third_party_ffmpeg/libavutil/common.h
cyberbox 3b0fb00990
upgrade ffmpeg from 4.4.1 to 5.1.4
Signed-off-by: cyberbox <468042667@qq.com>
Change-Id: I63cc2a8c9ff6197c67d6b6b47c124882ad942a22
2024-04-25 17:20:18 +08:00

579 lines
17 KiB
C

/*
* copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* common internal and external API header
*/
#ifndef AVUTIL_COMMON_H
#define AVUTIL_COMMON_H
#if defined(__cplusplus) && !defined(__STDC_CONSTANT_MACROS) && !defined(UINT64_C)
#error missing -D__STDC_CONSTANT_MACROS / #define __STDC_CONSTANT_MACROS
#endif
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "attributes.h"
#include "macros.h"
//rounded division & shift
#define RSHIFT(a,b) ((a) > 0 ? ((a) + ((1<<(b))>>1))>>(b) : ((a) + ((1<<(b))>>1)-1)>>(b))
/* assume b>0 */
#define ROUNDED_DIV(a,b) (((a)>=0 ? (a) + ((b)>>1) : (a) - ((b)>>1))/(b))
/* Fast a/(1<<b) rounded toward +inf. Assume a>=0 and b>=0 */
#define AV_CEIL_RSHIFT(a,b) (!av_builtin_constant_p(b) ? -((-(a)) >> (b)) \
: ((a) + (1<<(b)) - 1) >> (b))
/* Backwards compat. */
#define FF_CEIL_RSHIFT AV_CEIL_RSHIFT
#define FFUDIV(a,b) (((a)>0 ?(a):(a)-(b)+1) / (b))
#define FFUMOD(a,b) ((a)-(b)*FFUDIV(a,b))
/**
* Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they
* are not representable as absolute values of their type. This is the same
* as with *abs()
* @see FFNABS()
*/
#define FFABS(a) ((a) >= 0 ? (a) : (-(a)))
#define FFSIGN(a) ((a) > 0 ? 1 : -1)
/**
* Negative Absolute value.
* this works for all integers of all types.
* As with many macros, this evaluates its argument twice, it thus must not have
* a sideeffect, that is FFNABS(x++) has undefined behavior.
*/
#define FFNABS(a) ((a) <= 0 ? (a) : (-(a)))
/**
* Unsigned Absolute value.
* This takes the absolute value of a signed int and returns it as a unsigned.
* This also works with INT_MIN which would otherwise not be representable
* As with many macros, this evaluates its argument twice.
*/
#define FFABSU(a) ((a) <= 0 ? -(unsigned)(a) : (unsigned)(a))
#define FFABS64U(a) ((a) <= 0 ? -(uint64_t)(a) : (uint64_t)(a))
/* misc math functions */
#ifdef HAVE_AV_CONFIG_H
# include "config.h"
# include "intmath.h"
#endif
#ifndef av_ceil_log2
# define av_ceil_log2 av_ceil_log2_c
#endif
#ifndef av_clip
# define av_clip av_clip_c
#endif
#ifndef av_clip64
# define av_clip64 av_clip64_c
#endif
#ifndef av_clip_uint8
# define av_clip_uint8 av_clip_uint8_c
#endif
#ifndef av_clip_int8
# define av_clip_int8 av_clip_int8_c
#endif
#ifndef av_clip_uint16
# define av_clip_uint16 av_clip_uint16_c
#endif
#ifndef av_clip_int16
# define av_clip_int16 av_clip_int16_c
#endif
#ifndef av_clipl_int32
# define av_clipl_int32 av_clipl_int32_c
#endif
#ifndef av_clip_intp2
# define av_clip_intp2 av_clip_intp2_c
#endif
#ifndef av_clip_uintp2
# define av_clip_uintp2 av_clip_uintp2_c
#endif
#ifndef av_mod_uintp2
# define av_mod_uintp2 av_mod_uintp2_c
#endif
#ifndef av_sat_add32
# define av_sat_add32 av_sat_add32_c
#endif
#ifndef av_sat_dadd32
# define av_sat_dadd32 av_sat_dadd32_c
#endif
#ifndef av_sat_sub32
# define av_sat_sub32 av_sat_sub32_c
#endif
#ifndef av_sat_dsub32
# define av_sat_dsub32 av_sat_dsub32_c
#endif
#ifndef av_sat_add64
# define av_sat_add64 av_sat_add64_c
#endif
#ifndef av_sat_sub64
# define av_sat_sub64 av_sat_sub64_c
#endif
#ifndef av_clipf
# define av_clipf av_clipf_c
#endif
#ifndef av_clipd
# define av_clipd av_clipd_c
#endif
#ifndef av_popcount
# define av_popcount av_popcount_c
#endif
#ifndef av_popcount64
# define av_popcount64 av_popcount64_c
#endif
#ifndef av_parity
# define av_parity av_parity_c
#endif
#ifndef av_log2
av_const int av_log2(unsigned v);
#endif
#ifndef av_log2_16bit
av_const int av_log2_16bit(unsigned v);
#endif
/**
* Clip a signed integer value into the amin-amax range.
* @param a value to clip
* @param amin minimum value of the clip range
* @param amax maximum value of the clip range
* @return clipped value
*/
static av_always_inline av_const int av_clip_c(int a, int amin, int amax)
{
#if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2
if (amin > amax) abort();
#endif
if (a < amin) return amin;
else if (a > amax) return amax;
else return a;
}
/**
* Clip a signed 64bit integer value into the amin-amax range.
* @param a value to clip
* @param amin minimum value of the clip range
* @param amax maximum value of the clip range
* @return clipped value
*/
static av_always_inline av_const int64_t av_clip64_c(int64_t a, int64_t amin, int64_t amax)
{
#if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2
if (amin > amax) abort();
#endif
if (a < amin) return amin;
else if (a > amax) return amax;
else return a;
}
/**
* Clip a signed integer value into the 0-255 range.
* @param a value to clip
* @return clipped value
*/
static av_always_inline av_const uint8_t av_clip_uint8_c(int a)
{
if (a&(~0xFF)) return (~a)>>31;
else return a;
}
/**
* Clip a signed integer value into the -128,127 range.
* @param a value to clip
* @return clipped value
*/
static av_always_inline av_const int8_t av_clip_int8_c(int a)
{
if ((a+0x80U) & ~0xFF) return (a>>31) ^ 0x7F;
else return a;
}
/**
* Clip a signed integer value into the 0-65535 range.
* @param a value to clip
* @return clipped value
*/
static av_always_inline av_const uint16_t av_clip_uint16_c(int a)
{
if (a&(~0xFFFF)) return (~a)>>31;
else return a;
}
/**
* Clip a signed integer value into the -32768,32767 range.
* @param a value to clip
* @return clipped value
*/
static av_always_inline av_const int16_t av_clip_int16_c(int a)
{
if ((a+0x8000U) & ~0xFFFF) return (a>>31) ^ 0x7FFF;
else return a;
}
/**
* Clip a signed 64-bit integer value into the -2147483648,2147483647 range.
* @param a value to clip
* @return clipped value
*/
static av_always_inline av_const int32_t av_clipl_int32_c(int64_t a)
{
if ((a+0x80000000u) & ~UINT64_C(0xFFFFFFFF)) return (int32_t)((a>>63) ^ 0x7FFFFFFF);
else return (int32_t)a;
}
/**
* Clip a signed integer into the -(2^p),(2^p-1) range.
* @param a value to clip
* @param p bit position to clip at
* @return clipped value
*/
static av_always_inline av_const int av_clip_intp2_c(int a, int p)
{
if (((unsigned)a + (1 << p)) & ~((2 << p) - 1))
return (a >> 31) ^ ((1 << p) - 1);
else
return a;
}
/**
* Clip a signed integer to an unsigned power of two range.
* @param a value to clip
* @param p bit position to clip at
* @return clipped value
*/
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
{
if (a & ~((1<<p) - 1)) return (~a) >> 31 & ((1<<p) - 1);
else return a;
}
/**
* Clear high bits from an unsigned integer starting with specific bit position
* @param a value to clip
* @param p bit position to clip at
* @return clipped value
*/
static av_always_inline av_const unsigned av_mod_uintp2_c(unsigned a, unsigned p)
{
return a & ((1U << p) - 1);
}
/**
* Add two signed 32-bit values with saturation.
*
* @param a one value
* @param b another value
* @return sum with signed saturation
*/
static av_always_inline int av_sat_add32_c(int a, int b)
{
return av_clipl_int32((int64_t)a + b);
}
/**
* Add a doubled value to another value with saturation at both stages.
*
* @param a first value
* @param b value doubled and added to a
* @return sum sat(a + sat(2*b)) with signed saturation
*/
static av_always_inline int av_sat_dadd32_c(int a, int b)
{
return av_sat_add32(a, av_sat_add32(b, b));
}
/**
* Subtract two signed 32-bit values with saturation.
*
* @param a one value
* @param b another value
* @return difference with signed saturation
*/
static av_always_inline int av_sat_sub32_c(int a, int b)
{
return av_clipl_int32((int64_t)a - b);
}
/**
* Subtract a doubled value from another value with saturation at both stages.
*
* @param a first value
* @param b value doubled and subtracted from a
* @return difference sat(a - sat(2*b)) with signed saturation
*/
static av_always_inline int av_sat_dsub32_c(int a, int b)
{
return av_sat_sub32(a, av_sat_add32(b, b));
}
/**
* Add two signed 64-bit values with saturation.
*
* @param a one value
* @param b another value
* @return sum with signed saturation
*/
static av_always_inline int64_t av_sat_add64_c(int64_t a, int64_t b) {
#if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_add_overflow)
int64_t tmp;
return !__builtin_add_overflow(a, b, &tmp) ? tmp : (tmp < 0 ? INT64_MAX : INT64_MIN);
#else
int64_t s = a+(uint64_t)b;
if ((int64_t)(a^b | ~s^b) >= 0)
return INT64_MAX ^ (b >> 63);
return s;
#endif
}
/**
* Subtract two signed 64-bit values with saturation.
*
* @param a one value
* @param b another value
* @return difference with signed saturation
*/
static av_always_inline int64_t av_sat_sub64_c(int64_t a, int64_t b) {
#if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_sub_overflow)
int64_t tmp;
return !__builtin_sub_overflow(a, b, &tmp) ? tmp : (tmp < 0 ? INT64_MAX : INT64_MIN);
#else
if (b <= 0 && a >= INT64_MAX + b)
return INT64_MAX;
if (b >= 0 && a <= INT64_MIN + b)
return INT64_MIN;
return a - b;
#endif
}
/**
* Clip a float value into the amin-amax range.
* If a is nan or -inf amin will be returned.
* If a is +inf amax will be returned.
* @param a value to clip
* @param amin minimum value of the clip range
* @param amax maximum value of the clip range
* @return clipped value
*/
static av_always_inline av_const float av_clipf_c(float a, float amin, float amax)
{
#if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2
if (amin > amax) abort();
#endif
return FFMIN(FFMAX(a, amin), amax);
}
/**
* Clip a double value into the amin-amax range.
* If a is nan or -inf amin will be returned.
* If a is +inf amax will be returned.
* @param a value to clip
* @param amin minimum value of the clip range
* @param amax maximum value of the clip range
* @return clipped value
*/
static av_always_inline av_const double av_clipd_c(double a, double amin, double amax)
{
#if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2
if (amin > amax) abort();
#endif
return FFMIN(FFMAX(a, amin), amax);
}
/** Compute ceil(log2(x)).
* @param x value used to compute ceil(log2(x))
* @return computed ceiling of log2(x)
*/
static av_always_inline av_const int av_ceil_log2_c(int x)
{
return av_log2((x - 1U) << 1);
}
/**
* Count number of bits set to one in x
* @param x value to count bits of
* @return the number of bits set to one in x
*/
static av_always_inline av_const int av_popcount_c(uint32_t x)
{
x -= (x >> 1) & 0x55555555;
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x += x >> 8;
return (x + (x >> 16)) & 0x3F;
}
/**
* Count number of bits set to one in x
* @param x value to count bits of
* @return the number of bits set to one in x
*/
static av_always_inline av_const int av_popcount64_c(uint64_t x)
{
return av_popcount((uint32_t)x) + av_popcount((uint32_t)(x >> 32));
}
static av_always_inline av_const int av_parity_c(uint32_t v)
{
return av_popcount(v) & 1;
}
/**
* Convert a UTF-8 character (up to 4 bytes) to its 32-bit UCS-4 encoded form.
*
* @param val Output value, must be an lvalue of type uint32_t.
* @param GET_BYTE Expression reading one byte from the input.
* Evaluated up to 7 times (4 for the currently
* assigned Unicode range). With a memory buffer
* input, this could be *ptr++, or if you want to make sure
* that *ptr stops at the end of a NULL terminated string then
* *ptr ? *ptr++ : 0
* @param ERROR Expression to be evaluated on invalid input,
* typically a goto statement.
*
* @warning ERROR should not contain a loop control statement which
* could interact with the internal while loop, and should force an
* exit from the macro code (e.g. through a goto or a return) in order
* to prevent undefined results.
*/
#define GET_UTF8(val, GET_BYTE, ERROR)\
val= (GET_BYTE);\
{\
uint32_t top = (val & 128) >> 1;\
if ((val & 0xc0) == 0x80 || val >= 0xFE)\
{ERROR}\
while (val & top) {\
unsigned int tmp = (GET_BYTE) - 128;\
if(tmp>>6)\
{ERROR}\
val= (val<<6) + tmp;\
top <<= 5;\
}\
val &= (top << 1) - 1;\
}
/**
* Convert a UTF-16 character (2 or 4 bytes) to its 32-bit UCS-4 encoded form.
*
* @param val Output value, must be an lvalue of type uint32_t.
* @param GET_16BIT Expression returning two bytes of UTF-16 data converted
* to native byte order. Evaluated one or two times.
* @param ERROR Expression to be evaluated on invalid input,
* typically a goto statement.
*/
#define GET_UTF16(val, GET_16BIT, ERROR)\
val = (GET_16BIT);\
{\
unsigned int hi = val - 0xD800;\
if (hi < 0x800) {\
val = (GET_16BIT) - 0xDC00;\
if (val > 0x3FFU || hi > 0x3FFU)\
{ERROR}\
val += (hi<<10) + 0x10000;\
}\
}\
/**
* @def PUT_UTF8(val, tmp, PUT_BYTE)
* Convert a 32-bit Unicode character to its UTF-8 encoded form (up to 4 bytes long).
* @param val is an input-only argument and should be of type uint32_t. It holds
* a UCS-4 encoded Unicode character that is to be converted to UTF-8. If
* val is given as a function it is executed only once.
* @param tmp is a temporary variable and should be of type uint8_t. It
* represents an intermediate value during conversion that is to be
* output by PUT_BYTE.
* @param PUT_BYTE writes the converted UTF-8 bytes to any proper destination.
* It could be a function or a statement, and uses tmp as the input byte.
* For example, PUT_BYTE could be "*output++ = tmp;" PUT_BYTE will be
* executed up to 4 times for values in the valid UTF-8 range and up to
* 7 times in the general case, depending on the length of the converted
* Unicode character.
*/
#define PUT_UTF8(val, tmp, PUT_BYTE)\
{\
int bytes, shift;\
uint32_t in = val;\
if (in < 0x80) {\
tmp = in;\
PUT_BYTE\
} else {\
bytes = (av_log2(in) + 4) / 5;\
shift = (bytes - 1) * 6;\
tmp = (256 - (256 >> bytes)) | (in >> shift);\
PUT_BYTE\
while (shift >= 6) {\
shift -= 6;\
tmp = 0x80 | ((in >> shift) & 0x3f);\
PUT_BYTE\
}\
}\
}
/**
* @def PUT_UTF16(val, tmp, PUT_16BIT)
* Convert a 32-bit Unicode character to its UTF-16 encoded form (2 or 4 bytes).
* @param val is an input-only argument and should be of type uint32_t. It holds
* a UCS-4 encoded Unicode character that is to be converted to UTF-16. If
* val is given as a function it is executed only once.
* @param tmp is a temporary variable and should be of type uint16_t. It
* represents an intermediate value during conversion that is to be
* output by PUT_16BIT.
* @param PUT_16BIT writes the converted UTF-16 data to any proper destination
* in desired endianness. It could be a function or a statement, and uses tmp
* as the input byte. For example, PUT_BYTE could be "*output++ = tmp;"
* PUT_BYTE will be executed 1 or 2 times depending on input character.
*/
#define PUT_UTF16(val, tmp, PUT_16BIT)\
{\
uint32_t in = val;\
if (in < 0x10000) {\
tmp = in;\
PUT_16BIT\
} else {\
tmp = 0xD800 | ((in - 0x10000) >> 10);\
PUT_16BIT\
tmp = 0xDC00 | ((in - 0x10000) & 0x3FF);\
PUT_16BIT\
}\
}\
#include "mem.h"
#ifdef HAVE_AV_CONFIG_H
# include "internal.h"
#endif /* HAVE_AV_CONFIG_H */
#endif /* AVUTIL_COMMON_H */