more math unary operations will be added here
It can be tested with the model file generated with below python scripy:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.subtract(x, 0.5)
x2 = tf.abs(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many
nodes (within a scope) in the graph, it just acts like other layers.
tf.nn.conv2d only creates one node in the graph, and no internal
nodes such as 'kernel' are created.
The format of native model file is also changed, a flag named
has_bias is added, so change the version number.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
The reason to add this layer is that it is used by srcnn in vf_sr.
This layer is currently ignored in native mode. After this patch,
we can add multiple outputs support for native mode.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
currently, the layer number is at the beginning of the .model file,
so we have to scan twice in python script, the first scan to get the
layer number. Only one scan needed after put the layer number at the
end of .model file.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
conv2d with dilation > 1 generates tens of nodes in graph, it is not
easy to parse each node one by one, so we do special tricks to parse
the conv2d layer.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
since tf.pad is enabled, the conv2d(valid) changes back to its original behavior.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
For example, given TensorFlow model file espcn.pb,
to generate native model file espcn.model, just run:
python convert.py espcn.pb
In current implementation, the native model file is generated for
specific dnn network with hard-code python scripts maintained out of ffmpeg.
For example, srcnn network used by vf_sr is generated with
https://github.com/HighVoltageRocknRoll/sr/blob/master/generate_header_and_model.py#L85
In this patch, the script is designed as a general solution which
converts general TensorFlow model .pb file into .model file. The script
now has some tricky to be compatible with current implemention, will
be refined step by step.
The script is also added into ffmpeg source tree. It is expected there
will be many more patches and community needs the ownership of it.
Another technical direction is to do the conversion in c/c++ code within
ffmpeg source tree. While .pb file is organized with protocol buffers,
it is not easy to do such work with tiny c/c++ code, see more discussion
at http://ffmpeg.org/pipermail/ffmpeg-devel/2019-May/244496.html. So,
choose the python script.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>