third_party_ffmpeg/libavcodec/vc1.c
Diego Biurrun 5e53486545 typo fix: inited --> initialized
Originally committed as revision 11920 to svn://svn.ffmpeg.org/ffmpeg/trunk
2008-02-13 09:26:10 +00:00

4154 lines
143 KiB
C

/*
* VC-1 and WMV3 decoder
* Copyright (c) 2006-2007 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file vc1.c
* VC-1 and WMV3 decoder
*
*/
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "vc1.h"
#include "vc1data.h"
#include "vc1acdata.h"
#include "msmpeg4data.h"
#include "unary.h"
#include "simple_idct.h"
#undef NDEBUG
#include <assert.h>
#define MB_INTRA_VLC_BITS 9
#define DC_VLC_BITS 9
#define AC_VLC_BITS 9
static const uint16_t table_mb_intra[64][2];
/**
* Init VC-1 specific tables and VC1Context members
* @param v The VC1Context to initialize
* @return Status
*/
static int vc1_init_common(VC1Context *v)
{
static int done = 0;
int i = 0;
v->hrd_rate = v->hrd_buffer = NULL;
/* VLC tables */
if(!done)
{
done = 1;
init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
ff_vc1_bfraction_bits, 1, 1,
ff_vc1_bfraction_codes, 1, 1, 1);
init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
ff_vc1_norm2_bits, 1, 1,
ff_vc1_norm2_codes, 1, 1, 1);
init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
ff_vc1_norm6_bits, 1, 1,
ff_vc1_norm6_codes, 2, 2, 1);
init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
ff_vc1_imode_bits, 1, 1,
ff_vc1_imode_codes, 1, 1, 1);
for (i=0; i<3; i++)
{
init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
ff_vc1_ttmb_bits[i], 1, 1,
ff_vc1_ttmb_codes[i], 2, 2, 1);
init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
ff_vc1_ttblk_bits[i], 1, 1,
ff_vc1_ttblk_codes[i], 1, 1, 1);
init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
ff_vc1_subblkpat_bits[i], 1, 1,
ff_vc1_subblkpat_codes[i], 1, 1, 1);
}
for(i=0; i<4; i++)
{
init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
ff_vc1_4mv_block_pattern_bits[i], 1, 1,
ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
ff_vc1_cbpcy_p_bits[i], 1, 1,
ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
ff_vc1_mv_diff_bits[i], 1, 1,
ff_vc1_mv_diff_codes[i], 2, 2, 1);
}
for(i=0; i<8; i++)
init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
&vc1_ac_tables[i][0][1], 8, 4,
&vc1_ac_tables[i][0][0], 8, 4, 1);
init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
&ff_msmp4_mb_i_table[0][1], 4, 2,
&ff_msmp4_mb_i_table[0][0], 4, 2, 1);
}
/* Other defaults */
v->pq = -1;
v->mvrange = 0; /* 7.1.1.18, p80 */
return 0;
}
/***********************************************************************/
/**
* @defgroup bitplane VC9 Bitplane decoding
* @see 8.7, p56
* @{
*/
/** @addtogroup bitplane
* Imode types
* @{
*/
enum Imode {
IMODE_RAW,
IMODE_NORM2,
IMODE_DIFF2,
IMODE_NORM6,
IMODE_DIFF6,
IMODE_ROWSKIP,
IMODE_COLSKIP
};
/** @} */ //imode defines
/** Decode rows by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
*/
static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
int x, y;
for (y=0; y<height; y++){
if (!get_bits1(gb)) //rowskip
memset(plane, 0, width);
else
for (x=0; x<width; x++)
plane[x] = get_bits1(gb);
plane += stride;
}
}
/** Decode columns by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
* @todo FIXME: Optimize
*/
static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
int x, y;
for (x=0; x<width; x++){
if (!get_bits1(gb)) //colskip
for (y=0; y<height; y++)
plane[y*stride] = 0;
else
for (y=0; y<height; y++)
plane[y*stride] = get_bits1(gb);
plane ++;
}
}
/** Decode a bitplane's bits
* @param bp Bitplane where to store the decode bits
* @param v VC-1 context for bit reading and logging
* @return Status
* @todo FIXME: Optimize
*/
static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
{
GetBitContext *gb = &v->s.gb;
int imode, x, y, code, offset;
uint8_t invert, *planep = data;
int width, height, stride;
width = v->s.mb_width;
height = v->s.mb_height;
stride = v->s.mb_stride;
invert = get_bits1(gb);
imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
*raw_flag = 0;
switch (imode)
{
case IMODE_RAW:
//Data is actually read in the MB layer (same for all tests == "raw")
*raw_flag = 1; //invert ignored
return invert;
case IMODE_DIFF2:
case IMODE_NORM2:
if ((height * width) & 1)
{
*planep++ = get_bits1(gb);
offset = 1;
}
else offset = 0;
// decode bitplane as one long line
for (y = offset; y < height * width; y += 2) {
code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
*planep++ = code & 1;
offset++;
if(offset == width) {
offset = 0;
planep += stride - width;
}
*planep++ = code >> 1;
offset++;
if(offset == width) {
offset = 0;
planep += stride - width;
}
}
break;
case IMODE_DIFF6:
case IMODE_NORM6:
if(!(height % 3) && (width % 3)) { // use 2x3 decoding
for(y = 0; y < height; y+= 3) {
for(x = width & 1; x < width; x += 2) {
code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
if(code < 0){
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
planep[x + 0] = (code >> 0) & 1;
planep[x + 1] = (code >> 1) & 1;
planep[x + 0 + stride] = (code >> 2) & 1;
planep[x + 1 + stride] = (code >> 3) & 1;
planep[x + 0 + stride * 2] = (code >> 4) & 1;
planep[x + 1 + stride * 2] = (code >> 5) & 1;
}
planep += stride * 3;
}
if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
} else { // 3x2
planep += (height & 1) * stride;
for(y = height & 1; y < height; y += 2) {
for(x = width % 3; x < width; x += 3) {
code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
if(code < 0){
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
planep[x + 0] = (code >> 0) & 1;
planep[x + 1] = (code >> 1) & 1;
planep[x + 2] = (code >> 2) & 1;
planep[x + 0 + stride] = (code >> 3) & 1;
planep[x + 1 + stride] = (code >> 4) & 1;
planep[x + 2 + stride] = (code >> 5) & 1;
}
planep += stride * 2;
}
x = width % 3;
if(x) decode_colskip(data , x, height , stride, &v->s.gb);
if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
}
break;
case IMODE_ROWSKIP:
decode_rowskip(data, width, height, stride, &v->s.gb);
break;
case IMODE_COLSKIP:
decode_colskip(data, width, height, stride, &v->s.gb);
break;
default: break;
}
/* Applying diff operator */
if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
{
planep = data;
planep[0] ^= invert;
for (x=1; x<width; x++)
planep[x] ^= planep[x-1];
for (y=1; y<height; y++)
{
planep += stride;
planep[0] ^= planep[-stride];
for (x=1; x<width; x++)
{
if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
else planep[x] ^= planep[x-1];
}
}
}
else if (invert)
{
planep = data;
for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
}
return (imode<<1) + invert;
}
/** @} */ //Bitplane group
/***********************************************************************/
/** VOP Dquant decoding
* @param v VC-1 Context
*/
static int vop_dquant_decoding(VC1Context *v)
{
GetBitContext *gb = &v->s.gb;
int pqdiff;
//variable size
if (v->dquant == 2)
{
pqdiff = get_bits(gb, 3);
if (pqdiff == 7) v->altpq = get_bits(gb, 5);
else v->altpq = v->pq + pqdiff + 1;
}
else
{
v->dquantfrm = get_bits1(gb);
if ( v->dquantfrm )
{
v->dqprofile = get_bits(gb, 2);
switch (v->dqprofile)
{
case DQPROFILE_SINGLE_EDGE:
case DQPROFILE_DOUBLE_EDGES:
v->dqsbedge = get_bits(gb, 2);
break;
case DQPROFILE_ALL_MBS:
v->dqbilevel = get_bits1(gb);
if(!v->dqbilevel)
v->halfpq = 0;
default: break; //Forbidden ?
}
if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
{
pqdiff = get_bits(gb, 3);
if (pqdiff == 7) v->altpq = get_bits(gb, 5);
else v->altpq = v->pq + pqdiff + 1;
}
}
}
return 0;
}
/** Put block onto picture
*/
static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
{
uint8_t *Y;
int ys, us, vs;
DSPContext *dsp = &v->s.dsp;
if(v->rangeredfrm) {
int i, j, k;
for(k = 0; k < 6; k++)
for(j = 0; j < 8; j++)
for(i = 0; i < 8; i++)
block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
}
ys = v->s.current_picture.linesize[0];
us = v->s.current_picture.linesize[1];
vs = v->s.current_picture.linesize[2];
Y = v->s.dest[0];
dsp->put_pixels_clamped(block[0], Y, ys);
dsp->put_pixels_clamped(block[1], Y + 8, ys);
Y += ys * 8;
dsp->put_pixels_clamped(block[2], Y, ys);
dsp->put_pixels_clamped(block[3], Y + 8, ys);
if(!(v->s.flags & CODEC_FLAG_GRAY)) {
dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
}
}
/** Do motion compensation over 1 macroblock
* Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
*/
static void vc1_mc_1mv(VC1Context *v, int dir)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY, *srcU, *srcV;
int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
if(!v->s.last_picture.data[0])return;
mx = s->mv[dir][0][0];
my = s->mv[dir][0][1];
// store motion vectors for further use in B frames
if(s->pict_type == P_TYPE) {
s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
s->current_picture.motion_val[1][s->block_index[0]][1] = my;
}
uvmx = (mx + ((mx & 3) == 3)) >> 1;
uvmy = (my + ((my & 3) == 3)) >> 1;
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
if(!dir) {
srcY = s->last_picture.data[0];
srcU = s->last_picture.data[1];
srcV = s->last_picture.data[2];
} else {
srcY = s->next_picture.data[0];
srcU = s->next_picture.data[1];
srcV = s->next_picture.data[2];
}
src_x = s->mb_x * 16 + (mx >> 2);
src_y = s->mb_y * 16 + (my >> 2);
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if(v->profile != PROFILE_ADVANCED){
src_x = av_clip( src_x, -16, s->mb_width * 16);
src_y = av_clip( src_y, -16, s->mb_height * 16);
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
}else{
src_x = av_clip( src_x, -17, s->avctx->coded_width);
src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
/* for grayscale we should not try to read from unknown area */
if(s->flags & CODEC_FLAG_GRAY) {
srcU = s->edge_emu_buffer + 18 * s->linesize;
srcV = s->edge_emu_buffer + 18 * s->linesize;
}
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
srcY -= s->mspel * (1 + s->linesize);
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
srcY += s->linesize * 8;
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
} else { // hpel mc - always used for luma
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
else
dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
}
if(s->flags & CODEC_FLAG_GRAY) return;
/* Chroma MC always uses qpel bilinear */
uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
/** Do motion compensation for 4-MV macroblock - luminance block
*/
static void vc1_mc_4mv_luma(VC1Context *v, int n)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY;
int dxy, mx, my, src_x, src_y;
int off;
if(!v->s.last_picture.data[0])return;
mx = s->mv[0][n][0];
my = s->mv[0][n][1];
srcY = s->last_picture.data[0];
off = s->linesize * 4 * (n&2) + (n&1) * 8;
src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
if(v->profile != PROFILE_ADVANCED){
src_x = av_clip( src_x, -16, s->mb_width * 16);
src_y = av_clip( src_y, -16, s->mb_height * 16);
}else{
src_x = av_clip( src_x, -17, s->avctx->coded_width);
src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
}
srcY += src_y * s->linesize + src_x;
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
srcY -= s->mspel * (1 + s->linesize);
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src;
src = srcY;
for(j = 0; j < 9 + s->mspel*2; j++) {
for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src;
src = srcY;
for(j = 0; j < 9 + s->mspel*2; j++) {
for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
src += s->linesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
} else { // hpel mc - always used for luma
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
else
dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
}
}
static inline int median4(int a, int b, int c, int d)
{
if(a < b) {
if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
} else {
if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
}
}
/** Do motion compensation for 4-MV macroblock - both chroma blocks
*/
static void vc1_mc_4mv_chroma(VC1Context *v)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcU, *srcV;
int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
int i, idx, tx = 0, ty = 0;
int mvx[4], mvy[4], intra[4];
static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
if(!v->s.last_picture.data[0])return;
if(s->flags & CODEC_FLAG_GRAY) return;
for(i = 0; i < 4; i++) {
mvx[i] = s->mv[0][i][0];
mvy[i] = s->mv[0][i][1];
intra[i] = v->mb_type[0][s->block_index[i]];
}
/* calculate chroma MV vector from four luma MVs */
idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
if(!idx) { // all blocks are inter
tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
} else if(count[idx] == 1) { // 3 inter blocks
switch(idx) {
case 0x1:
tx = mid_pred(mvx[1], mvx[2], mvx[3]);
ty = mid_pred(mvy[1], mvy[2], mvy[3]);
break;
case 0x2:
tx = mid_pred(mvx[0], mvx[2], mvx[3]);
ty = mid_pred(mvy[0], mvy[2], mvy[3]);
break;
case 0x4:
tx = mid_pred(mvx[0], mvx[1], mvx[3]);
ty = mid_pred(mvy[0], mvy[1], mvy[3]);
break;
case 0x8:
tx = mid_pred(mvx[0], mvx[1], mvx[2]);
ty = mid_pred(mvy[0], mvy[1], mvy[2]);
break;
}
} else if(count[idx] == 2) {
int t1 = 0, t2 = 0;
for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
tx = (mvx[t1] + mvx[t2]) / 2;
ty = (mvy[t1] + mvy[t2]) / 2;
} else {
s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
return; //no need to do MC for inter blocks
}
s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
uvmx = (tx + ((tx&3) == 3)) >> 1;
uvmy = (ty + ((ty&3) == 3)) >> 1;
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if(v->profile != PROFILE_ADVANCED){
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
}else{
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
|| (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = s->edge_emu_buffer;
srcV = s->edge_emu_buffer + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
}
/* Chroma MC always uses qpel bilinear */
uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
/**
* Decode Simple/Main Profiles sequence header
* @see Figure 7-8, p16-17
* @param avctx Codec context
* @param gb GetBit context initialized from Codec context extra_data
* @return Status
*/
static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
{
VC1Context *v = avctx->priv_data;
av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
v->profile = get_bits(gb, 2);
if (v->profile == PROFILE_COMPLEX)
{
av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
}
if (v->profile == PROFILE_ADVANCED)
{
v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
return decode_sequence_header_adv(v, gb);
}
else
{
v->zz_8x4 = ff_vc1_simple_progressive_8x4_zz;
v->zz_4x8 = ff_vc1_simple_progressive_4x8_zz;
v->res_sm = get_bits(gb, 2); //reserved
if (v->res_sm)
{
av_log(avctx, AV_LOG_ERROR,
"Reserved RES_SM=%i is forbidden\n", v->res_sm);
return -1;
}
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->s.loop_filter = get_bits1(gb); //common
if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
{
av_log(avctx, AV_LOG_ERROR,
"LOOPFILTER shell not be enabled in simple profile\n");
}
v->res_x8 = get_bits1(gb); //reserved
v->multires = get_bits1(gb);
v->res_fasttx = get_bits1(gb);
if (!v->res_fasttx)
{
v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
}
v->fastuvmc = get_bits1(gb); //common
if (!v->profile && !v->fastuvmc)
{
av_log(avctx, AV_LOG_ERROR,
"FASTUVMC unavailable in Simple Profile\n");
return -1;
}
v->extended_mv = get_bits1(gb); //common
if (!v->profile && v->extended_mv)
{
av_log(avctx, AV_LOG_ERROR,
"Extended MVs unavailable in Simple Profile\n");
return -1;
}
v->dquant = get_bits(gb, 2); //common
v->vstransform = get_bits1(gb); //common
v->res_transtab = get_bits1(gb);
if (v->res_transtab)
{
av_log(avctx, AV_LOG_ERROR,
"1 for reserved RES_TRANSTAB is forbidden\n");
return -1;
}
v->overlap = get_bits1(gb); //common
v->s.resync_marker = get_bits1(gb);
v->rangered = get_bits1(gb);
if (v->rangered && v->profile == PROFILE_SIMPLE)
{
av_log(avctx, AV_LOG_INFO,
"RANGERED should be set to 0 in simple profile\n");
}
v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
v->quantizer_mode = get_bits(gb, 2); //common
v->finterpflag = get_bits1(gb); //common
v->res_rtm_flag = get_bits1(gb); //reserved
if (!v->res_rtm_flag)
{
// av_log(avctx, AV_LOG_ERROR,
// "0 for reserved RES_RTM_FLAG is forbidden\n");
av_log(avctx, AV_LOG_ERROR,
"Old WMV3 version detected, only I-frames will be decoded\n");
//return -1;
}
//TODO: figure out what they mean (always 0x402F)
if(!v->res_fasttx) skip_bits(gb, 16);
av_log(avctx, AV_LOG_DEBUG,
"Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
"LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
"Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
"DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
v->dquant, v->quantizer_mode, avctx->max_b_frames
);
return 0;
}
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
{
v->res_rtm_flag = 1;
v->level = get_bits(gb, 3);
if(v->level >= 5)
{
av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
}
v->chromaformat = get_bits(gb, 2);
if (v->chromaformat != 1)
{
av_log(v->s.avctx, AV_LOG_ERROR,
"Only 4:2:0 chroma format supported\n");
return -1;
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->postprocflag = get_bits1(gb); //common
v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
v->s.avctx->width = v->s.avctx->coded_width;
v->s.avctx->height = v->s.avctx->coded_height;
v->broadcast = get_bits1(gb);
v->interlace = get_bits1(gb);
v->tfcntrflag = get_bits1(gb);
v->finterpflag = get_bits1(gb);
skip_bits1(gb); // reserved
v->s.h_edge_pos = v->s.avctx->coded_width;
v->s.v_edge_pos = v->s.avctx->coded_height;
av_log(v->s.avctx, AV_LOG_DEBUG,
"Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
"LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
"TFCTRflag=%i, FINTERPflag=%i\n",
v->level, v->frmrtq_postproc, v->bitrtq_postproc,
v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
v->tfcntrflag, v->finterpflag
);
v->psf = get_bits1(gb);
if(v->psf) { //PsF, 6.1.13
av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
return -1;
}
v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
if(get_bits1(gb)) { //Display Info - decoding is not affected by it
int w, h, ar = 0;
av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
if(get_bits1(gb))
ar = get_bits(gb, 4);
if(ar && ar < 14){
v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
}else if(ar == 15){
w = get_bits(gb, 8);
h = get_bits(gb, 8);
v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
}
if(get_bits1(gb)){ //framerate stuff
if(get_bits1(gb)) {
v->s.avctx->time_base.num = 32;
v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
} else {
int nr, dr;
nr = get_bits(gb, 8);
dr = get_bits(gb, 4);
if(nr && nr < 8 && dr && dr < 3){
v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
}
}
}
if(get_bits1(gb)){
v->color_prim = get_bits(gb, 8);
v->transfer_char = get_bits(gb, 8);
v->matrix_coef = get_bits(gb, 8);
}
}
v->hrd_param_flag = get_bits1(gb);
if(v->hrd_param_flag) {
int i;
v->hrd_num_leaky_buckets = get_bits(gb, 5);
skip_bits(gb, 4); //bitrate exponent
skip_bits(gb, 4); //buffer size exponent
for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
skip_bits(gb, 16); //hrd_rate[n]
skip_bits(gb, 16); //hrd_buffer[n]
}
}
return 0;
}
static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
{
VC1Context *v = avctx->priv_data;
int i, blink, clentry, refdist;
av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
blink = get_bits1(gb); // broken link
clentry = get_bits1(gb); // closed entry
v->panscanflag = get_bits1(gb);
refdist = get_bits1(gb); // refdist flag
v->s.loop_filter = get_bits1(gb);
v->fastuvmc = get_bits1(gb);
v->extended_mv = get_bits1(gb);
v->dquant = get_bits(gb, 2);
v->vstransform = get_bits1(gb);
v->overlap = get_bits1(gb);
v->quantizer_mode = get_bits(gb, 2);
if(v->hrd_param_flag){
for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
skip_bits(gb, 8); //hrd_full[n]
}
}
if(get_bits1(gb)){
avctx->coded_width = (get_bits(gb, 12)+1)<<1;
avctx->coded_height = (get_bits(gb, 12)+1)<<1;
}
if(v->extended_mv)
v->extended_dmv = get_bits1(gb);
if(get_bits1(gb)) {
av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
skip_bits(gb, 3); // Y range, ignored for now
}
if(get_bits1(gb)) {
av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
skip_bits(gb, 3); // UV range, ignored for now
}
av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
"BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
"RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
"DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
return 0;
}
static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
{
int pqindex, lowquant, status;
if(v->finterpflag) v->interpfrm = get_bits1(gb);
skip_bits(gb, 2); //framecnt unused
v->rangeredfrm = 0;
if (v->rangered) v->rangeredfrm = get_bits1(gb);
v->s.pict_type = get_bits1(gb);
if (v->s.avctx->max_b_frames) {
if (!v->s.pict_type) {
if (get_bits1(gb)) v->s.pict_type = I_TYPE;
else v->s.pict_type = B_TYPE;
} else v->s.pict_type = P_TYPE;
} else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
v->bi_type = 0;
if(v->s.pict_type == B_TYPE) {
v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
if(v->bfraction == 0) {
v->s.pict_type = BI_TYPE;
}
}
if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
skip_bits(gb, 7); // skip buffer fullness
/* calculate RND */
if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
v->rnd = 1;
if(v->s.pict_type == P_TYPE)
v->rnd ^= 1;
/* Quantizer stuff */
pqindex = get_bits(gb, 5);
if(!pqindex) return -1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = ff_vc1_pquant_table[0][pqindex];
else
v->pq = ff_vc1_pquant_table[1][pqindex];
v->pquantizer = 1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pquantizer = pqindex < 9;
if (v->quantizer_mode == QUANT_NON_UNIFORM)
v->pquantizer = 0;
v->pqindex = pqindex;
if (pqindex < 9) v->halfpq = get_bits1(gb);
else v->halfpq = 0;
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits1(gb);
v->dquantfrm = 0;
if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
if (v->profile == PROFILE_ADVANCED)
{
if (v->postprocflag) v->postproc = get_bits1(gb);
}
else
if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
v->x8_type = get_bits1(gb);
}else v->x8_type = 0;
//av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
// (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
switch(v->s.pict_type) {
case P_TYPE:
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
{
int scale, shift, i;
v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
v->use_ic = 1;
/* fill lookup tables for intensity compensation */
if(!v->lumscale) {
scale = -64;
shift = (255 - v->lumshift * 2) << 6;
if(v->lumshift > 31)
shift += 128 << 6;
} else {
scale = v->lumscale + 32;
if(v->lumshift > 31)
shift = (v->lumshift - 64) << 6;
else
shift = v->lumshift << 6;
}
for(i = 0; i < 256; i++) {
v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
}
}
if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else
v->s.quarter_sample = 1;
} else
v->s.quarter_sample = 1;
v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV)
|| v->mv_mode == MV_PMODE_MIXED_MV)
{
status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else {
v->mv_type_is_raw = 0;
memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
/* Hopefully this is correct for P frames */
v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0; //FIXME Is that so ?
if (v->vstransform)
{
v->ttmbf = get_bits1(gb);
if (v->ttmbf)
{
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
case B_TYPE:
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
v->s.mspel = v->s.quarter_sample;
status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->s.mv_table_index = get_bits(gb, 2);
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0;
if (v->vstransform)
{
v->ttmbf = get_bits1(gb);
if (v->ttmbf)
{
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
}
if(!v->x8_type)
{
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
{
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = get_bits1(gb);
}
if(v->s.pict_type == BI_TYPE) {
v->s.pict_type = B_TYPE;
v->bi_type = 1;
}
return 0;
}
static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
{
int pqindex, lowquant;
int status;
v->p_frame_skipped = 0;
if(v->interlace){
v->fcm = decode012(gb);
if(v->fcm) return -1; // interlaced frames/fields are not implemented
}
switch(get_unary(gb, 0, 4)) {
case 0:
v->s.pict_type = P_TYPE;
break;
case 1:
v->s.pict_type = B_TYPE;
break;
case 2:
v->s.pict_type = I_TYPE;
break;
case 3:
v->s.pict_type = BI_TYPE;
break;
case 4:
v->s.pict_type = P_TYPE; // skipped pic
v->p_frame_skipped = 1;
return 0;
}
if(v->tfcntrflag)
skip_bits(gb, 8);
if(v->broadcast) {
if(!v->interlace || v->psf) {
v->rptfrm = get_bits(gb, 2);
} else {
v->tff = get_bits1(gb);
v->rptfrm = get_bits1(gb);
}
}
if(v->panscanflag) {
//...
}
v->rnd = get_bits1(gb);
if(v->interlace)
v->uvsamp = get_bits1(gb);
if(v->finterpflag) v->interpfrm = get_bits1(gb);
if(v->s.pict_type == B_TYPE) {
v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
if(v->bfraction == 0) {
v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
}
}
pqindex = get_bits(gb, 5);
if(!pqindex) return -1;
v->pqindex = pqindex;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = ff_vc1_pquant_table[0][pqindex];
else
v->pq = ff_vc1_pquant_table[1][pqindex];
v->pquantizer = 1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pquantizer = pqindex < 9;
if (v->quantizer_mode == QUANT_NON_UNIFORM)
v->pquantizer = 0;
v->pqindex = pqindex;
if (pqindex < 9) v->halfpq = get_bits1(gb);
else v->halfpq = 0;
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits1(gb);
if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
switch(v->s.pict_type) {
case I_TYPE:
case BI_TYPE:
status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->condover = CONDOVER_NONE;
if(v->overlap && v->pq <= 8) {
v->condover = decode012(gb);
if(v->condover == CONDOVER_SELECT) {
status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
}
}
break;
case P_TYPE:
if(v->postprocflag)
v->postproc = get_bits1(gb);
if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
else v->mvrange = 0;
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
{
int scale, shift, i;
v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
/* fill lookup tables for intensity compensation */
if(!v->lumscale) {
scale = -64;
shift = (255 - v->lumshift * 2) << 6;
if(v->lumshift > 31)
shift += 128 << 6;
} else {
scale = v->lumscale + 32;
if(v->lumshift > 31)
shift = (v->lumshift - 64) << 6;
else
shift = v->lumshift << 6;
}
for(i = 0; i < 256; i++) {
v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
}
v->use_ic = 1;
}
if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else
v->s.quarter_sample = 1;
} else
v->s.quarter_sample = 1;
v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV)
|| v->mv_mode == MV_PMODE_MIXED_MV)
{
status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else {
v->mv_type_is_raw = 0;
memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
/* Hopefully this is correct for P frames */
v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0; //FIXME Is that so ?
if (v->vstransform)
{
v->ttmbf = get_bits1(gb);
if (v->ttmbf)
{
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
case B_TYPE:
if(v->postprocflag)
v->postproc = get_bits1(gb);
if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
else v->mvrange = 0;
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
v->s.mspel = v->s.quarter_sample;
status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->s.mv_table_index = get_bits(gb, 2);
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0;
if (v->vstransform)
{
v->ttmbf = get_bits1(gb);
if (v->ttmbf)
{
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
}
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
{
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = get_bits1(gb);
if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->bi_type = 0;
if(v->s.pict_type == BI_TYPE) {
v->s.pict_type = B_TYPE;
v->bi_type = 1;
}
return 0;
}
/***********************************************************************/
/**
* @defgroup block VC-1 Block-level functions
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
/**
* @def GET_MQUANT
* @brief Get macroblock-level quantizer scale
*/
#define GET_MQUANT() \
if (v->dquantfrm) \
{ \
int edges = 0; \
if (v->dqprofile == DQPROFILE_ALL_MBS) \
{ \
if (v->dqbilevel) \
{ \
mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
} \
else \
{ \
mqdiff = get_bits(gb, 3); \
if (mqdiff != 7) mquant = v->pq + mqdiff; \
else mquant = get_bits(gb, 5); \
} \
} \
if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
edges = 1 << v->dqsbedge; \
else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
edges = (3 << v->dqsbedge) % 15; \
else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
edges = 15; \
if((edges&1) && !s->mb_x) \
mquant = v->altpq; \
if((edges&2) && s->first_slice_line) \
mquant = v->altpq; \
if((edges&4) && s->mb_x == (s->mb_width - 1)) \
mquant = v->altpq; \
if((edges&8) && s->mb_y == (s->mb_height - 1)) \
mquant = v->altpq; \
}
/**
* @def GET_MVDATA(_dmv_x, _dmv_y)
* @brief Get MV differentials
* @see MVDATA decoding from 8.3.5.2, p(1)20
* @param _dmv_x Horizontal differential for decoded MV
* @param _dmv_y Vertical differential for decoded MV
*/
#define GET_MVDATA(_dmv_x, _dmv_y) \
index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
VC1_MV_DIFF_VLC_BITS, 2); \
if (index > 36) \
{ \
mb_has_coeffs = 1; \
index -= 37; \
} \
else mb_has_coeffs = 0; \
s->mb_intra = 0; \
if (!index) { _dmv_x = _dmv_y = 0; } \
else if (index == 35) \
{ \
_dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
_dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
} \
else if (index == 36) \
{ \
_dmv_x = 0; \
_dmv_y = 0; \
s->mb_intra = 1; \
} \
else \
{ \
index1 = index%6; \
if (!s->quarter_sample && index1 == 5) val = 1; \
else val = 0; \
if(size_table[index1] - val > 0) \
val = get_bits(gb, size_table[index1] - val); \
else val = 0; \
sign = 0 - (val&1); \
_dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
\
index1 = index/6; \
if (!s->quarter_sample && index1 == 5) val = 1; \
else val = 0; \
if(size_table[index1] - val > 0) \
val = get_bits(gb, size_table[index1] - val); \
else val = 0; \
sign = 0 - (val&1); \
_dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
}
/** Predict and set motion vector
*/
static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
{
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
/* scale MV difference to be quad-pel */
dmv_x <<= 1 - s->quarter_sample;
dmv_y <<= 1 - s->quarter_sample;
wrap = s->b8_stride;
xy = s->block_index[n];
if(s->mb_intra){
s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
s->current_picture.motion_val[1][xy][0] = 0;
s->current_picture.motion_val[1][xy][1] = 0;
if(mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[0][xy + 1][0] = 0;
s->current_picture.motion_val[0][xy + 1][1] = 0;
s->current_picture.motion_val[0][xy + wrap][0] = 0;
s->current_picture.motion_val[0][xy + wrap][1] = 0;
s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
s->current_picture.motion_val[1][xy + 1][0] = 0;
s->current_picture.motion_val[1][xy + 1][1] = 0;
s->current_picture.motion_val[1][xy + wrap][0] = 0;
s->current_picture.motion_val[1][xy + wrap][1] = 0;
s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
}
return;
}
C = s->current_picture.motion_val[0][xy - 1];
A = s->current_picture.motion_val[0][xy - wrap];
if(mv1)
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
else {
//in 4-MV mode different blocks have different B predictor position
switch(n){
case 0:
off = (s->mb_x > 0) ? -1 : 1;
break;
case 1:
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
break;
case 2:
off = 1;
break;
case 3:
off = -1;
}
}
B = s->current_picture.motion_val[0][xy - wrap + off];
if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(mv1) {
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
} else {
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
}
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
if(is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 1])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
if(mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
}
}
/** Motion compensation for direct or interpolated blocks in B-frames
*/
static void vc1_interp_mc(VC1Context *v)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY, *srcU, *srcV;
int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
if(!v->s.next_picture.data[0])return;
mx = s->mv[1][0][0];
my = s->mv[1][0][1];
uvmx = (mx + ((mx & 3) == 3)) >> 1;
uvmy = (my + ((my & 3) == 3)) >> 1;
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
}
srcY = s->next_picture.data[0];
srcU = s->next_picture.data[1];
srcV = s->next_picture.data[2];
src_x = s->mb_x * 16 + (mx >> 2);
src_y = s->mb_y * 16 + (my >> 2);
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if(v->profile != PROFILE_ADVANCED){
src_x = av_clip( src_x, -16, s->mb_width * 16);
src_y = av_clip( src_y, -16, s->mb_height * 16);
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
}else{
src_x = av_clip( src_x, -17, s->avctx->coded_width);
src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
/* for grayscale we should not try to read from unknown area */
if(s->flags & CODEC_FLAG_GRAY) {
srcU = s->edge_emu_buffer + 18 * s->linesize;
srcV = s->edge_emu_buffer + 18 * s->linesize;
}
if(v->rangeredfrm
|| (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
|| (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
srcY -= s->mspel * (1 + s->linesize);
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
mx >>= 1;
my >>= 1;
dxy = ((my & 1) << 1) | (mx & 1);
dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
if(s->flags & CODEC_FLAG_GRAY) return;
/* Chroma MC always uses qpel blilinear */
uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
{
int n = bfrac;
#if B_FRACTION_DEN==256
if(inv)
n -= 256;
if(!qs)
return 2 * ((value * n + 255) >> 9);
return (value * n + 128) >> 8;
#else
if(inv)
n -= B_FRACTION_DEN;
if(!qs)
return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
#endif
}
/** Reconstruct motion vector for B-frame and do motion compensation
*/
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
{
if(v->use_ic) {
v->mv_mode2 = v->mv_mode;
v->mv_mode = MV_PMODE_INTENSITY_COMP;
}
if(direct) {
vc1_mc_1mv(v, 0);
vc1_interp_mc(v);
if(v->use_ic) v->mv_mode = v->mv_mode2;
return;
}
if(mode == BMV_TYPE_INTERPOLATED) {
vc1_mc_1mv(v, 0);
vc1_interp_mc(v);
if(v->use_ic) v->mv_mode = v->mv_mode2;
return;
}
if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
if(v->use_ic) v->mv_mode = v->mv_mode2;
}
static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
{
MpegEncContext *s = &v->s;
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
int r_x, r_y;
const uint8_t *is_intra = v->mb_type[0];
r_x = v->range_x;
r_y = v->range_y;
/* scale MV difference to be quad-pel */
dmv_x[0] <<= 1 - s->quarter_sample;
dmv_y[0] <<= 1 - s->quarter_sample;
dmv_x[1] <<= 1 - s->quarter_sample;
dmv_y[1] <<= 1 - s->quarter_sample;
wrap = s->b8_stride;
xy = s->block_index[0];
if(s->mb_intra) {
s->current_picture.motion_val[0][xy][0] =
s->current_picture.motion_val[0][xy][1] =
s->current_picture.motion_val[1][xy][0] =
s->current_picture.motion_val[1][xy][1] = 0;
return;
}
s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
/* Pullback predicted motion vectors as specified in 8.4.5.4 */
s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
if(direct) {
s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
return;
}
if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
C = s->current_picture.motion_val[0][xy - 2];
A = s->current_picture.motion_val[0][xy - wrap*2];
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
B = s->current_picture.motion_val[0][xy - wrap*2 + off];
if(!s->mb_x) C[0] = C[1] = 0;
if(!s->first_slice_line) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
if(v->profile < PROFILE_ADVANCED) {
qx = (s->mb_x << 5);
qy = (s->mb_y << 5);
X = (s->mb_width << 5) - 4;
Y = (s->mb_height << 5) - 4;
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
} else {
qx = (s->mb_x << 6);
qy = (s->mb_y << 6);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if(0 && !s->first_slice_line && s->mb_x) {
if(is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 2])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
}
if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
C = s->current_picture.motion_val[1][xy - 2];
A = s->current_picture.motion_val[1][xy - wrap*2];
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
B = s->current_picture.motion_val[1][xy - wrap*2 + off];
if(!s->mb_x) C[0] = C[1] = 0;
if(!s->first_slice_line) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
if(v->profile < PROFILE_ADVANCED) {
qx = (s->mb_x << 5);
qy = (s->mb_y << 5);
X = (s->mb_width << 5) - 4;
Y = (s->mb_height << 5) - 4;
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
} else {
qx = (s->mb_x << 6);
qy = (s->mb_y << 6);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if(0 && !s->first_slice_line && s->mb_x) {
if(is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 2])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
}
s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
}
/** Get predicted DC value for I-frames only
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
static const uint16_t dcpred[32] = {
-1, 1024, 512, 341, 256, 205, 171, 146, 128,
114, 102, 93, 85, 79, 73, 68, 64,
60, 57, 54, 51, 49, 47, 45, 43,
41, 39, 38, 37, 35, 34, 33
};
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (pq < 9 || !overlap)
{
/* Set outer values */
if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
}
else
{
/* Set outer values */
if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
}
if (abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = a;
*dir_ptr = 0;//top
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** Get predicted DC value
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int a_avail, int c_avail,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int q1, q2 = 0;
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
/* scale predictors if needed */
q1 = s->current_picture.qscale_table[mb_pos];
if(c_avail && (n!= 1 && n!=3)) {
q2 = s->current_picture.qscale_table[mb_pos - 1];
if(q2 && q2 != q1)
c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && (n!= 2 && n!=3)) {
q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if(q2 && q2 != q1)
a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && c_avail && (n!=3)) {
int off = mb_pos;
if(n != 1) off--;
if(n != 2) off -= s->mb_stride;
q2 = s->current_picture.qscale_table[off];
if(q2 && q2 != q1)
b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && c_avail) {
if(abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = a;
*dir_ptr = 0;//top
}
} else if(a_avail) {
pred = a;
*dir_ptr = 0;//top
} else if(c_avail) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = 0;
*dir_ptr = 1;//left
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/**
* @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
{
int xy, wrap, pred, a, b, c;
xy = s->block_index[n];
wrap = s->b8_stride;
/* B C
* A X
*/
a = s->coded_block[xy - 1 ];
b = s->coded_block[xy - 1 - wrap];
c = s->coded_block[xy - wrap];
if (b == c) {
pred = a;
} else {
pred = c;
}
/* store value */
*coded_block_ptr = &s->coded_block[xy];
return pred;
}
/**
* Decode one AC coefficient
* @param v The VC1 context
* @param last Last coefficient
* @param skip How much zero coefficients to skip
* @param value Decoded AC coefficient value
* @see 8.1.3.4
*/
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
{
GetBitContext *gb = &v->s.gb;
int index, escape, run = 0, level = 0, lst = 0;
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
if (index != vc1_ac_sizes[codingset] - 1) {
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if(get_bits1(gb))
level = -level;
} else {
escape = decode210(gb);
if (escape != 2) {
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if(escape == 0) {
if(lst)
level += vc1_last_delta_level_table[codingset][run];
else
level += vc1_delta_level_table[codingset][run];
} else {
if(lst)
run += vc1_last_delta_run_table[codingset][level] + 1;
else
run += vc1_delta_run_table[codingset][level] + 1;
}
if(get_bits1(gb))
level = -level;
} else {
int sign;
lst = get_bits1(gb);
if(v->s.esc3_level_length == 0) {
if(v->pq < 8 || v->dquantfrm) { // table 59
v->s.esc3_level_length = get_bits(gb, 3);
if(!v->s.esc3_level_length)
v->s.esc3_level_length = get_bits(gb, 2) + 8;
} else { //table 60
v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
}
v->s.esc3_run_length = 3 + get_bits(gb, 2);
}
run = get_bits(gb, v->s.esc3_run_length);
sign = get_bits1(gb);
level = get_bits(gb, v->s.esc3_level_length);
if(sign)
level = -level;
}
}
*last = lst;
*skip = run;
*value = level;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int run_diff, i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (v->pq == 1) dcdiff = get_bits(gb, 10);
else if (v->pq == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (v->pq == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (v->pq == 2)
dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
run_diff = 0;
i = 0;
if (!coded) {
goto not_coded;
}
//AC Decoding
i = 1;
{
int last = 0, skip, value;
const int8_t *zz_table;
int scale;
int k;
scale = v->pq * 2 + v->halfpq;
if(v->s.ac_pred) {
if(!dc_pred_dir)
zz_table = ff_vc1_horizontal_zz;
else
zz_table = ff_vc1_vertical_zz;
} else
zz_table = ff_vc1_normal_zz;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(s->ac_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k] += ac_val[k + 8];
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << 3];
ac_val2[k + 8] = block[k];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
if(s->ac_pred) i = 63;
}
not_coded:
if(!coded) {
int k, scale;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = v->pq * 2 + v->halfpq;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
ac_val -= 16;
if(s->ac_pred)
memcpy(ac_val2, ac_val, 8 * 2);
} else {//top
ac_val -= 16 * s->block_wrap[n];
if(s->ac_pred)
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
}
/* apply AC prediction if needed */
if(s->ac_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << 3] = ac_val[k] * scale;
if(!v->pquantizer && block[k << 3])
block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k] = ac_val[k + 8] * scale;
if(!v->pquantizer && block[k])
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int run_diff, i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
run_diff = 0;
i = 0;
//AC Decoding
i = 1;
/* check if AC is needed at all */
if(!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.qscale_table[mb_pos];
if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if(dc_pred_dir && n==1) q2 = q1;
if(!dc_pred_dir && n==2) q2 = q1;
if(n==3) q2 = q1;
if(coded) {
int last = 0, skip, value;
const int8_t *zz_table;
int k;
if(v->s.ac_pred) {
if(!dc_pred_dir)
zz_table = ff_vc1_horizontal_zz;
else
zz_table = ff_vc1_vertical_zz;
} else
zz_table = ff_vc1_normal_zz;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(use_pred) {
/* scale predictors if needed*/
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for(k = 1; k < 8; k++)
block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << 3];
ac_val2[k + 8] = block[k];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if(use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
if(use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else {//top
if(use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if(use_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << 3] = ac_val2[k] * scale;
if(!v->pquantizer && block[k << 3])
block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k] = ac_val2[k + 8] * scale;
if(!v->pquantizer && block[k])
block[k] += (block[k] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
* @param v VC1Context
* @param block block to decode
* @param coded are AC coeffs present or not
* @param mquant block quantizer
* @param codingset set of VLC to decode data
*/
static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int run_diff, i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
/* XXX: Guard against dumb values of mquant */
mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
run_diff = 0;
i = 0;
//AC Decoding
i = 1;
/* check if AC is needed at all and adjust direction if needed */
if(!a_avail) dc_pred_dir = 1;
if(!c_avail) dc_pred_dir = 0;
if(!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + v->halfpq;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.qscale_table[mb_pos];
if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if(dc_pred_dir && n==1) q2 = q1;
if(!dc_pred_dir && n==2) q2 = q1;
if(n==3) q2 = q1;
if(coded) {
int last = 0, skip, value;
const int8_t *zz_table;
int k;
zz_table = ff_vc1_simple_progressive_8x8_zz;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(use_pred) {
/* scale predictors if needed*/
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for(k = 1; k < 8; k++)
block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << 3];
ac_val2[k + 8] = block[k];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if(use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
if(use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else {//top
if(use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if(use_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << 3] = ac_val2[k] * scale;
if(!v->pquantizer && block[k << 3])
block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k] = ac_val2[k + 8] * scale;
if(!v->pquantizer && block[k])
block[k] += (block[k] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode P block
*/
static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
uint8_t *dst, int linesize, int skip_block)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int subblkpat = 0;
int scale, off, idx, last, skip, value;
int ttblk = ttmb & 7;
if(ttmb == -1) {
ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
}
if(ttblk == TT_4X4) {
subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
}
if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
subblkpat = decode012(gb);
if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
}
scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
// convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
subblkpat = 2 - (ttblk == TT_8X4_TOP);
ttblk = TT_8X4;
}
if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
subblkpat = 2 - (ttblk == TT_4X8_LEFT);
ttblk = TT_4X8;
}
switch(ttblk) {
case TT_8X8:
i = 0;
last = 0;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 63)
break;
idx = ff_vc1_simple_progressive_8x8_zz[i++];
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if(!skip_block){
s->dsp.vc1_inv_trans_8x8(block);
s->dsp.add_pixels_clamped(block, dst, linesize);
}
break;
case TT_4X4:
for(j = 0; j < 4; j++) {
last = subblkpat & (1 << (3 - j));
i = 0;
off = (j & 1) * 4 + (j & 2) * 16;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 15)
break;
idx = ff_vc1_simple_progressive_4x4_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (3 - j))) && !skip_block)
s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
}
break;
case TT_8X4:
for(j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 32;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 31)
break;
idx = v->zz_8x4[i++]+off;
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (1 - j))) && !skip_block)
s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
}
break;
case TT_4X8:
for(j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 4;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 31)
break;
idx = v->zz_4x8[i++]+off;
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (1 - j))) && !skip_block)
s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
}
break;
}
return 0;
}
/** Decode one P-frame MB (in Simple/Main profile)
*/
static int vc1_decode_p_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int status;
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indices */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv;
mquant = v->pq; /* Loosy initialization */
if (v->mv_type_is_raw)
fourmv = get_bits1(gb);
else
fourmv = v->mv_type_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
s->dsp.clear_blocks(s->block[0]);
if (!fourmv) /* 1MV mode */
{
if (!skipped)
{
GET_MVDATA(dmv_x, dmv_y);
if (s->mb_intra) {
s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
}
s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs)
{
GET_MQUANT();
s->ac_pred = get_bits1(gb);
cbp = 0;
}
else if (mb_has_coeffs)
{
if (s->mb_intra) s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
}
else
{
mquant = v->pq;
cbp = 0;
}
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
VC1_TTMB_VLC_BITS, 2);
if(!s->mb_intra) vc1_mc_1mv(v, 0);
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
s->dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
if(v->pq >= 9 && v->overlap) {
if(v->c_avail)
s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
if(v->a_avail)
s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
}
} else if(val) {
vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
}
}
}
else //Skipped
{
s->mb_intra = 0;
for(i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
s->current_picture.qscale_table[mb_pos] = 0;
vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_1mv(v, 0);
return 0;
}
} //1MV mode
else //4MV mode
{
if (!skipped /* unskipped MB */)
{
int intra_count = 0, coded_inter = 0;
int is_intra[6], is_coded[6];
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
s->dc_val[0][s->block_index[i]] = 0;
s->mb_intra = 0;
if(i < 4) {
dmv_x = dmv_y = 0;
s->mb_intra = 0;
mb_has_coeffs = 0;
if(val) {
GET_MVDATA(dmv_x, dmv_y);
}
vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
intra_count += s->mb_intra;
is_intra[i] = s->mb_intra;
is_coded[i] = mb_has_coeffs;
}
if(i&4){
is_intra[i] = (intra_count >= 3);
is_coded[i] = val;
}
if(i == 4) vc1_mc_4mv_chroma(v);
v->mb_type[0][s->block_index[i]] = is_intra[i];
if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
}
// if there are no coded blocks then don't do anything more
if(!intra_count && !coded_inter) return 0;
dst_idx = 0;
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* test if block is intra and has pred */
{
int intrapred = 0;
for(i=0; i<6; i++)
if(is_intra[i]) {
if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
|| ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
intrapred = 1;
break;
}
}
if(intrapred)s->ac_pred = get_bits1(gb);
else s->ac_pred = 0;
}
if (!v->ttmbf && coded_inter)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
for (i=0; i<6; i++)
{
dst_idx += i >> 2;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->mb_intra = is_intra[i];
if (is_intra[i]) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
s->dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
if(v->pq >= 9 && v->overlap) {
if(v->c_avail)
s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
if(v->a_avail)
s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
}
} else if(is_coded[i]) {
status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
}
}
return status;
}
else //Skipped MB
{
s->mb_intra = 0;
s->current_picture.qscale_table[mb_pos] = 0;
for (i=0; i<6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
for (i=0; i<4; i++)
{
vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_4mv_luma(v, i);
}
vc1_mc_4mv_chroma(v);
s->current_picture.qscale_table[mb_pos] = 0;
return 0;
}
}
/* Should never happen */
return -1;
}
/** Decode one B-frame MB (in Main profile)
*/
static void vc1_decode_b_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 0; /* last_flag */
int index, index1; /* LUT indices */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, direct;
int dmv_x[2], dmv_y[2];
int bmvtype = BMV_TYPE_BACKWARD;
mquant = v->pq; /* Loosy initialization */
s->mb_intra = 0;
if (v->dmb_is_raw)
direct = get_bits1(gb);
else
direct = v->direct_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
s->dsp.clear_blocks(s->block[0]);
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
for(i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.qscale_table[mb_pos] = 0;
if (!direct) {
if (!skipped) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
dmv_x[1] = dmv_x[0];
dmv_y[1] = dmv_y[0];
}
if(skipped || !s->mb_intra) {
bmvtype = decode012(gb);
switch(bmvtype) {
case 0:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
break;
case 1:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
dmv_x[0] = dmv_y[0] = 0;
}
}
}
for(i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (skipped) {
if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if (direct) {
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->mb_intra = 0;
mb_has_coeffs = 0;
s->current_picture.qscale_table[mb_pos] = mquant;
if(!v->ttmbf)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if(!mb_has_coeffs && !s->mb_intra) {
/* no coded blocks - effectively skipped */
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if(s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
s->ac_pred = get_bits1(gb);
cbp = 0;
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if(bmvtype == BMV_TYPE_INTERPOLATED) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
if(!mb_has_coeffs) {
/* interpolated skipped block */
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
}
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
if(!s->mb_intra) {
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
}
if(s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
}
}
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
s->dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
} else if(val) {
vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
}
}
}
/** Decode blocks of I-frame
*/
static void vc1_decode_i_blocks(VC1Context *v)
{
int k, j;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
/* select codingmode used for VLC tables selection */
switch(v->y_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[v->pq];
s->c_dc_scale = s->c_dc_scale_table[v->pq];
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
mb_pos = s->mb_x + s->mb_y * s->mb_width;
s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
s->current_picture.qscale_table[mb_pos] = v->pq;
s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
v->s.ac_pred = get_bits1(&v->s.gb);
for(k = 0; k < 6; k++) {
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
s->dsp.vc1_inv_trans_8x8(s->block[k]);
if(v->pq >= 9 && v->overlap) {
for(j = 0; j < 64; j++) s->block[k][j] += 128;
}
}
vc1_put_block(v, s->block);
if(v->pq >= 9 && v->overlap) {
if(s->mb_x) {
s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
}
}
s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
if(!s->first_slice_line) {
s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
}
}
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
}
if(get_bits_count(&s->gb) > v->bits) {
ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
}
/** Decode blocks of I-frame for advanced profile
*/
static void vc1_decode_i_blocks_adv(VC1Context *v)
{
int k, j;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
int mquant = v->pq;
int mqdiff;
int overlap;
GetBitContext *gb = &s->gb;
/* select codingmode used for VLC tables selection */
switch(v->y_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
mb_pos = s->mb_x + s->mb_y * s->mb_stride;
s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
if(v->acpred_is_raw)
v->s.ac_pred = get_bits1(&v->s.gb);
else
v->s.ac_pred = v->acpred_plane[mb_pos];
if(v->condover == CONDOVER_SELECT) {
if(v->overflg_is_raw)
overlap = get_bits1(&v->s.gb);
else
overlap = v->over_flags_plane[mb_pos];
} else
overlap = (v->condover == CONDOVER_ALL);
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
for(k = 0; k < 6; k++) {
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
v->a_avail = !s->first_slice_line || (k==2 || k==3);
v->c_avail = !!s->mb_x || (k==1 || k==3);
vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
s->dsp.vc1_inv_trans_8x8(s->block[k]);
for(j = 0; j < 64; j++) s->block[k][j] += 128;
}
vc1_put_block(v, s->block);
if(overlap) {
if(s->mb_x) {
s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
}
}
s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
if(!s->first_slice_line) {
s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
}
}
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
}
if(get_bits_count(&s->gb) > v->bits) {
ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
}
static void vc1_decode_p_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* select codingmode used for VLC tables selection */
switch(v->c_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
vc1_decode_p_mb(v);
if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
}
static void vc1_decode_b_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* select codingmode used for VLC tables selection */
switch(v->c_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
vc1_decode_b_mb(v);
if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
}
static void vc1_decode_skip_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
ff_update_block_index(s);
memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
s->pict_type = P_TYPE;
}
static void vc1_decode_blocks(VC1Context *v)
{
v->s.esc3_level_length = 0;
if(v->x8_type){
ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
}else{
switch(v->s.pict_type) {
case I_TYPE:
if(v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
break;
case P_TYPE:
if(v->p_frame_skipped)
vc1_decode_skip_blocks(v);
else
vc1_decode_p_blocks(v);
break;
case B_TYPE:
if(v->bi_type){
if(v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
}else
vc1_decode_b_blocks(v);
break;
}
}
}
/** Find VC-1 marker in buffer
* @return position where next marker starts or end of buffer if no marker found
*/
static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
{
uint32_t mrk = 0xFFFFFFFF;
if(end-src < 4) return end;
while(src < end){
mrk = (mrk << 8) | *src++;
if(IS_MARKER(mrk))
return src-4;
}
return end;
}
static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
{
int dsize = 0, i;
if(size < 4){
for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
return size;
}
for(i = 0; i < size; i++, src++) {
if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
dst[dsize++] = src[1];
src++;
i++;
} else
dst[dsize++] = *src;
}
return dsize;
}
/** Initialize a VC1/WMV3 decoder
* @todo TODO: Handle VC-1 IDUs (Transport level?)
* @todo TODO: Decypher remaining bits in extra_data
*/
static int vc1_decode_init(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
GetBitContext gb;
if (!avctx->extradata_size || !avctx->extradata) return -1;
if (!(avctx->flags & CODEC_FLAG_GRAY))
avctx->pix_fmt = PIX_FMT_YUV420P;
else
avctx->pix_fmt = PIX_FMT_GRAY8;
v->s.avctx = avctx;
avctx->flags |= CODEC_FLAG_EMU_EDGE;
v->s.flags |= CODEC_FLAG_EMU_EDGE;
if(avctx->idct_algo==FF_IDCT_AUTO){
avctx->idct_algo=FF_IDCT_WMV2;
}
if(ff_h263_decode_init(avctx) < 0)
return -1;
if (vc1_init_common(v) < 0) return -1;
avctx->coded_width = avctx->width;
avctx->coded_height = avctx->height;
if (avctx->codec_id == CODEC_ID_WMV3)
{
int count = 0;
// looks like WMV3 has a sequence header stored in the extradata
// advanced sequence header may be before the first frame
// the last byte of the extradata is a version number, 1 for the
// samples we can decode
init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
if (decode_sequence_header(avctx, &gb) < 0)
return -1;
count = avctx->extradata_size*8 - get_bits_count(&gb);
if (count>0)
{
av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
count, get_bits(&gb, count));
}
else if (count < 0)
{
av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
}
} else { // VC1/WVC1
const uint8_t *start = avctx->extradata;
uint8_t *end = avctx->extradata + avctx->extradata_size;
const uint8_t *next;
int size, buf2_size;
uint8_t *buf2 = NULL;
int seq_initialized = 0, ep_initialized = 0;
if(avctx->extradata_size < 16) {
av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
return -1;
}
buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
if(start[0]) start++; // in WVC1 extradata first byte is its size
next = start;
for(; next < end; start = next){
next = find_next_marker(start + 4, end);
size = next - start - 4;
if(size <= 0) continue;
buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
init_get_bits(&gb, buf2, buf2_size * 8);
switch(AV_RB32(start)){
case VC1_CODE_SEQHDR:
if(decode_sequence_header(avctx, &gb) < 0){
av_free(buf2);
return -1;
}
seq_initialized = 1;
break;
case VC1_CODE_ENTRYPOINT:
if(decode_entry_point(avctx, &gb) < 0){
av_free(buf2);
return -1;
}
ep_initialized = 1;
break;
}
}
av_free(buf2);
if(!seq_initialized || !ep_initialized){
av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
return -1;
}
}
avctx->has_b_frames= !!(avctx->max_b_frames);
s->low_delay = !avctx->has_b_frames;
s->mb_width = (avctx->coded_width+15)>>4;
s->mb_height = (avctx->coded_height+15)>>4;
/* Allocate mb bitplanes */
v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
/* allocate block type info in that way so it could be used with s->block_index[] */
v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
/* Init coded blocks info */
if (v->profile == PROFILE_ADVANCED)
{
// if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
// return -1;
// if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
// return -1;
}
ff_intrax8_common_init(&v->x8,s);
return 0;
}
/** Decode a VC1/WMV3 frame
* @todo TODO: Handle VC-1 IDUs (Transport level?)
*/
static int vc1_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
const uint8_t *buf, int buf_size)
{
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
AVFrame *pict = data;
uint8_t *buf2 = NULL;
/* no supplementary picture */
if (buf_size == 0) {
/* special case for last picture */
if (s->low_delay==0 && s->next_picture_ptr) {
*pict= *(AVFrame*)s->next_picture_ptr;
s->next_picture_ptr= NULL;
*data_size = sizeof(AVFrame);
}
return 0;
}
/* We need to set current_picture_ptr before reading the header,
* otherwise we cannot store anything in there. */
if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
int i= ff_find_unused_picture(s, 0);
s->current_picture_ptr= &s->picture[i];
}
//for advanced profile we may need to parse and unescape data
if (avctx->codec_id == CODEC_ID_VC1) {
int buf_size2 = 0;
buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
const uint8_t *start, *end, *next;
int size;
next = buf;
for(start = buf, end = buf + buf_size; next < end; start = next){
next = find_next_marker(start + 4, end);
size = next - start - 4;
if(size <= 0) continue;
switch(AV_RB32(start)){
case VC1_CODE_FRAME:
buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
break;
case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
init_get_bits(&s->gb, buf2, buf_size2*8);
decode_entry_point(avctx, &s->gb);
break;
case VC1_CODE_SLICE:
av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
av_free(buf2);
return -1;
}
}
}else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
const uint8_t *divider;
divider = find_next_marker(buf, buf + buf_size);
if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
return -1;
}
buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
// TODO
av_free(buf2);return -1;
}else{
buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
}
init_get_bits(&s->gb, buf2, buf_size2*8);
} else
init_get_bits(&s->gb, buf, buf_size*8);
// do parse frame header
if(v->profile < PROFILE_ADVANCED) {
if(vc1_parse_frame_header(v, &s->gb) == -1) {
av_free(buf2);
return -1;
}
} else {
if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
av_free(buf2);
return -1;
}
}
if(s->pict_type != I_TYPE && !v->res_rtm_flag){
av_free(buf2);
return -1;
}
// for hurry_up==5
s->current_picture.pict_type= s->pict_type;
s->current_picture.key_frame= s->pict_type == I_TYPE;
/* skip B-frames if we don't have reference frames */
if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
av_free(buf2);
return -1;//buf_size;
}
/* skip b frames if we are in a hurry */
if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
|| (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
|| avctx->skip_frame >= AVDISCARD_ALL) {
av_free(buf2);
return buf_size;
}
/* skip everything if we are in a hurry>=5 */
if(avctx->hurry_up>=5) {
av_free(buf2);
return -1;//buf_size;
}
if(s->next_p_frame_damaged){
if(s->pict_type==B_TYPE)
return buf_size;
else
s->next_p_frame_damaged=0;
}
if(MPV_frame_start(s, avctx) < 0) {
av_free(buf2);
return -1;
}
s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
ff_er_frame_start(s);
v->bits = buf_size * 8;
vc1_decode_blocks(v);
//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
// if(get_bits_count(&s->gb) > buf_size * 8)
// return -1;
ff_er_frame_end(s);
MPV_frame_end(s);
assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
assert(s->current_picture.pict_type == s->pict_type);
if (s->pict_type == B_TYPE || s->low_delay) {
*pict= *(AVFrame*)s->current_picture_ptr;
} else if (s->last_picture_ptr != NULL) {
*pict= *(AVFrame*)s->last_picture_ptr;
}
if(s->last_picture_ptr || s->low_delay){
*data_size = sizeof(AVFrame);
ff_print_debug_info(s, pict);
}
/* Return the Picture timestamp as the frame number */
/* we subtract 1 because it is added on utils.c */
avctx->frame_number = s->picture_number - 1;
av_free(buf2);
return buf_size;
}
/** Close a VC1/WMV3 decoder
* @warning Initial try at using MpegEncContext stuff
*/
static int vc1_decode_end(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
av_freep(&v->hrd_rate);
av_freep(&v->hrd_buffer);
MPV_common_end(&v->s);
av_freep(&v->mv_type_mb_plane);
av_freep(&v->direct_mb_plane);
av_freep(&v->acpred_plane);
av_freep(&v->over_flags_plane);
av_freep(&v->mb_type_base);
ff_intrax8_common_end(&v->x8);
return 0;
}
AVCodec vc1_decoder = {
"vc1",
CODEC_TYPE_VIDEO,
CODEC_ID_VC1,
sizeof(VC1Context),
vc1_decode_init,
NULL,
vc1_decode_end,
vc1_decode_frame,
CODEC_CAP_DELAY,
NULL
};
AVCodec wmv3_decoder = {
"wmv3",
CODEC_TYPE_VIDEO,
CODEC_ID_WMV3,
sizeof(VC1Context),
vc1_decode_init,
NULL,
vc1_decode_end,
vc1_decode_frame,
CODEC_CAP_DELAY,
NULL
};