third_party_ffmpeg/libavcodec/speedhq.c
Steinar H. Gunderson e3c14eaa54 speedhq: fix decoding artifacts
The quantization table is stored in the natural order, but when we
access it, we use an index that's in zigzag order, causing us to read
the wrong value. This causes artifacts, especially in areas with
horizontal or vertical edges. The artifacts look a lot like the
DCT ringing artifacts you'd expect to see from a low-bitrate file,
but when comparing to NewTek's own decoder, it's obvious they're not
supposed to be there.

Fix by simply storing the scaled quantization table in zigzag order.
Performance is unchanged.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2017-02-21 00:40:20 +01:00

688 lines
23 KiB
C

/*
* NewTek SpeedHQ codec
* Copyright 2017 Steinar H. Gunderson
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* NewTek SpeedHQ decoder.
*/
#define BITSTREAM_READER_LE
#include "libavutil/attributes.h"
#include "avcodec.h"
#include "get_bits.h"
#include "internal.h"
#include "libavutil/thread.h"
#include "mathops.h"
#include "mpeg12.h"
#include "mpeg12data.h"
#include "mpeg12vlc.h"
#define MAX_INDEX (64 - 1)
/*
* 5 bits makes for very small tables, with no more than two lookups needed
* for the longest (10-bit) codes.
*/
#define ALPHA_VLC_BITS 5
typedef struct SHQContext {
AVCodecContext *avctx;
BlockDSPContext bdsp;
IDCTDSPContext idsp;
ScanTable intra_scantable;
int quant_matrix[64];
enum { SHQ_SUBSAMPLING_420, SHQ_SUBSAMPLING_422, SHQ_SUBSAMPLING_444 }
subsampling;
enum { SHQ_NO_ALPHA, SHQ_RLE_ALPHA, SHQ_DCT_ALPHA } alpha_type;
} SHQContext;
/* AC codes: Very similar but not identical to MPEG-2. */
static uint16_t speedhq_vlc[123][2] = {
{0x02, 2}, {0x06, 3}, {0x07, 4}, {0x1c, 5},
{0x1d, 5}, {0x05, 6}, {0x04, 6}, {0x7b, 7},
{0x7c, 7}, {0x23, 8}, {0x22, 8}, {0xfa, 8},
{0xfb, 8}, {0xfe, 8}, {0xff, 8}, {0x1f,14},
{0x1e,14}, {0x1d,14}, {0x1c,14}, {0x1b,14},
{0x1a,14}, {0x19,14}, {0x18,14}, {0x17,14},
{0x16,14}, {0x15,14}, {0x14,14}, {0x13,14},
{0x12,14}, {0x11,14}, {0x10,14}, {0x18,15},
{0x17,15}, {0x16,15}, {0x15,15}, {0x14,15},
{0x13,15}, {0x12,15}, {0x11,15}, {0x10,15},
{0x02, 3}, {0x06, 5}, {0x79, 7}, {0x27, 8},
{0x20, 8}, {0x16,13}, {0x15,13}, {0x1f,15},
{0x1e,15}, {0x1d,15}, {0x1c,15}, {0x1b,15},
{0x1a,15}, {0x19,15}, {0x13,16}, {0x12,16},
{0x11,16}, {0x10,16}, {0x18,13}, {0x17,13},
{0x05, 5}, {0x07, 7}, {0xfc, 8}, {0x0c,10},
{0x14,13}, {0x18,12}, {0x14,12}, {0x13,12},
{0x10,12}, {0x1a,13}, {0x19,13}, {0x07, 5},
{0x26, 8}, {0x1c,12}, {0x13,13}, {0x1b,12},
{0x06, 6}, {0xfd, 8}, {0x12,12}, {0x1d,12},
{0x07, 6}, {0x04, 9}, {0x12,13}, {0x06, 7},
{0x1e,12}, {0x14,16}, {0x04, 7}, {0x15,12},
{0x05, 7}, {0x11,12}, {0x78, 7}, {0x11,13},
{0x7a, 7}, {0x10,13}, {0x21, 8}, {0x1a,16},
{0x25, 8}, {0x19,16}, {0x24, 8}, {0x18,16},
{0x05, 9}, {0x17,16}, {0x07, 9}, {0x16,16},
{0x0d,10}, {0x15,16}, {0x1f,12}, {0x1a,12},
{0x19,12}, {0x17,12}, {0x16,12}, {0x1f,13},
{0x1e,13}, {0x1d,13}, {0x1c,13}, {0x1b,13},
{0x1f,16}, {0x1e,16}, {0x1d,16}, {0x1c,16},
{0x1b,16},
{0x01,6}, /* escape */
{0x06,4}, /* EOB */
};
static const uint8_t speedhq_level[121] = {
1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40,
1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 1,
2, 3, 4, 5, 1, 2, 3, 4,
1, 2, 3, 1, 2, 3, 1, 2,
1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1,
};
static const uint8_t speedhq_run[121] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 6, 6, 6, 7, 7,
8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13, 14, 14, 15, 15,
16, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30,
31,
};
static RLTable ff_rl_speedhq = {
121,
121,
(const uint16_t (*)[])speedhq_vlc,
speedhq_run,
speedhq_level,
};
/* NOTE: The first element is always 16, unscaled. */
static const uint8_t unscaled_quant_matrix[64] = {
16, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83
};
static uint8_t ff_speedhq_static_rl_table_store[2][2*MAX_RUN + MAX_LEVEL + 3];
static VLC ff_dc_lum_vlc_le;
static VLC ff_dc_chroma_vlc_le;
static VLC ff_dc_alpha_run_vlc_le;
static VLC ff_dc_alpha_level_vlc_le;
static inline int decode_dc_le(GetBitContext *gb, int component)
{
int code, diff;
if (component == 0 || component == 3) {
code = get_vlc2(gb, ff_dc_lum_vlc_le.table, DC_VLC_BITS, 2);
} else {
code = get_vlc2(gb, ff_dc_chroma_vlc_le.table, DC_VLC_BITS, 2);
}
if (code < 0) {
av_log(NULL, AV_LOG_ERROR, "invalid dc code at\n");
return 0xffff;
}
if (!code) {
diff = 0;
} else {
diff = get_xbits_le(gb, code);
}
return diff;
}
static inline int decode_alpha_block(const SHQContext *s, GetBitContext *gb, uint8_t last_alpha[16], uint8_t *dest, int linesize)
{
uint8_t block[128];
int i = 0, x, y;
memset(block, 0, sizeof(block));
{
OPEN_READER(re, gb);
for ( ;; ) {
int run, level;
UPDATE_CACHE_LE(re, gb);
GET_VLC(run, re, gb, ff_dc_alpha_run_vlc_le.table, ALPHA_VLC_BITS, 2);
if (run < 0) break;
i += run;
if (i >= 128)
return AVERROR_INVALIDDATA;
UPDATE_CACHE_LE(re, gb);
GET_VLC(level, re, gb, ff_dc_alpha_level_vlc_le.table, ALPHA_VLC_BITS, 2);
block[i++] = level;
}
CLOSE_READER(re, gb);
}
for (y = 0; y < 8; y++) {
for (x = 0; x < 16; x++) {
last_alpha[x] -= block[y * 16 + x];
}
memcpy(dest, last_alpha, 16);
dest += linesize;
}
return 0;
}
static inline int decode_dct_block(const SHQContext *s, GetBitContext *gb, int last_dc[4], int component, uint8_t *dest, int linesize)
{
const int *quant_matrix = s->quant_matrix;
const uint8_t *scantable = s->intra_scantable.permutated;
LOCAL_ALIGNED_16(int16_t, block, [64]);
int dc_offset;
s->bdsp.clear_block(block);
dc_offset = decode_dc_le(gb, component);
last_dc[component] -= dc_offset; /* Note: Opposite of most codecs. */
block[scantable[0]] = last_dc[component]; /* quant_matrix[0] is always 16. */
/* Read AC coefficients. */
{
int i = 0;
OPEN_READER(re, gb);
for ( ;; ) {
int level, run;
UPDATE_CACHE_LE(re, gb);
GET_RL_VLC(level, run, re, gb, ff_rl_speedhq.rl_vlc[0],
TEX_VLC_BITS, 2, 0);
if (level == 127) {
break;
} else if (level) {
i += run;
if (i > MAX_INDEX)
return AVERROR_INVALIDDATA;
/* If next bit is 1, level = -level */
level = (level ^ SHOW_SBITS(re, gb, 1)) -
SHOW_SBITS(re, gb, 1);
LAST_SKIP_BITS(re, gb, 1);
} else {
/* Escape. */
#if MIN_CACHE_BITS < 6 + 6 + 12
#error MIN_CACHE_BITS is too small for the escape code, add UPDATE_CACHE
#endif
run = SHOW_UBITS(re, gb, 6) + 1;
SKIP_BITS(re, gb, 6);
level = SHOW_UBITS(re, gb, 12) - 2048;
LAST_SKIP_BITS(re, gb, 12);
i += run;
if (i > MAX_INDEX)
return AVERROR_INVALIDDATA;
}
block[scantable[i]] = (level * quant_matrix[i]) >> 4;
}
CLOSE_READER(re, gb);
}
s->idsp.idct_put(dest, linesize, block);
return 0;
}
static int decode_speedhq_field(const SHQContext *s, const uint8_t *buf, int buf_size, AVFrame *frame, int field_number, int start, int end, int line_stride)
{
int ret, slice_number, slice_offsets[5];
int linesize_y = frame->linesize[0] * line_stride;
int linesize_cb = frame->linesize[1] * line_stride;
int linesize_cr = frame->linesize[2] * line_stride;
int linesize_a;
if (s->alpha_type != SHQ_NO_ALPHA)
linesize_a = frame->linesize[3] * line_stride;
if (end < start || end - start < 3 || end > buf_size)
return AVERROR_INVALIDDATA;
slice_offsets[0] = start;
slice_offsets[4] = end;
for (slice_number = 1; slice_number < 4; slice_number++) {
uint32_t last_offset, slice_len;
last_offset = slice_offsets[slice_number - 1];
slice_len = AV_RL24(buf + last_offset);
slice_offsets[slice_number] = last_offset + slice_len;
if (slice_len < 3 || slice_offsets[slice_number] > end - 3)
return AVERROR_INVALIDDATA;
}
for (slice_number = 0; slice_number < 4; slice_number++) {
GetBitContext gb;
uint32_t slice_begin, slice_end;
int x, y;
slice_begin = slice_offsets[slice_number];
slice_end = slice_offsets[slice_number + 1];
if ((ret = init_get_bits8(&gb, buf + slice_begin + 3, slice_end - slice_begin - 3)) < 0)
return ret;
for (y = slice_number * 16 * line_stride; y < frame->height; y += line_stride * 64) {
uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a;
int last_dc[4] = { 1024, 1024, 1024, 1024 };
uint8_t last_alpha[16];
memset(last_alpha, 255, sizeof(last_alpha));
dest_y = frame->data[0] + frame->linesize[0] * (y + field_number);
if (s->subsampling == SHQ_SUBSAMPLING_420) {
dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number);
dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number);
} else {
dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number);
dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number);
}
if (s->alpha_type != SHQ_NO_ALPHA) {
dest_a = frame->data[3] + frame->linesize[3] * (y + field_number);
}
for (x = 0; x < frame->width; x += 16) {
/* Decode the four luma blocks. */
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0)
return ret;
/*
* Decode the first chroma block. For 4:2:0, this is the only one;
* for 4:2:2, it's the top block; for 4:4:4, it's the top-left block.
*/
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr, linesize_cr)) < 0)
return ret;
if (s->subsampling != SHQ_SUBSAMPLING_420) {
/* For 4:2:2, this is the bottom block; for 4:4:4, it's the bottom-left block. */
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0)
return ret;
if (s->subsampling == SHQ_SUBSAMPLING_444) {
/* Top-right and bottom-right blocks. */
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8, linesize_cr)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb + 8, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr + 8, linesize_cr)) < 0)
return ret;
dest_cb += 8;
dest_cr += 8;
}
}
dest_y += 16;
dest_cb += 8;
dest_cr += 8;
if (s->alpha_type == SHQ_RLE_ALPHA) {
/* Alpha coded using 16x8 RLE blocks. */
if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a, linesize_a)) < 0)
return ret;
if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0)
return ret;
dest_a += 16;
} else if (s->alpha_type == SHQ_DCT_ALPHA) {
/* Alpha encoded exactly like luma. */
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0)
return ret;
dest_a += 16;
}
}
}
}
return 0;
}
static void compute_quant_matrix(int *output, int qscale)
{
int i;
for (i = 0; i < 64; i++) output[i] = unscaled_quant_matrix[ff_zigzag_direct[i]] * qscale;
}
static int speedhq_decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
SHQContext * const s = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
AVFrame *frame = data;
uint8_t quality;
uint32_t second_field_offset;
int ret;
if (buf_size < 4)
return AVERROR_INVALIDDATA;
quality = buf[0];
if (quality >= 100) {
return AVERROR_INVALIDDATA;
}
compute_quant_matrix(s->quant_matrix, 100 - quality);
second_field_offset = AV_RL24(buf + 1);
if (second_field_offset >= buf_size - 3) {
return AVERROR_INVALIDDATA;
}
avctx->coded_width = FFALIGN(avctx->width, 16);
avctx->coded_height = FFALIGN(avctx->height, 16);
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
return ret;
}
frame->key_frame = 1;
if (second_field_offset == 4) {
/*
* Overlapping first and second fields is used to signal
* encoding only a single field (the second field then comes
* as a separate, later frame).
*/
frame->height >>= 1;
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, buf_size, 1)) < 0)
return ret;
} else {
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, second_field_offset, 2)) < 0)
return ret;
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 1, second_field_offset, buf_size, 2)) < 0)
return ret;
}
*got_frame = 1;
return buf_size;
}
/*
* Alpha VLC. Run and level are independently coded, and would be
* outside the default limits for MAX_RUN/MAX_LEVEL, so we don't
* bother with combining them into one table.
*/
static av_cold void compute_alpha_vlcs(void)
{
uint16_t run_code[134], level_code[266];
uint8_t run_bits[134], level_bits[266];
int16_t run_symbols[134], level_symbols[266];
int entry, i, sign;
/* Initialize VLC for alpha run. */
entry = 0;
/* 0 -> 0. */
run_code[entry] = 0;
run_bits[entry] = 1;
run_symbols[entry] = 0;
++entry;
/* 10xx -> xx plus 1. */
for (i = 0; i < 4; ++i) {
run_code[entry] = (i << 2) | 1;
run_bits[entry] = 4;
run_symbols[entry] = i + 1;
++entry;
}
/* 111xxxxxxx -> xxxxxxx. */
for (i = 0; i < 128; ++i) {
run_code[entry] = (i << 3) | 7;
run_bits[entry] = 10;
run_symbols[entry] = i;
++entry;
}
/* 110 -> EOB. */
run_code[entry] = 3;
run_bits[entry] = 3;
run_symbols[entry] = -1;
++entry;
av_assert0(entry == FF_ARRAY_ELEMS(run_code));
INIT_LE_VLC_SPARSE_STATIC(&ff_dc_alpha_run_vlc_le, ALPHA_VLC_BITS,
FF_ARRAY_ELEMS(run_code),
run_bits, 1, 1,
run_code, 2, 2,
run_symbols, 2, 2, 160);
/* Initialize VLC for alpha level. */
entry = 0;
for (sign = 0; sign <= 1; ++sign) {
/* 1s -> -1 or +1 (depending on sign bit). */
level_code[entry] = (sign << 1) | 1;
level_bits[entry] = 2;
level_symbols[entry] = sign ? -1 : 1;
++entry;
/* 01sxx -> xx plus 2 (2..5 or -2..-5, depending on sign bit). */
for (i = 0; i < 4; ++i) {
level_code[entry] = (i << 3) | (sign << 2) | 2;
level_bits[entry] = 5;
level_symbols[entry] = sign ? -(i + 2) : (i + 2);
++entry;
}
}
/*
* 00xxxxxxxx -> xxxxxxxx, in two's complement. There are many codes
* here that would better be encoded in other ways (e.g. 0 would be
* encoded by increasing run, and +/- 1 would be encoded with a
* shorter code), but it doesn't hurt to allow everything.
*/
for (i = 0; i < 256; ++i) {
level_code[entry] = i << 2;
level_bits[entry] = 10;
level_symbols[entry] = i;
++entry;
}
av_assert0(entry == FF_ARRAY_ELEMS(level_code));
INIT_LE_VLC_SPARSE_STATIC(&ff_dc_alpha_level_vlc_le, ALPHA_VLC_BITS,
FF_ARRAY_ELEMS(level_code),
level_bits, 1, 1,
level_code, 2, 2,
level_symbols, 2, 2, 288);
}
static uint32_t reverse(uint32_t num, int bits)
{
return bitswap_32(num) >> (32 - bits);
}
static void reverse_code(const uint16_t *code, const uint8_t *bits,
uint16_t *reversed_code, int num_entries)
{
int i;
for (i = 0; i < num_entries; i++) {
reversed_code[i] = reverse(code[i], bits[i]);
}
}
static av_cold void speedhq_static_init(void)
{
uint16_t ff_mpeg12_vlc_dc_lum_code_reversed[12];
uint16_t ff_mpeg12_vlc_dc_chroma_code_reversed[12];
int i;
/* Exactly the same as MPEG-2, except little-endian. */
reverse_code(ff_mpeg12_vlc_dc_lum_code,
ff_mpeg12_vlc_dc_lum_bits,
ff_mpeg12_vlc_dc_lum_code_reversed,
12);
INIT_LE_VLC_STATIC(&ff_dc_lum_vlc_le, DC_VLC_BITS, 12,
ff_mpeg12_vlc_dc_lum_bits, 1, 1,
ff_mpeg12_vlc_dc_lum_code_reversed, 2, 2, 512);
reverse_code(ff_mpeg12_vlc_dc_chroma_code,
ff_mpeg12_vlc_dc_chroma_bits,
ff_mpeg12_vlc_dc_chroma_code_reversed,
12);
INIT_LE_VLC_STATIC(&ff_dc_chroma_vlc_le, DC_VLC_BITS, 12,
ff_mpeg12_vlc_dc_chroma_bits, 1, 1,
ff_mpeg12_vlc_dc_chroma_code_reversed, 2, 2, 514);
/* Reverse the AC VLC, because INIT_VLC_LE wants it in that order. */
for (i = 0; i < FF_ARRAY_ELEMS(speedhq_vlc); ++i) {
speedhq_vlc[i][0] = reverse(speedhq_vlc[i][0], speedhq_vlc[i][1]);
}
ff_rl_init(&ff_rl_speedhq, ff_speedhq_static_rl_table_store);
INIT_2D_VLC_RL(ff_rl_speedhq, 674, INIT_VLC_LE);
compute_alpha_vlcs();
}
static av_cold int speedhq_decode_init(AVCodecContext *avctx)
{
int ret;
static AVOnce init_once = AV_ONCE_INIT;
SHQContext * const s = avctx->priv_data;
s->avctx = avctx;
ret = ff_thread_once(&init_once, speedhq_static_init);
if (ret)
return AVERROR_UNKNOWN;
ff_blockdsp_init(&s->bdsp, avctx);
ff_idctdsp_init(&s->idsp, avctx);
ff_init_scantable(s->idsp.idct_permutation, &s->intra_scantable, ff_zigzag_direct);
switch (avctx->codec_tag) {
case MKTAG('S', 'H', 'Q', '0'):
s->subsampling = SHQ_SUBSAMPLING_420;
s->alpha_type = SHQ_NO_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
break;
case MKTAG('S', 'H', 'Q', '1'):
s->subsampling = SHQ_SUBSAMPLING_420;
s->alpha_type = SHQ_RLE_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
break;
case MKTAG('S', 'H', 'Q', '2'):
s->subsampling = SHQ_SUBSAMPLING_422;
s->alpha_type = SHQ_NO_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
break;
case MKTAG('S', 'H', 'Q', '3'):
s->subsampling = SHQ_SUBSAMPLING_422;
s->alpha_type = SHQ_RLE_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
break;
case MKTAG('S', 'H', 'Q', '4'):
s->subsampling = SHQ_SUBSAMPLING_444;
s->alpha_type = SHQ_NO_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
break;
case MKTAG('S', 'H', 'Q', '5'):
s->subsampling = SHQ_SUBSAMPLING_444;
s->alpha_type = SHQ_RLE_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
break;
case MKTAG('S', 'H', 'Q', '7'):
s->subsampling = SHQ_SUBSAMPLING_422;
s->alpha_type = SHQ_DCT_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
break;
case MKTAG('S', 'H', 'Q', '9'):
s->subsampling = SHQ_SUBSAMPLING_444;
s->alpha_type = SHQ_DCT_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown NewTek SpeedHQ FOURCC provided (%08X)\n",
avctx->codec_tag);
return AVERROR_INVALIDDATA;
}
/* This matches what NDI's RGB -> Y'CbCr 4:2:2 converter uses. */
avctx->colorspace = AVCOL_SPC_BT470BG;
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
return 0;
}
AVCodec ff_speedhq_decoder = {
.name = "speedhq",
.long_name = NULL_IF_CONFIG_SMALL("NewTek SpeedHQ"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_SPEEDHQ,
.priv_data_size = sizeof(SHQContext),
.init = speedhq_decode_init,
.decode = speedhq_decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
};