeexpstr = bitstream_get (1);
lfeexpstr = bitstream_get (state, 1);
for (i = 0; i < nfchans; i++)
if (chexpstr[i] != EXP_REUSE) {
@ -641,7 +693,7 @@ int a52_block (a52_state_t * state)
else {
int chbwcod;
chbwcod = bitstream_get (6);
chbwcod = bitstream_get (state, 6);
if (chbwcod > 60)
return 1;
state->endmant[i] = chbwcod * 3 + 73;
@ -656,8 +708,8 @@ int a52_block (a52_state_t * state)
do_bit_alloc = 64;
ncplgrps = ((state->cplendmant - state->cplstrtmant) /
(3 << (cplexpstr - 1)));
cplabsexp = bitstream_get (4) << 1;
if (parse_exponents (cplexpstr, ncplgrps, cplabsexp,
cplabsexp = bitstream_get (state, 4) << 1;
if (parse_exponents (state, cplexpstr, ncplgrps, cplabsexp,
state->cpl_expbap.exp + state->cplstrtmant))
return 1;
}
@ -668,54 +720,54 @@ int a52_block (a52_state_t * state)
do_bit_alloc |= 1 << i;
grp_size = 3 << (chexpstr[i] - 1);
nchgrps = (state->endmant[i] + grp_size - 4) / grp_size;
state->fbw_expbap[i].exp[0] = bitstream_get (4);
if (parse_exponents (chexpstr[i], nchgrps,
state->fbw_expbap[i].exp[0] = bitstream_get (state, 4);
if (parse_exponents (state, chexpstr[i], nchgrps,
state->fbw_expbap[i].exp[0],
state->fbw_expbap[i].exp + 1))
return 1;
bitstream_get (2); /* gainrng */
bitstream_get (state, 2); /* gainrng */
}
if (lfeexpstr != EXP_REUSE) {
do_bit_alloc |= 32;
state->lfe_expbap.exp[0] = bitstream_get (4);
if (parse_exponents (lfeexpstr, 2, state->lfe_expbap.exp[0],
state->lfe_expbap.exp[0] = bitstream_get (state, 4);
if (parse_exponents (state, lfeexpstr, 2, state->lfe_expbap.exp[0],
state->lfe_expbap.exp + 1))
return 1;
}
if (bitstream_get (1)) { /* baie */
do_bit_alloc = -1;
state->bai = bitstream_get (11);
if (bitstream_get (state, 1)) { /* baie */
do_bit_alloc = 127;
state->bai = bitstream_get (state, 11);
}
if (bitstream_get (1)) { /* snroffste */
do_bit_alloc = -1;
state->csnroffst = bitstream_get (6);
if (bitstream_get (state, 1)) { /* snroffste */
do_bit_alloc = 127;
state->csnroffst = bitstream_get (state, 6);
if (state->chincpl) /* cplinu */
state->cplba.bai = bitstream_get (7);
state->cplba.bai = bitstream_get (state, 7);
for (i = 0; i < nfchans; i++)
state->ba[i].bai = bitstream_get (7);
state->ba[i].bai = bitstream_get (state, 7);
if (state->lfeon)
state->lfeba.bai = bitstream_get (7);
state->lfeba.bai = bitstream_get (state, 7);
}
if ((state->chincpl) && (bitstream_get (1))) { /* cplinu, cplleake */
if ((state->chincpl) && (bitstream_get (state, 1))) { /* cplleake */
do_bit_alloc |= 64;
state->cplfleak = 9 - bitstream_get (3);
state->cplsleak = 9 - bitstream_get (3);
state->cplfleak = 9 - bitstream_get (state, 3);
state->cplsleak = 9 - bitstream_get (state, 3);
}
if (bitstream_get (1)) { /* deltbaie */
do_bit_alloc = -1;
if (bitstream_get (state, 1)) { /* deltbaie */
do_bit_alloc = 127;
if (state->chincpl) /* cplinu */
state->cplba.deltbae = bitstream_get (2);
state->cplba.deltbae = bitstream_get (state, 2);
for (i = 0; i < nfchans; i++)
state->ba[i].deltbae = bitstream_get (2);
state->ba[i].deltbae = bitstream_get (state, 2);
if (state->chincpl && /* cplinu */
(state->cplba.deltbae == DELTA_BIT_NEW) &&
parse_deltba (state->cplba.deltba))
parse_deltba (state, state->cplba.deltba))
return 1;
for (i = 0; i < nfchans; i++)
if ((state->ba[i].deltbae == DELTA_BIT_NEW) &&
parse_deltba (state->ba[i].deltba))
parse_deltba (state, state->ba[i].deltba))
return 1;
}
@ -745,10 +797,10 @@ int a52_block (a52_state_t * state)
}
}
if (bitstream_get (1)) { /* skiple */
i = bitstream_get (9); /* skipl */
if (bitstream_get (state, 1)) { /* skiple */
i = bitstream_get (state, 9); /* skipl */
while (i--)
bitstream_get (8);
bitstream_get (state, 8);
}
samples = state->samples;
@ -758,20 +810,20 @@ int a52_block (a52_state_t * state)
chanbias = a52_downmix_coeff (coeff, state->acmod, state->output,
state->dynrng, state->clev, state->slev);
quantizer.q1_ptr = quantizer.q2_ptr = quantizer.q4_ptr = -1;
quant.q1_ptr = quant.q2_ptr = quant.q4_ptr = -1;
done_cpl = 0;
for (i = 0; i < nfchans; i++) {
int j;
coeff_get (samples + 256 * i, state->fbw_expbap +i, &quantizer,
coeff_get (state, samples + 256 * i, state->fbw_expbap +i, &quant,
coeff[i], dithflag[i], state->endmant[i]);
if ((state->chincpl >> i) & 1) {
if (!done_cpl) {
done_cpl = 1;
coeff_get_coupling (state, nfchans, coeff,
(sample_t (*)[256])samples, &quantizer,
(sample_t (*)[256])samples, &quant,
dithflag);
}
j = state->cplendmant;
@ -814,14 +866,14 @@ int a52_block (a52_state_t * state)
if (state->lfeon) {
if (state->output & A52_LFE) {
coeff_get (samples - 256, &state->lfe_expbap, &quantizer,
coeff_get (state, samples - 256, &state->lfe_expbap, &quant,
state->dynrng, 0, 7);
for (i = 7; i < 256; i++)
(samples-256)[i] = 0;
a52_imdct_512 (samples - 256, samples + 1536 - 256, state->bias);
} else {
/* just skip the LFE coefficients */
coeff_get (samples + 1280, &state->lfe_expbap, &quantizer,
coeff_get (state, samples + 1280, &state->lfe_expbap, &quant,
0, 0, 7);
}
}

View File

@ -1,6 +1,6 @@
/*
* tables.h
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
@ -46,42 +46,44 @@ static const int8_t exp_3[128] = {
25,25,25
};
#define Q0 ((-2 << 15) / 3.0)
#define Q1 (0)
#define Q2 ((2 << 15) / 3.0)
#define Q(x) ROUND (32768.0 * x)
static const sample_t q_1_0[32] = {
Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,
Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,
Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,
0,0,0,0,0
#define Q0 Q (-2/3)
#define Q1 Q (0)
#define Q2 Q (2/3)
static const quantizer_t q_1_0[32] = {
Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0,
Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1,
Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2,
0, 0, 0, 0, 0
};
static const sample_t q_1_1[32] = {
Q0,Q0,Q0,Q1,Q1,Q1,Q2,Q2,Q2,
Q0,Q0,Q0,Q1,Q1,Q1,Q2,Q2,Q2,
Q0,Q0,Q0,Q1,Q1,Q1,Q2,Q2,Q2,
0,0,0,0,0
static const quantizer_t q_1_1[32] = {
Q0, Q0, Q0, Q1, Q1, Q1, Q2, Q2, Q2,
Q0, Q0, Q0, Q1, Q1, Q1, Q2, Q2, Q2,
Q0, Q0, Q0, Q1, Q1, Q1, Q2, Q2, Q2,
0, 0, 0, 0, 0
};
static const sample_t q_1_2[32] = {
Q0,Q1,Q2,Q0,Q1,Q2,Q0,Q1,Q2,
Q0,Q1,Q2,Q0,Q1,Q2,Q0,Q1,Q2,
Q0,Q1,Q2,Q0,Q1,Q2,Q0,Q1,Q2,
0,0,0,0,0
static const quantizer_t q_1_2[32] = {
Q0, Q1, Q2, Q0, Q1, Q2, Q0, Q1, Q2,
Q0, Q1, Q2, Q0, Q1, Q2, Q0, Q1, Q2,
Q0, Q1, Q2, Q0, Q1, Q2, Q0, Q1, Q2,
0, 0, 0, 0, 0
};
#undef Q0
#undef Q1
#undef Q2
#define Q0 ((-4 << 15) / 5.0)
#define Q1 ((-2 << 15) / 5.0)
#define Q2 (0)
#define Q3 ((2 << 15) / 5.0)
#define Q4 ((4 << 15) / 5.0)
#define Q0 Q (-4/5)
#define Q1 Q (-2/5)
#define Q2 Q (0)
#define Q3 Q (2/5)
#define Q4 Q (4/5)
static const sample_t q_2_0[128] = {
static const quantizer_t q_2_0[128] = {
Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,
Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,
Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,Q2,
@ -90,7 +92,7 @@ static const sample_t q_2_0[128] = {
0,0,0
};
static const sample_t q_2_1[128] = {
static const quantizer_t q_2_1[128] = {
Q0,Q0,Q0,Q0,Q0,Q1,Q1,Q1,Q1,Q1,Q2,Q2,Q2,Q2,Q2,Q3,Q3,Q3,Q3,Q3,Q4,Q4,Q4,Q4,Q4,
Q0,Q0,Q0,Q0,Q0,Q1,Q1,Q1,Q1,Q1,Q2,Q2,Q2,Q2,Q2,Q3,Q3,Q3,Q3,Q3,Q4,Q4,Q4,Q4,Q4,
Q0,Q0,Q0,Q0,Q0,Q1,Q1,Q1,Q1,Q1,Q2,Q2,Q2,Q2,Q2,Q3,Q3,Q3,Q3,Q3,Q4,Q4,Q4,Q4,Q4,
@ -99,7 +101,7 @@ static const sample_t q_2_1[128] = {
0,0,0
};
static const sample_t q_2_2[128] = {
static const quantizer_t q_2_2[128] = {
Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,
Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,
Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,
@ -114,24 +116,23 @@ static const sample_t q_2_2[128] = {
#undef Q3
#undef Q4
static const sample_t q_3[8] = {
(-6 << 15)/7.0, (-4 << 15)/7.0, (-2 << 15)/7.0, 0,
( 2 << 15)/7.0, ( 4 << 15)/7.0, ( 6 << 15)/7.0, 0
static const quantizer_t q_3[8] = {
Q (-6/7), Q (-4/7), Q (-2/7), Q (0), Q (2/7), Q (4/7), Q (6/7), 0
};
#define Q0 ((-10 << 15) / 11.0)
#define Q1 ((-8 << 15) / 11.0)
#define Q2 ((-6 << 15) / 11.0)
#define Q3 ((-4 << 15) / 11.0)
#define Q4 ((-2 << 15) / 11.0)
#define Q5 (0)
#define Q6 ((2 << 15) / 11.0)
#define Q7 ((4 << 15) / 11.0)
#define Q8 ((6 << 15) / 11.0)
#define Q9 ((8 << 15) / 11.0)
#define QA ((10 << 15) / 11.0)
#define Q0 Q (-10/11)
#define Q1 Q (-8/11)
#define Q2 Q (-6/11)
#define Q3 Q (-4/11)
#define Q4 Q (-2/11)
#define Q5 Q (0)
#define Q6 Q (2/11)
#define Q7 Q (4/11)
#define Q8 Q (6/11)
#define Q9 Q (8/11)
#define QA Q (10/11)
static const sample_t q_4_0[128] = {
static const quantizer_t q_4_0[128] = {
Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0,
Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1,
Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2,
@ -146,7 +147,7 @@ static const sample_t q_4_0[128] = {
0, 0, 0, 0, 0, 0, 0
};
static const sample_t q_4_1[128] = {
static const quantizer_t q_4_1[128] = {
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA,
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA,
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA,
@ -173,15 +174,13 @@ static const sample_t q_4_1[128] = {
#undef Q9
#undef QA
static const sample_t q_5[16] = {
(-14 << 15)/15.0,(-12 << 15)/15.0,(-10 << 15)/15.0,
( -8 << 15)/15.0,( -6 << 15)/15.0,( -4 << 15)/15.0,
( -2 << 15)/15.0, 0 ,( 2 << 15)/15.0,
( 4 << 15)/15.0,( 6 << 15)/15.0,( 8 << 15)/15.0,
( 10 << 15)/15.0,( 12 << 15)/15.0,( 14 << 15)/15.0,
0
static const quantizer_t q_5[16] = {
Q (-14/15), Q (-12/15), Q (-10/15), Q (-8/15), Q (-6/15),
Q (-4/15), Q (-2/15), Q (0), Q (2/15), Q (4/15),
Q (6/15), Q (8/15), Q (10/15), Q (12/15), Q (14/15), 0
};
#ifndef LIBA52_FIXED
static const sample_t scale_factor[25] = {
0.000030517578125,
0.0000152587890625,
@ -209,6 +208,7 @@ static const sample_t scale_factor[25] = {
0.00000000000363797880709171295166015625,
0.000000000001818989403545856475830078125
};
#endif
static const uint16_t dither_lut[256] = {
0x0000, 0xa011, 0xe033, 0x4022, 0x6077, 0xc066, 0x8044, 0x2055,