third_party_ffmpeg/libavcodec/h264.c
Michael Niedermayer a35494c566 h264: fix indention of xchg_mb_border()
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2013-07-02 03:27:14 +02:00

5088 lines
190 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#define UNCHECKED_BITSTREAM_READER 1
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "internal.h"
#include "cabac.h"
#include "cabac_functions.h"
#include "dsputil.h"
#include "error_resilience.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "h264data.h"
#include "h264chroma.h"
#include "h264_mvpred.h"
#include "golomb.h"
#include "mathops.h"
#include "rectangle.h"
#include "svq3.h"
#include "thread.h"
#include "vdpau_internal.h"
#include "libavutil/avassert.h"
// #undef NDEBUG
#include <assert.h>
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 };
static const uint8_t rem6[QP_MAX_NUM + 1] = {
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3,
};
static const uint8_t div6[QP_MAX_NUM + 1] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10,
10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13,
14,14,14,14,
};
static const enum AVPixelFormat h264_hwaccel_pixfmt_list_420[] = {
#if CONFIG_H264_DXVA2_HWACCEL
AV_PIX_FMT_DXVA2_VLD,
#endif
#if CONFIG_H264_VAAPI_HWACCEL
AV_PIX_FMT_VAAPI_VLD,
#endif
#if CONFIG_H264_VDA_HWACCEL
AV_PIX_FMT_VDA_VLD,
#endif
#if CONFIG_H264_VDPAU_HWACCEL
AV_PIX_FMT_VDPAU,
#endif
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat h264_hwaccel_pixfmt_list_jpeg_420[] = {
#if CONFIG_H264_DXVA2_HWACCEL
AV_PIX_FMT_DXVA2_VLD,
#endif
#if CONFIG_H264_VAAPI_HWACCEL
AV_PIX_FMT_VAAPI_VLD,
#endif
#if CONFIG_H264_VDA_HWACCEL
AV_PIX_FMT_VDA_VLD,
#endif
#if CONFIG_H264_VDPAU_HWACCEL
AV_PIX_FMT_VDPAU,
#endif
AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_NONE
};
int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
return h ? h->sps.num_reorder_frames : 0;
}
static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type,
int (*mv)[2][4][2],
int mb_x, int mb_y, int mb_intra, int mb_skipped)
{
H264Context *h = opaque;
h->mb_x = mb_x;
h->mb_y = mb_y;
h->mb_xy = mb_x + mb_y * h->mb_stride;
memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache));
av_assert1(ref >= 0);
/* FIXME: It is possible albeit uncommon that slice references
* differ between slices. We take the easy approach and ignore
* it for now. If this turns out to have any relevance in
* practice then correct remapping should be added. */
if (ref >= h->ref_count[0])
ref = 0;
if (!h->ref_list[0][ref].f.data[0]) {
av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n");
ref = 0;
}
if ((h->ref_list[0][ref].reference&3) != 3) {
av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n");
return;
}
fill_rectangle(&h->cur_pic.ref_index[0][4 * h->mb_xy],
2, 2, 2, ref, 1);
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8,
pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4);
h->mb_mbaff =
h->mb_field_decoding_flag = 0;
ff_h264_hl_decode_mb(h);
}
void ff_h264_draw_horiz_band(H264Context *h, int y, int height)
{
AVCodecContext *avctx = h->avctx;
Picture *cur = &h->cur_pic;
Picture *last = h->ref_list[0][0].f.data[0] ? &h->ref_list[0][0] : NULL;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
int vshift = desc->log2_chroma_h;
const int field_pic = h->picture_structure != PICT_FRAME;
if (field_pic) {
height <<= 1;
y <<= 1;
}
height = FFMIN(height, avctx->height - y);
if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD))
return;
if (avctx->draw_horiz_band) {
AVFrame *src;
int offset[AV_NUM_DATA_POINTERS];
int i;
if (cur->f.pict_type == AV_PICTURE_TYPE_B || h->low_delay ||
(avctx->slice_flags & SLICE_FLAG_CODED_ORDER))
src = &cur->f;
else if (last)
src = &last->f;
else
return;
offset[0] = y * src->linesize[0];
offset[1] =
offset[2] = (y >> vshift) * src->linesize[1];
for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
offset[i] = 0;
emms_c();
avctx->draw_horiz_band(avctx, src, offset,
y, h->picture_structure, height);
}
}
static void unref_picture(H264Context *h, Picture *pic)
{
int off = offsetof(Picture, tf) + sizeof(pic->tf);
int i;
if (!pic->f.data[0])
return;
ff_thread_release_buffer(h->avctx, &pic->tf);
av_buffer_unref(&pic->hwaccel_priv_buf);
av_buffer_unref(&pic->qscale_table_buf);
av_buffer_unref(&pic->mb_type_buf);
for (i = 0; i < 2; i++) {
av_buffer_unref(&pic->motion_val_buf[i]);
av_buffer_unref(&pic->ref_index_buf[i]);
}
memset((uint8_t*)pic + off, 0, sizeof(*pic) - off);
}
static void release_unused_pictures(H264Context *h, int remove_current)
{
int i;
/* release non reference frames */
for (i = 0; i < MAX_PICTURE_COUNT; i++) {
if (h->DPB[i].f.data[0] && !h->DPB[i].reference &&
(remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
unref_picture(h, &h->DPB[i]);
}
}
}
static int ref_picture(H264Context *h, Picture *dst, Picture *src)
{
int ret, i;
av_assert0(!dst->f.buf[0]);
av_assert0(src->f.buf[0]);
src->tf.f = &src->f;
dst->tf.f = &dst->f;
ret = ff_thread_ref_frame(&dst->tf, &src->tf);
if (ret < 0)
goto fail;
dst->qscale_table_buf = av_buffer_ref(src->qscale_table_buf);
dst->mb_type_buf = av_buffer_ref(src->mb_type_buf);
if (!dst->qscale_table_buf || !dst->mb_type_buf)
goto fail;
dst->qscale_table = src->qscale_table;
dst->mb_type = src->mb_type;
for (i = 0; i < 2; i ++) {
dst->motion_val_buf[i] = av_buffer_ref(src->motion_val_buf[i]);
dst->ref_index_buf[i] = av_buffer_ref(src->ref_index_buf[i]);
if (!dst->motion_val_buf[i] || !dst->ref_index_buf[i])
goto fail;
dst->motion_val[i] = src->motion_val[i];
dst->ref_index[i] = src->ref_index[i];
}
if (src->hwaccel_picture_private) {
dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
if (!dst->hwaccel_priv_buf)
goto fail;
dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
}
for (i = 0; i < 2; i++)
dst->field_poc[i] = src->field_poc[i];
memcpy(dst->ref_poc, src->ref_poc, sizeof(src->ref_poc));
memcpy(dst->ref_count, src->ref_count, sizeof(src->ref_count));
dst->poc = src->poc;
dst->frame_num = src->frame_num;
dst->mmco_reset = src->mmco_reset;
dst->pic_id = src->pic_id;
dst->long_ref = src->long_ref;
dst->mbaff = src->mbaff;
dst->field_picture = src->field_picture;
dst->needs_realloc = src->needs_realloc;
dst->reference = src->reference;
dst->sync = src->sync;
dst->crop = src->crop;
dst->crop_left = src->crop_left;
dst->crop_top = src->crop_top;
return 0;
fail:
unref_picture(h, dst);
return ret;
}
static int alloc_scratch_buffers(H264Context *h, int linesize)
{
int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
if (h->bipred_scratchpad)
return 0;
h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size);
// edge emu needs blocksize + filter length - 1
// (= 21x21 for h264)
h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21);
h->me.scratchpad = av_mallocz(alloc_size * 2 * 16 * 2);
if (!h->bipred_scratchpad || !h->edge_emu_buffer || !h->me.scratchpad) {
av_freep(&h->bipred_scratchpad);
av_freep(&h->edge_emu_buffer);
av_freep(&h->me.scratchpad);
return AVERROR(ENOMEM);
}
h->me.temp = h->me.scratchpad;
return 0;
}
static int init_table_pools(H264Context *h)
{
const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
const int mb_array_size = h->mb_stride * h->mb_height;
const int b4_stride = h->mb_width * 4 + 1;
const int b4_array_size = b4_stride * h->mb_height * 4;
h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
av_buffer_allocz);
h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
sizeof(uint32_t), av_buffer_allocz);
h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
sizeof(int16_t), av_buffer_allocz);
h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
!h->ref_index_pool) {
av_buffer_pool_uninit(&h->qscale_table_pool);
av_buffer_pool_uninit(&h->mb_type_pool);
av_buffer_pool_uninit(&h->motion_val_pool);
av_buffer_pool_uninit(&h->ref_index_pool);
return AVERROR(ENOMEM);
}
return 0;
}
static int alloc_picture(H264Context *h, Picture *pic)
{
int i, ret = 0;
av_assert0(!pic->f.data[0]);
pic->tf.f = &pic->f;
ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
AV_GET_BUFFER_FLAG_REF : 0);
if (ret < 0)
goto fail;
h->linesize = pic->f.linesize[0];
h->uvlinesize = pic->f.linesize[1];
pic->crop = h->sps.crop;
pic->crop_top = h->sps.crop_top;
pic->crop_left= h->sps.crop_left;
if (h->avctx->hwaccel) {
const AVHWAccel *hwaccel = h->avctx->hwaccel;
av_assert0(!pic->hwaccel_picture_private);
if (hwaccel->priv_data_size) {
pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->priv_data_size);
if (!pic->hwaccel_priv_buf)
return AVERROR(ENOMEM);
pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data;
}
}
if (!h->qscale_table_pool) {
ret = init_table_pools(h);
if (ret < 0)
goto fail;
}
pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
if (!pic->qscale_table_buf || !pic->mb_type_buf)
goto fail;
pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
for (i = 0; i < 2; i++) {
pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
goto fail;
pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
pic->ref_index[i] = pic->ref_index_buf[i]->data;
}
return 0;
fail:
unref_picture(h, pic);
return (ret < 0) ? ret : AVERROR(ENOMEM);
}
static inline int pic_is_unused(H264Context *h, Picture *pic)
{
if (pic->f.data[0] == NULL)
return 1;
if (pic->needs_realloc && !(pic->reference & DELAYED_PIC_REF))
return 1;
return 0;
}
static int find_unused_picture(H264Context *h)
{
int i;
for (i = 0; i < MAX_PICTURE_COUNT; i++) {
if (pic_is_unused(h, &h->DPB[i]))
break;
}
if (i == MAX_PICTURE_COUNT)
return AVERROR_INVALIDDATA;
if (h->DPB[i].needs_realloc) {
h->DPB[i].needs_realloc = 0;
unref_picture(h, &h->DPB[i]);
}
return i;
}
/**
* Check if the top & left blocks are available if needed and
* change the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra4x4_pred_mode(H264Context *h)
{
static const int8_t top[12] = {
-1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0
};
static const int8_t left[12] = {
0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED
};
int i;
if (!(h->top_samples_available & 0x8000)) {
for (i = 0; i < 4; i++) {
int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]];
if (status < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"top block unavailable for requested intra4x4 mode %d at %d %d\n",
status, h->mb_x, h->mb_y);
return -1;
} else if (status) {
h->intra4x4_pred_mode_cache[scan8[0] + i] = status;
}
}
}
if ((h->left_samples_available & 0x8888) != 0x8888) {
static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 };
for (i = 0; i < 4; i++)
if (!(h->left_samples_available & mask[i])) {
int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]];
if (status < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"left block unavailable for requested intra4x4 mode %d at %d %d\n",
status, h->mb_x, h->mb_y);
return -1;
} else if (status) {
h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status;
}
}
}
return 0;
} // FIXME cleanup like ff_h264_check_intra_pred_mode
/**
* Check if the top & left blocks are available if needed and
* change the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma)
{
static const int8_t top[4] = { LEFT_DC_PRED8x8, 1, -1, -1 };
static const int8_t left[5] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 };
if (mode > 3U) {
av_log(h->avctx, AV_LOG_ERROR,
"out of range intra chroma pred mode at %d %d\n",
h->mb_x, h->mb_y);
return -1;
}
if (!(h->top_samples_available & 0x8000)) {
mode = top[mode];
if (mode < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"top block unavailable for requested intra mode at %d %d\n",
h->mb_x, h->mb_y);
return -1;
}
}
if ((h->left_samples_available & 0x8080) != 0x8080) {
mode = left[mode];
if (is_chroma && (h->left_samples_available & 0x8080)) {
// mad cow disease mode, aka MBAFF + constrained_intra_pred
mode = ALZHEIMER_DC_L0T_PRED8x8 +
(!(h->left_samples_available & 0x8000)) +
2 * (mode == DC_128_PRED8x8);
}
if (mode < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"left block unavailable for requested intra mode at %d %d\n",
h->mb_x, h->mb_y);
return -1;
}
}
return mode;
}
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
int *dst_length, int *consumed, int length)
{
int i, si, di;
uint8_t *dst;
int bufidx;
// src[0]&0x80; // forbidden bit
h->nal_ref_idc = src[0] >> 5;
h->nal_unit_type = src[0] & 0x1F;
src++;
length--;
#define STARTCODE_TEST \
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
if (src[i + 2] != 3) { \
/* startcode, so we must be past the end */ \
length = i; \
} \
break; \
}
#if HAVE_FAST_UNALIGNED
#define FIND_FIRST_ZERO \
if (i > 0 && !src[i]) \
i--; \
while (src[i]) \
i++
#if HAVE_FAST_64BIT
for (i = 0; i + 1 < length; i += 9) {
if (!((~AV_RN64A(src + i) &
(AV_RN64A(src + i) - 0x0100010001000101ULL)) &
0x8000800080008080ULL))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 7;
}
#else
for (i = 0; i + 1 < length; i += 5) {
if (!((~AV_RN32A(src + i) &
(AV_RN32A(src + i) - 0x01000101U)) &
0x80008080U))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 3;
}
#endif
#else
for (i = 0; i + 1 < length; i += 2) {
if (src[i])
continue;
if (i > 0 && src[i - 1] == 0)
i--;
STARTCODE_TEST;
}
#endif
// use second escape buffer for inter data
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0;
si = h->rbsp_buffer_size[bufidx];
av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE);
dst = h->rbsp_buffer[bufidx];
if (dst == NULL)
return NULL;
if(i>=length-1){ //no escaped 0
*dst_length= length;
*consumed= length+1; //+1 for the header
if(h->avctx->flags2 & CODEC_FLAG2_FAST){
return src;
}else{
memcpy(dst, src, length);
return dst;
}
}
memcpy(dst, src, i);
si = di = i;
while (si + 2 < length) {
// remove escapes (very rare 1:2^22)
if (src[si + 2] > 3) {
dst[di++] = src[si++];
dst[di++] = src[si++];
} else if (src[si] == 0 && src[si + 1] == 0) {
if (src[si + 2] == 3) { // escape
dst[di++] = 0;
dst[di++] = 0;
si += 3;
continue;
} else // next start code
goto nsc;
}
dst[di++] = src[si++];
}
while (si < length)
dst[di++] = src[si++];
nsc:
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
*dst_length = di;
*consumed = si + 1; // +1 for the header
/* FIXME store exact number of bits in the getbitcontext
* (it is needed for decoding) */
return dst;
}
/**
* Identify the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
static int decode_rbsp_trailing(H264Context *h, const uint8_t *src)
{
int v = *src;
int r;
tprintf(h->avctx, "rbsp trailing %X\n", v);
for (r = 1; r < 9; r++) {
if (v & 1)
return r;
v >>= 1;
}
return 0;
}
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n,
int height, int y_offset, int list)
{
int raw_my = h->mv_cache[list][scan8[n]][1];
int filter_height_down = (raw_my & 3) ? 3 : 0;
int full_my = (raw_my >> 2) + y_offset;
int bottom = full_my + filter_height_down + height;
av_assert2(height >= 0);
return FFMAX(0, bottom);
}
static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n,
int height, int y_offset, int list0,
int list1, int *nrefs)
{
int my;
y_offset += 16 * (h->mb_y >> MB_FIELD(h));
if (list0) {
int ref_n = h->ref_cache[0][scan8[n]];
Picture *ref = &h->ref_list[0][ref_n];
// Error resilience puts the current picture in the ref list.
// Don't try to wait on these as it will cause a deadlock.
// Fields can wait on each other, though.
if (ref->tf.progress->data != h->cur_pic.tf.progress->data ||
(ref->reference & 3) != h->picture_structure) {
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0);
if (refs[0][ref_n] < 0)
nrefs[0] += 1;
refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
}
}
if (list1) {
int ref_n = h->ref_cache[1][scan8[n]];
Picture *ref = &h->ref_list[1][ref_n];
if (ref->tf.progress->data != h->cur_pic.tf.progress->data ||
(ref->reference & 3) != h->picture_structure) {
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1);
if (refs[1][ref_n] < 0)
nrefs[1] += 1;
refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
}
}
}
/**
* Wait until all reference frames are available for MC operations.
*
* @param h the H264 context
*/
static void await_references(H264Context *h)
{
const int mb_xy = h->mb_xy;
const int mb_type = h->cur_pic.mb_type[mb_xy];
int refs[2][48];
int nrefs[2] = { 0 };
int ref, list;
memset(refs, -1, sizeof(refs));
if (IS_16X16(mb_type)) {
get_lowest_part_y(h, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
} else if (IS_16X8(mb_type)) {
get_lowest_part_y(h, refs, 0, 8, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, 8, 8, 8,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
} else if (IS_8X16(mb_type)) {
get_lowest_part_y(h, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, 4, 16, 0,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
} else {
int i;
av_assert2(IS_8X8(mb_type));
for (i = 0; i < 4; i++) {
const int sub_mb_type = h->sub_mb_type[i];
const int n = 4 * i;
int y_offset = (i & 2) << 2;
if (IS_SUB_8X8(sub_mb_type)) {
get_lowest_part_y(h, refs, n, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else if (IS_SUB_8X4(sub_mb_type)) {
get_lowest_part_y(h, refs, n, 4, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
get_lowest_part_y(h, refs, n + 2, 4, y_offset + 4,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else if (IS_SUB_4X8(sub_mb_type)) {
get_lowest_part_y(h, refs, n, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
get_lowest_part_y(h, refs, n + 1, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else {
int j;
av_assert2(IS_SUB_4X4(sub_mb_type));
for (j = 0; j < 4; j++) {
int sub_y_offset = y_offset + 2 * (j & 2);
get_lowest_part_y(h, refs, n + j, 4, sub_y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
}
}
}
}
for (list = h->list_count - 1; list >= 0; list--)
for (ref = 0; ref < 48 && nrefs[list]; ref++) {
int row = refs[list][ref];
if (row >= 0) {
Picture *ref_pic = &h->ref_list[list][ref];
int ref_field = ref_pic->reference - 1;
int ref_field_picture = ref_pic->field_picture;
int pic_height = 16 * h->mb_height >> ref_field_picture;
row <<= MB_MBAFF(h);
nrefs[list]--;
if (!FIELD_PICTURE(h) && ref_field_picture) { // frame referencing two fields
ff_thread_await_progress(&ref_pic->tf,
FFMIN((row >> 1) - !(row & 1),
pic_height - 1),
1);
ff_thread_await_progress(&ref_pic->tf,
FFMIN((row >> 1), pic_height - 1),
0);
} else if (FIELD_PICTURE(h) && !ref_field_picture) { // field referencing one field of a frame
ff_thread_await_progress(&ref_pic->tf,
FFMIN(row * 2 + ref_field,
pic_height - 1),
0);
} else if (FIELD_PICTURE(h)) {
ff_thread_await_progress(&ref_pic->tf,
FFMIN(row, pic_height - 1),
ref_field);
} else {
ff_thread_await_progress(&ref_pic->tf,
FFMIN(row, pic_height - 1),
0);
}
}
}
}
static av_always_inline void mc_dir_part(H264Context *h, Picture *pic,
int n, int square, int height,
int delta, int list,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int src_x_offset, int src_y_offset,
qpel_mc_func *qpix_op,
h264_chroma_mc_func chroma_op,
int pixel_shift, int chroma_idc)
{
const int mx = h->mv_cache[list][scan8[n]][0] + src_x_offset * 8;
int my = h->mv_cache[list][scan8[n]][1] + src_y_offset * 8;
const int luma_xy = (mx & 3) + ((my & 3) << 2);
int offset = ((mx >> 2) << pixel_shift) + (my >> 2) * h->mb_linesize;
uint8_t *src_y = pic->f.data[0] + offset;
uint8_t *src_cb, *src_cr;
int extra_width = 0;
int extra_height = 0;
int emu = 0;
const int full_mx = mx >> 2;
const int full_my = my >> 2;
const int pic_width = 16 * h->mb_width;
const int pic_height = 16 * h->mb_height >> MB_FIELD(h);
int ysh;
if (mx & 7)
extra_width -= 3;
if (my & 7)
extra_height -= 3;
if (full_mx < 0 - extra_width ||
full_my < 0 - extra_height ||
full_mx + 16 /*FIXME*/ > pic_width + extra_width ||
full_my + 16 /*FIXME*/ > pic_height + extra_height) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
src_y - (2 << pixel_shift) - 2 * h->mb_linesize,
h->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/, full_mx - 2,
full_my - 2, pic_width, pic_height);
src_y = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize;
emu = 1;
}
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
if (CONFIG_GRAY && h->flags & CODEC_FLAG_GRAY)
return;
if (chroma_idc == 3 /* yuv444 */) {
src_cb = pic->f.data[1] + offset;
if (emu) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
src_cb - (2 << pixel_shift) - 2 * h->mb_linesize,
h->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/,
full_mx - 2, full_my - 2,
pic_width, pic_height);
src_cb = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize;
}
qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize);
src_cr = pic->f.data[2] + offset;
if (emu) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
src_cr - (2 << pixel_shift) - 2 * h->mb_linesize,
h->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/,
full_mx - 2, full_my - 2,
pic_width, pic_height);
src_cr = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize;
}
qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize);
return;
}
ysh = 3 - (chroma_idc == 2 /* yuv422 */);
if (chroma_idc == 1 /* yuv420 */ && MB_FIELD(h)) {
// chroma offset when predicting from a field of opposite parity
my += 2 * ((h->mb_y & 1) - (pic->reference - 1));
emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1);
}
src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) +
(my >> ysh) * h->mb_uvlinesize;
src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) +
(my >> ysh) * h->mb_uvlinesize;
if (emu) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cb = h->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, h->mb_uvlinesize,
height >> (chroma_idc == 1 /* yuv420 */),
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7);
if (emu) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cr = h->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7);
}
static av_always_inline void mc_part_std(H264Context *h, int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg,
h264_chroma_mc_func chroma_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
qpel_mc_func *qpix_op = qpix_put;
h264_chroma_mc_func chroma_op = chroma_put;
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
} else { /* yuv420 */
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
}
x_offset += 8 * h->mb_x;
y_offset += 8 * (h->mb_y >> MB_FIELD(h));
if (list0) {
Picture *ref = &h->ref_list[0][h->ref_cache[0][scan8[n]]];
mc_dir_part(h, ref, n, square, height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
qpix_op = qpix_avg;
chroma_op = chroma_avg;
}
if (list1) {
Picture *ref = &h->ref_list[1][h->ref_cache[1][scan8[n]]];
mc_dir_part(h, ref, n, square, height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
}
}
static av_always_inline void mc_part_weighted(H264Context *h, int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
h264_weight_func luma_weight_op,
h264_weight_func chroma_weight_op,
h264_biweight_func luma_weight_avg,
h264_biweight_func chroma_weight_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
int chroma_height;
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
chroma_height = height;
chroma_weight_avg = luma_weight_avg;
chroma_weight_op = luma_weight_op;
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
chroma_height = height;
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
} else { /* yuv420 */
chroma_height = height >> 1;
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
}
x_offset += 8 * h->mb_x;
y_offset += 8 * (h->mb_y >> MB_FIELD(h));
if (list0 && list1) {
/* don't optimize for luma-only case, since B-frames usually
* use implicit weights => chroma too. */
uint8_t *tmp_cb = h->bipred_scratchpad;
uint8_t *tmp_cr = h->bipred_scratchpad + (16 << pixel_shift);
uint8_t *tmp_y = h->bipred_scratchpad + 16 * h->mb_uvlinesize;
int refn0 = h->ref_cache[0][scan8[n]];
int refn1 = h->ref_cache[1][scan8[n]];
mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0,
dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1,
tmp_y, tmp_cb, tmp_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
if (h->use_weight == 2) {
int weight0 = h->implicit_weight[refn0][refn1][h->mb_y & 1];
int weight1 = 64 - weight0;
luma_weight_avg(dest_y, tmp_y, h->mb_linesize,
height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
} else {
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height,
h->luma_log2_weight_denom,
h->luma_weight[refn0][0][0],
h->luma_weight[refn1][1][0],
h->luma_weight[refn0][0][1] +
h->luma_weight[refn1][1][1]);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn0][0][0][0],
h->chroma_weight[refn1][1][0][0],
h->chroma_weight[refn0][0][0][1] +
h->chroma_weight[refn1][1][0][1]);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn0][0][1][0],
h->chroma_weight[refn1][1][1][0],
h->chroma_weight[refn0][0][1][1] +
h->chroma_weight[refn1][1][1][1]);
}
} else {
int list = list1 ? 1 : 0;
int refn = h->ref_cache[list][scan8[n]];
Picture *ref = &h->ref_list[list][refn];
mc_dir_part(h, ref, n, square, height, delta, list,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put, chroma_put, pixel_shift, chroma_idc);
luma_weight_op(dest_y, h->mb_linesize, height,
h->luma_log2_weight_denom,
h->luma_weight[refn][list][0],
h->luma_weight[refn][list][1]);
if (h->use_weight_chroma) {
chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn][list][0][0],
h->chroma_weight[refn][list][0][1]);
chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn][list][1][0],
h->chroma_weight[refn][list][1][1]);
}
}
}
static av_always_inline void prefetch_motion(H264Context *h, int list,
int pixel_shift, int chroma_idc)
{
/* fetch pixels for estimated mv 4 macroblocks ahead
* optimized for 64byte cache lines */
const int refn = h->ref_cache[list][scan8[0]];
if (refn >= 0) {
const int mx = (h->mv_cache[list][scan8[0]][0] >> 2) + 16 * h->mb_x + 8;
const int my = (h->mv_cache[list][scan8[0]][1] >> 2) + 16 * h->mb_y;
uint8_t **src = h->ref_list[list][refn].f.data;
int off = (mx << pixel_shift) +
(my + (h->mb_x & 3) * 4) * h->mb_linesize +
(64 << pixel_shift);
h->vdsp.prefetch(src[0] + off, h->linesize, 4);
if (chroma_idc == 3 /* yuv444 */) {
h->vdsp.prefetch(src[1] + off, h->linesize, 4);
h->vdsp.prefetch(src[2] + off, h->linesize, 4);
} else {
off= (((mx>>1)+64)<<pixel_shift) + ((my>>1) + (h->mb_x&7))*h->uvlinesize;
h->vdsp.prefetch(src[1] + off, src[2] - src[1], 2);
}
}
}
static void free_tables(H264Context *h, int free_rbsp)
{
int i;
H264Context *hx;
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->chroma_pred_mode_table);
av_freep(&h->cbp_table);
av_freep(&h->mvd_table[0]);
av_freep(&h->mvd_table[1]);
av_freep(&h->direct_table);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table = NULL;
av_freep(&h->list_counts);
av_freep(&h->mb2b_xy);
av_freep(&h->mb2br_xy);
for (i = 0; i < 3; i++)
av_freep(&h->visualization_buffer[i]);
av_buffer_pool_uninit(&h->qscale_table_pool);
av_buffer_pool_uninit(&h->mb_type_pool);
av_buffer_pool_uninit(&h->motion_val_pool);
av_buffer_pool_uninit(&h->ref_index_pool);
if (free_rbsp && h->DPB) {
for (i = 0; i < MAX_PICTURE_COUNT; i++)
unref_picture(h, &h->DPB[i]);
av_freep(&h->DPB);
} else if (h->DPB) {
for (i = 0; i < MAX_PICTURE_COUNT; i++)
h->DPB[i].needs_realloc = 1;
}
h->cur_pic_ptr = NULL;
for (i = 0; i < MAX_THREADS; i++) {
hx = h->thread_context[i];
if (!hx)
continue;
av_freep(&hx->top_borders[1]);
av_freep(&hx->top_borders[0]);
av_freep(&hx->bipred_scratchpad);
av_freep(&hx->edge_emu_buffer);
av_freep(&hx->dc_val_base);
av_freep(&hx->me.scratchpad);
av_freep(&hx->er.mb_index2xy);
av_freep(&hx->er.error_status_table);
av_freep(&hx->er.er_temp_buffer);
av_freep(&hx->er.mbintra_table);
av_freep(&hx->er.mbskip_table);
if (free_rbsp) {
av_freep(&hx->rbsp_buffer[1]);
av_freep(&hx->rbsp_buffer[0]);
hx->rbsp_buffer_size[0] = 0;
hx->rbsp_buffer_size[1] = 0;
}
if (i)
av_freep(&h->thread_context[i]);
}
}
static void init_dequant8_coeff_table(H264Context *h)
{
int i, j, q, x;
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
for (i = 0; i < 6; i++) {
h->dequant8_coeff[i] = h->dequant8_buffer[i];
for (j = 0; j < i; j++)
if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
64 * sizeof(uint8_t))) {
h->dequant8_coeff[i] = h->dequant8_buffer[j];
break;
}
if (j < i)
continue;
for (q = 0; q < max_qp + 1; q++) {
int shift = div6[q];
int idx = rem6[q];
for (x = 0; x < 64; x++)
h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
h->pps.scaling_matrix8[i][x]) << shift;
}
}
}
static void init_dequant4_coeff_table(H264Context *h)
{
int i, j, q, x;
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
for (i = 0; i < 6; i++) {
h->dequant4_coeff[i] = h->dequant4_buffer[i];
for (j = 0; j < i; j++)
if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
16 * sizeof(uint8_t))) {
h->dequant4_coeff[i] = h->dequant4_buffer[j];
break;
}
if (j < i)
continue;
for (q = 0; q < max_qp + 1; q++) {
int shift = div6[q] + 2;
int idx = rem6[q];
for (x = 0; x < 16; x++)
h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
h->pps.scaling_matrix4[i][x]) << shift;
}
}
}
static void init_dequant_tables(H264Context *h)
{
int i, x;
init_dequant4_coeff_table(h);
if (h->pps.transform_8x8_mode)
init_dequant8_coeff_table(h);
if (h->sps.transform_bypass) {
for (i = 0; i < 6; i++)
for (x = 0; x < 16; x++)
h->dequant4_coeff[i][0][x] = 1 << 6;
if (h->pps.transform_8x8_mode)
for (i = 0; i < 6; i++)
for (x = 0; x < 64; x++)
h->dequant8_coeff[i][0][x] = 1 << 6;
}
}
int ff_h264_alloc_tables(H264Context *h)
{
const int big_mb_num = h->mb_stride * (h->mb_height + 1);
const int row_mb_num = 2*h->mb_stride*FFMAX(h->avctx->thread_count, 1);
int x, y, i;
FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode,
row_mb_num * 8 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count,
big_mb_num * 48 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base,
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table,
big_mb_num * sizeof(uint16_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table,
big_mb_num * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0],
16 * row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1],
16 * row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table,
4 * big_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts,
big_mb_num * sizeof(uint8_t), fail)
memset(h->slice_table_base, -1,
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base));
h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1;
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy,
big_mb_num * sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy,
big_mb_num * sizeof(uint32_t), fail);
for (y = 0; y < h->mb_height; y++)
for (x = 0; x < h->mb_width; x++) {
const int mb_xy = x + y * h->mb_stride;
const int b_xy = 4 * x + 4 * y * h->b_stride;
h->mb2b_xy[mb_xy] = b_xy;
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride)));
}
if (!h->dequant4_coeff[0])
init_dequant_tables(h);
if (!h->DPB) {
h->DPB = av_mallocz_array(MAX_PICTURE_COUNT, sizeof(*h->DPB));
if (!h->DPB)
return AVERROR(ENOMEM);
for (i = 0; i < MAX_PICTURE_COUNT; i++)
avcodec_get_frame_defaults(&h->DPB[i].f);
avcodec_get_frame_defaults(&h->cur_pic.f);
}
return 0;
fail:
free_tables(h, 1);
return -1;
}
/**
* Mimic alloc_tables(), but for every context thread.
*/
static void clone_tables(H264Context *dst, H264Context *src, int i)
{
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride;
dst->non_zero_count = src->non_zero_count;
dst->slice_table = src->slice_table;
dst->cbp_table = src->cbp_table;
dst->mb2b_xy = src->mb2b_xy;
dst->mb2br_xy = src->mb2br_xy;
dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride;
dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride;
dst->direct_table = src->direct_table;
dst->list_counts = src->list_counts;
dst->DPB = src->DPB;
dst->cur_pic_ptr = src->cur_pic_ptr;
dst->cur_pic = src->cur_pic;
dst->bipred_scratchpad = NULL;
dst->edge_emu_buffer = NULL;
dst->me.scratchpad = NULL;
ff_h264_pred_init(&dst->hpc, src->avctx->codec_id, src->sps.bit_depth_luma,
src->sps.chroma_format_idc);
}
/**
* Init context
* Allocate buffers which are not shared amongst multiple threads.
*/
static int context_init(H264Context *h)
{
ERContext *er = &h->er;
int mb_array_size = h->mb_height * h->mb_stride;
int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1);
int c_size = h->mb_stride * (h->mb_height + 1);
int yc_size = y_size + 2 * c_size;
int x, y, i;
FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[0],
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[1],
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
h->ref_cache[0][scan8[5] + 1] =
h->ref_cache[0][scan8[7] + 1] =
h->ref_cache[0][scan8[13] + 1] =
h->ref_cache[1][scan8[5] + 1] =
h->ref_cache[1][scan8[7] + 1] =
h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE;
if (CONFIG_ERROR_RESILIENCE) {
/* init ER */
er->avctx = h->avctx;
er->dsp = &h->dsp;
er->decode_mb = h264_er_decode_mb;
er->opaque = h;
er->quarter_sample = 1;
er->mb_num = h->mb_num;
er->mb_width = h->mb_width;
er->mb_height = h->mb_height;
er->mb_stride = h->mb_stride;
er->b8_stride = h->mb_width * 2 + 1;
FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, (h->mb_num + 1) * sizeof(int),
fail); // error ressilience code looks cleaner with this
for (y = 0; y < h->mb_height; y++)
for (x = 0; x < h->mb_width; x++)
er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride;
er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) *
h->mb_stride + h->mb_width;
FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table,
mb_array_size * sizeof(uint8_t), fail);
FF_ALLOC_OR_GOTO(h->avctx, er->mbintra_table, mb_array_size, fail);
memset(er->mbintra_table, 1, mb_array_size);
FF_ALLOCZ_OR_GOTO(h->avctx, er->mbskip_table, mb_array_size + 2, fail);
FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, h->mb_height * h->mb_stride,
fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->dc_val_base, yc_size * sizeof(int16_t), fail);
er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2;
er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1;
er->dc_val[2] = er->dc_val[1] + c_size;
for (i = 0; i < yc_size; i++)
h->dc_val_base[i] = 1024;
}
return 0;
fail:
return -1; // free_tables will clean up for us
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
int parse_extradata);
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size)
{
AVCodecContext *avctx = h->avctx;
if (!buf || size <= 0)
return -1;
if (buf[0] == 1) {
int i, cnt, nalsize;
const unsigned char *p = buf;
h->is_avc = 1;
if (size < 7) {
av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
return -1;
}
/* sps and pps in the avcC always have length coded with 2 bytes,
* so put a fake nal_length_size = 2 while parsing them */
h->nal_length_size = 2;
// Decode sps from avcC
cnt = *(p + 5) & 0x1f; // Number of sps
p += 6;
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if(nalsize > size - (p-buf))
return -1;
if (decode_nal_units(h, p, nalsize, 1) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding sps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Decode pps from avcC
cnt = *(p++); // Number of pps
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if(nalsize > size - (p-buf))
return -1;
if (decode_nal_units(h, p, nalsize, 1) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding pps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Now store right nal length size, that will be used to parse all other nals
h->nal_length_size = (buf[4] & 0x03) + 1;
} else {
h->is_avc = 0;
if (decode_nal_units(h, buf, size, 1) < 0)
return -1;
}
return size;
}
av_cold int ff_h264_decode_init(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
h->avctx = avctx;
h->bit_depth_luma = 8;
h->chroma_format_idc = 1;
h->avctx->bits_per_raw_sample = 8;
h->cur_chroma_format_idc = 1;
ff_h264dsp_init(&h->h264dsp, 8, 1);
av_assert0(h->sps.bit_depth_chroma == 0);
ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma);
ff_h264qpel_init(&h->h264qpel, 8);
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1);
h->dequant_coeff_pps = -1;
h->current_sps_id = -1;
/* needed so that IDCT permutation is known early */
if (CONFIG_ERROR_RESILIENCE)
ff_dsputil_init(&h->dsp, h->avctx);
ff_videodsp_init(&h->vdsp, 8);
memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t));
memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t));
h->picture_structure = PICT_FRAME;
h->slice_context_count = 1;
h->workaround_bugs = avctx->workaround_bugs;
h->flags = avctx->flags;
/* set defaults */
// s->decode_mb = ff_h263_decode_mb;
if (!avctx->has_b_frames)
h->low_delay = 1;
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
ff_h264_decode_init_vlc();
h->pixel_shift = 0;
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
h->thread_context[0] = h;
h->outputed_poc = h->next_outputed_poc = INT_MIN;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
h->prev_poc_msb = 1 << 16;
h->prev_frame_num = -1;
h->x264_build = -1;
ff_h264_reset_sei(h);
if (avctx->codec_id == AV_CODEC_ID_H264) {
if (avctx->ticks_per_frame == 1) {
if(h->avctx->time_base.den < INT_MAX/2) {
h->avctx->time_base.den *= 2;
} else
h->avctx->time_base.num /= 2;
}
avctx->ticks_per_frame = 2;
}
if (avctx->extradata_size > 0 && avctx->extradata &&
ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size) < 0) {
ff_h264_free_context(h);
return -1;
}
if (h->sps.bitstream_restriction_flag &&
h->avctx->has_b_frames < h->sps.num_reorder_frames) {
h->avctx->has_b_frames = h->sps.num_reorder_frames;
h->low_delay = 0;
}
ff_init_cabac_states();
avctx->internal->allocate_progress = 1;
return 0;
}
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
#undef REBASE_PICTURE
#define REBASE_PICTURE(pic, new_ctx, old_ctx) \
((pic && pic >= old_ctx->DPB && \
pic < old_ctx->DPB + MAX_PICTURE_COUNT) ? \
&new_ctx->DPB[pic - old_ctx->DPB] : NULL)
static void copy_picture_range(Picture **to, Picture **from, int count,
H264Context *new_base,
H264Context *old_base)
{
int i;
for (i = 0; i < count; i++) {
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
IN_RANGE(from[i], old_base->DPB,
sizeof(Picture) * MAX_PICTURE_COUNT) ||
!from[i]));
to[i] = REBASE_PICTURE(from[i], new_base, old_base);
}
}
static void copy_parameter_set(void **to, void **from, int count, int size)
{
int i;
for (i = 0; i < count; i++) {
if (to[i] && !from[i])
av_freep(&to[i]);
else if (from[i] && !to[i])
to[i] = av_malloc(size);
if (from[i])
memcpy(to[i], from[i], size);
}
}
static int decode_init_thread_copy(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
if (!avctx->internal->is_copy)
return 0;
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
h->context_initialized = 0;
return 0;
}
#define copy_fields(to, from, start_field, end_field) \
memcpy(&to->start_field, &from->start_field, \
(char *)&to->end_field - (char *)&to->start_field)
static int h264_slice_header_init(H264Context *, int);
static int h264_set_parameter_from_sps(H264Context *h);
static int decode_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
H264Context *h = dst->priv_data, *h1 = src->priv_data;
int inited = h->context_initialized, err = 0;
int context_reinitialized = 0;
int i, ret;
if (dst == src)
return 0;
if (inited &&
(h->width != h1->width ||
h->height != h1->height ||
h->mb_width != h1->mb_width ||
h->mb_height != h1->mb_height ||
h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
h->sps.colorspace != h1->sps.colorspace)) {
/* set bits_per_raw_sample to the previous value. the check for changed
* bit depth in h264_set_parameter_from_sps() uses it and sets it to
* the current value */
h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
av_freep(&h->bipred_scratchpad);
h->width = h1->width;
h->height = h1->height;
h->mb_height = h1->mb_height;
h->mb_width = h1->mb_width;
h->mb_num = h1->mb_num;
h->mb_stride = h1->mb_stride;
h->b_stride = h1->b_stride;
// SPS/PPS
copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers,
MAX_SPS_COUNT, sizeof(SPS));
h->sps = h1->sps;
copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers,
MAX_PPS_COUNT, sizeof(PPS));
h->pps = h1->pps;
if ((err = h264_slice_header_init(h, 1)) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
return err;
}
context_reinitialized = 1;
#if 0
h264_set_parameter_from_sps(h);
//Note we set context_reinitialized which will cause h264_set_parameter_from_sps to be reexecuted
h->cur_chroma_format_idc = h1->cur_chroma_format_idc;
#endif
}
/* update linesize on resize for h264. The h264 decoder doesn't
* necessarily call ff_MPV_frame_start in the new thread */
h->linesize = h1->linesize;
h->uvlinesize = h1->uvlinesize;
/* copy block_offset since frame_start may not be called */
memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
if (!inited) {
for (i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for (i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
memcpy(h, h1, offsetof(H264Context, intra_pcm_ptr));
memcpy(&h->cabac, &h1->cabac,
sizeof(H264Context) - offsetof(H264Context, cabac));
av_assert0((void*)&h->cabac == &h->mb_padding + 1);
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
memset(&h->er, 0, sizeof(h->er));
memset(&h->me, 0, sizeof(h->me));
memset(&h->mb, 0, sizeof(h->mb));
memset(&h->mb_luma_dc, 0, sizeof(h->mb_luma_dc));
memset(&h->mb_padding, 0, sizeof(h->mb_padding));
h->avctx = dst;
h->DPB = NULL;
h->qscale_table_pool = NULL;
h->mb_type_pool = NULL;
h->ref_index_pool = NULL;
h->motion_val_pool = NULL;
if (h1->context_initialized) {
h->context_initialized = 0;
memset(&h->cur_pic, 0, sizeof(h->cur_pic));
avcodec_get_frame_defaults(&h->cur_pic.f);
h->cur_pic.tf.f = &h->cur_pic.f;
if (ff_h264_alloc_tables(h) < 0) {
av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n");
return AVERROR(ENOMEM);
}
context_init(h);
}
for (i = 0; i < 2; i++) {
h->rbsp_buffer[i] = NULL;
h->rbsp_buffer_size[i] = 0;
}
h->bipred_scratchpad = NULL;
h->edge_emu_buffer = NULL;
h->thread_context[0] = h;
h->context_initialized = h1->context_initialized;
}
h->avctx->coded_height = h1->avctx->coded_height;
h->avctx->coded_width = h1->avctx->coded_width;
h->avctx->width = h1->avctx->width;
h->avctx->height = h1->avctx->height;
h->coded_picture_number = h1->coded_picture_number;
h->first_field = h1->first_field;
h->picture_structure = h1->picture_structure;
h->qscale = h1->qscale;
h->droppable = h1->droppable;
h->data_partitioning = h1->data_partitioning;
h->low_delay = h1->low_delay;
for (i = 0; h->DPB && i < MAX_PICTURE_COUNT; i++) {
unref_picture(h, &h->DPB[i]);
if (h1->DPB[i].f.data[0] &&
(ret = ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
return ret;
}
h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
unref_picture(h, &h->cur_pic);
if (h1->cur_pic.f.buf[0] && (ret = ref_picture(h, &h->cur_pic, &h1->cur_pic)) < 0)
return ret;
h->workaround_bugs = h1->workaround_bugs;
h->low_delay = h1->low_delay;
h->droppable = h1->droppable;
// extradata/NAL handling
h->is_avc = h1->is_avc;
// SPS/PPS
copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers,
MAX_SPS_COUNT, sizeof(SPS));
h->sps = h1->sps;
copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers,
MAX_PPS_COUNT, sizeof(PPS));
h->pps = h1->pps;
// Dequantization matrices
// FIXME these are big - can they be only copied when PPS changes?
copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
for (i = 0; i < 6; i++)
h->dequant4_coeff[i] = h->dequant4_buffer[0] +
(h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
for (i = 0; i < 6; i++)
h->dequant8_coeff[i] = h->dequant8_buffer[0] +
(h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
h->dequant_coeff_pps = h1->dequant_coeff_pps;
// POC timing
copy_fields(h, h1, poc_lsb, redundant_pic_count);
// reference lists
copy_fields(h, h1, short_ref, cabac_init_idc);
copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
copy_picture_range(h->delayed_pic, h1->delayed_pic,
MAX_DELAYED_PIC_COUNT + 2, h, h1);
h->sync = h1->sync;
if (context_reinitialized)
h264_set_parameter_from_sps(h);
if (!h->cur_pic_ptr)
return 0;
if (!h->droppable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb = h->poc_msb;
h->prev_poc_lsb = h->poc_lsb;
}
h->prev_frame_num_offset = h->frame_num_offset;
h->prev_frame_num = h->frame_num;
h->outputed_poc = h->next_outputed_poc;
return err;
}
static int h264_frame_start(H264Context *h)
{
Picture *pic;
int i, ret;
const int pixel_shift = h->pixel_shift;
int c[4] = {
1<<(h->sps.bit_depth_luma-1),
1<<(h->sps.bit_depth_chroma-1),
1<<(h->sps.bit_depth_chroma-1),
-1
};
if (!ff_thread_can_start_frame(h->avctx)) {
av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
return -1;
}
release_unused_pictures(h, 1);
h->cur_pic_ptr = NULL;
i = find_unused_picture(h);
if (i < 0) {
av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
return i;
}
pic = &h->DPB[i];
pic->reference = h->droppable ? 0 : h->picture_structure;
pic->f.coded_picture_number = h->coded_picture_number++;
pic->field_picture = h->picture_structure != PICT_FRAME;
/*
* Zero key_frame here; IDR markings per slice in frame or fields are ORed
* in later.
* See decode_nal_units().
*/
pic->f.key_frame = 0;
pic->sync = 0;
pic->mmco_reset = 0;
if ((ret = alloc_picture(h, pic)) < 0)
return ret;
if(!h->sync && !h->avctx->hwaccel &&
!(h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU))
avpriv_color_frame(&pic->f, c);
h->cur_pic_ptr = pic;
unref_picture(h, &h->cur_pic);
if ((ret = ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
return ret;
if (CONFIG_ERROR_RESILIENCE) {
ff_er_frame_start(&h->er);
h->er.last_pic =
h->er.next_pic = NULL;
}
assert(h->linesize && h->uvlinesize);
for (i = 0; i < 16; i++) {
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
}
for (i = 0; i < 16; i++) {
h->block_offset[16 + i] =
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + 16 + i] =
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
}
// s->decode = (h->flags & CODEC_FLAG_PSNR) || !s->encoding ||
// h->cur_pic.reference /* || h->contains_intra */ || 1;
/* We mark the current picture as non-reference after allocating it, so
* that if we break out due to an error it can be released automatically
* in the next ff_MPV_frame_start().
*/
h->cur_pic_ptr->reference = 0;
h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
h->next_output_pic = NULL;
assert(h->cur_pic_ptr->long_ref == 0);
return 0;
}
/**
* Run setup operations that must be run after slice header decoding.
* This includes finding the next displayed frame.
*
* @param h h264 master context
* @param setup_finished enough NALs have been read that we can call
* ff_thread_finish_setup()
*/
static void decode_postinit(H264Context *h, int setup_finished)
{
Picture *out = h->cur_pic_ptr;
Picture *cur = h->cur_pic_ptr;
int i, pics, out_of_order, out_idx;
h->cur_pic_ptr->f.pict_type = h->pict_type;
if (h->next_output_pic)
return;
if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) {
/* FIXME: if we have two PAFF fields in one packet, we can't start
* the next thread here. If we have one field per packet, we can.
* The check in decode_nal_units() is not good enough to find this
* yet, so we assume the worst for now. */
// if (setup_finished)
// ff_thread_finish_setup(h->avctx);
return;
}
cur->f.interlaced_frame = 0;
cur->f.repeat_pict = 0;
/* Signal interlacing information externally. */
/* Prioritize picture timing SEI information over used
* decoding process if it exists. */
if (h->sps.pic_struct_present_flag) {
switch (h->sei_pic_struct) {
case SEI_PIC_STRUCT_FRAME:
break;
case SEI_PIC_STRUCT_TOP_FIELD:
case SEI_PIC_STRUCT_BOTTOM_FIELD:
cur->f.interlaced_frame = 1;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM:
case SEI_PIC_STRUCT_BOTTOM_TOP:
if (FIELD_OR_MBAFF_PICTURE(h))
cur->f.interlaced_frame = 1;
else
// try to flag soft telecine progressive
cur->f.interlaced_frame = h->prev_interlaced_frame;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
/* Signal the possibility of telecined film externally
* (pic_struct 5,6). From these hints, let the applications
* decide if they apply deinterlacing. */
cur->f.repeat_pict = 1;
break;
case SEI_PIC_STRUCT_FRAME_DOUBLING:
cur->f.repeat_pict = 2;
break;
case SEI_PIC_STRUCT_FRAME_TRIPLING:
cur->f.repeat_pict = 4;
break;
}
if ((h->sei_ct_type & 3) &&
h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
} else {
/* Derive interlacing flag from used decoding process. */
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
}
h->prev_interlaced_frame = cur->f.interlaced_frame;
if (cur->field_poc[0] != cur->field_poc[1]) {
/* Derive top_field_first from field pocs. */
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
} else {
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
/* Use picture timing SEI information. Even if it is a
* information of a past frame, better than nothing. */
if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM ||
h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
cur->f.top_field_first = 1;
else
cur->f.top_field_first = 0;
} else {
/* Most likely progressive */
cur->f.top_field_first = 0;
}
}
cur->mmco_reset = h->mmco_reset;
h->mmco_reset = 0;
// FIXME do something with unavailable reference frames
/* Sort B-frames into display order */
if (h->sps.bitstream_restriction_flag &&
h->avctx->has_b_frames < h->sps.num_reorder_frames) {
h->avctx->has_b_frames = h->sps.num_reorder_frames;
h->low_delay = 0;
}
if (h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT &&
!h->sps.bitstream_restriction_flag) {
h->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1;
h->low_delay = 0;
}
for (i = 0; 1; i++) {
if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
if(i)
h->last_pocs[i-1] = cur->poc;
break;
} else if(i) {
h->last_pocs[i-1]= h->last_pocs[i];
}
}
out_of_order = MAX_DELAYED_PIC_COUNT - i;
if( cur->f.pict_type == AV_PICTURE_TYPE_B
|| (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
out_of_order = FFMAX(out_of_order, 1);
if (out_of_order == MAX_DELAYED_PIC_COUNT) {
av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
h->last_pocs[0] = cur->poc;
cur->mmco_reset = 1;
} else if(h->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){
av_log(h->avctx, AV_LOG_VERBOSE, "Increasing reorder buffer to %d\n", out_of_order);
h->avctx->has_b_frames = out_of_order;
h->low_delay = 0;
}
pics = 0;
while (h->delayed_pic[pics])
pics++;
av_assert0(pics <= MAX_DELAYED_PIC_COUNT);
h->delayed_pic[pics++] = cur;
if (cur->reference == 0)
cur->reference = DELAYED_PIC_REF;
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1; h->delayed_pic[i] &&
!h->delayed_pic[i]->f.key_frame &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
if (h->avctx->has_b_frames == 0 &&
(h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
h->next_outputed_poc = INT_MIN;
out_of_order = out->poc < h->next_outputed_poc;
if (out_of_order || pics > h->avctx->has_b_frames) {
out->reference &= ~DELAYED_PIC_REF;
// for frame threading, the owner must be the second field's thread or
// else the first thread can release the picture and reuse it unsafely
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
}
if (!out_of_order && pics > h->avctx->has_b_frames) {
h->next_output_pic = out;
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
h->next_outputed_poc = INT_MIN;
} else
h->next_outputed_poc = out->poc;
} else {
av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
}
if (h->next_output_pic && h->next_output_pic->sync) {
h->sync |= 2;
}
if (setup_finished && !h->avctx->hwaccel)
ff_thread_finish_setup(h->avctx);
}
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int simple)
{
uint8_t *top_border;
int top_idx = 1;
const int pixel_shift = h->pixel_shift;
int chroma444 = CHROMA444(h);
int chroma422 = CHROMA422(h);
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
if (!simple && FRAME_MBAFF(h)) {
if (h->mb_y & 1) {
if (!MB_MBAFF(h)) {
top_border = h->top_borders[0][h->mb_x];
AV_COPY128(top_border, src_y + 15 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
}
}
}
}
} else if (MB_MBAFF(h)) {
top_idx = 0;
} else
return;
}
top_border = h->top_borders[top_idx][h->mb_x];
/* There are two lines saved, the line above the top macroblock
* of a pair, and the line above the bottom macroblock. */
AV_COPY128(top_border, src_y + 16 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * linesize);
AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
AV_COPY128(top_border + 64, src_cr + 16 * linesize);
AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 16 * linesize);
AV_COPY128(top_border + 32, src_cr + 16 * linesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
}
}
}
}
static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int xchg, int chroma444,
int simple, int pixel_shift)
{
int deblock_topleft;
int deblock_top;
int top_idx = 1;
uint8_t *top_border_m1;
uint8_t *top_border;
if (!simple && FRAME_MBAFF(h)) {
if (h->mb_y & 1) {
if (!MB_MBAFF(h))
return;
} else {
top_idx = MB_MBAFF(h) ? 0 : 1;
}
}
if (h->deblocking_filter == 2) {
deblock_topleft = h->slice_table[h->mb_xy - 1 - h->mb_stride] == h->slice_num;
deblock_top = h->top_type;
} else {
deblock_topleft = (h->mb_x > 0);
deblock_top = (h->mb_y > !!MB_FIELD(h));
}
src_y -= linesize + 1 + pixel_shift;
src_cb -= uvlinesize + 1 + pixel_shift;
src_cr -= uvlinesize + 1 + pixel_shift;
top_border_m1 = h->top_borders[top_idx][h->mb_x - 1];
top_border = h->top_borders[top_idx][h->mb_x];
#define XCHG(a, b, xchg) \
if (pixel_shift) { \
if (xchg) { \
AV_SWAP64(b + 0, a + 0); \
AV_SWAP64(b + 8, a + 8); \
} else { \
AV_COPY128(b, a); \
} \
} else if (xchg) \
AV_SWAP64(b, a); \
else \
AV_COPY64(b, a);
if (deblock_top) {
if (deblock_topleft) {
XCHG(top_border_m1 + (8 << pixel_shift),
src_y - (7 << pixel_shift), 1);
}
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
if (h->mb_x + 1 < h->mb_width) {
XCHG(h->top_borders[top_idx][h->mb_x + 1],
src_y + (17 << pixel_shift), 1);
}
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (deblock_topleft) {
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
if (h->mb_x + 1 < h->mb_width) {
XCHG(h->top_borders[top_idx][h->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
XCHG(h->top_borders[top_idx][h->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
}
} else {
if (deblock_topleft) {
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1);
XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1);
}
}
}
}
static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth,
int index)
{
if (high_bit_depth) {
return AV_RN32A(((int32_t *)mb) + index);
} else
return AV_RN16A(mb + index);
}
static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth,
int index, int value)
{
if (high_bit_depth) {
AV_WN32A(((int32_t *)mb) + index, value);
} else
AV_WN16A(mb + index, value);
}
static av_always_inline void hl_decode_mb_predict_luma(H264Context *h,
int mb_type, int is_h264,
int simple,
int transform_bypass,
int pixel_shift,
int *block_offset,
int linesize,
uint8_t *dest_y, int p)
{
void (*idct_add)(uint8_t *dst, int16_t *block, int stride);
void (*idct_dc_add)(uint8_t *dst, int16_t *block, int stride);
int i;
int qscale = p == 0 ? h->qscale : h->chroma_qp[p - 1];
block_offset += 16 * p;
if (IS_INTRA4x4(mb_type)) {
if (IS_8x8DCT(mb_type)) {
if (transform_bypass) {
idct_dc_add =
idct_add = h->h264dsp.h264_add_pixels8_clear;
} else {
idct_dc_add = h->h264dsp.h264_idct8_dc_add;
idct_add = h->h264dsp.h264_idct8_add;
}
for (i = 0; i < 16; i += 4) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = h->intra4x4_pred_mode_cache[scan8[i]];
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) {
h->hpc.pred8x8l_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else {
const int nnz = h->non_zero_count_cache[scan8[i + p * 16]];
h->hpc.pred8x8l[dir](ptr, (h->topleft_samples_available << i) & 0x8000,
(h->topright_samples_available << i) & 0x4000, linesize);
if (nnz) {
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256))
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
else
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
}
}
}
} else {
if (transform_bypass) {
idct_dc_add =
idct_add = h->h264dsp.h264_add_pixels4_clear;
} else {
idct_dc_add = h->h264dsp.h264_idct_dc_add;
idct_add = h->h264dsp.h264_idct_add;
}
for (i = 0; i < 16; i++) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = h->intra4x4_pred_mode_cache[scan8[i]];
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) {
h->hpc.pred4x4_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else {
uint8_t *topright;
int nnz, tr;
uint64_t tr_high;
if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
const int topright_avail = (h->topright_samples_available << i) & 0x8000;
av_assert2(h->mb_y || linesize <= block_offset[i]);
if (!topright_avail) {
if (pixel_shift) {
tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL;
topright = (uint8_t *)&tr_high;
} else {
tr = ptr[3 - linesize] * 0x01010101u;
topright = (uint8_t *)&tr;
}
} else
topright = ptr + (4 << pixel_shift) - linesize;
} else
topright = NULL;
h->hpc.pred4x4[dir](ptr, topright, linesize);
nnz = h->non_zero_count_cache[scan8[i + p * 16]];
if (nnz) {
if (is_h264) {
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256))
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
else
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else if (CONFIG_SVQ3_DECODER)
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, qscale, 0);
}
}
}
}
} else {
h->hpc.pred16x16[h->intra16x16_pred_mode](dest_y, linesize);
if (is_h264) {
if (h->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) {
if (!transform_bypass)
h->h264dsp.h264_luma_dc_dequant_idct(h->mb + (p * 256 << pixel_shift),
h->mb_luma_dc[p],
h->dequant4_coeff[p][qscale][0]);
else {
static const uint8_t dc_mapping[16] = {
0 * 16, 1 * 16, 4 * 16, 5 * 16,
2 * 16, 3 * 16, 6 * 16, 7 * 16,
8 * 16, 9 * 16, 12 * 16, 13 * 16,
10 * 16, 11 * 16, 14 * 16, 15 * 16 };
for (i = 0; i < 16; i++)
dctcoef_set(h->mb + (p * 256 << pixel_shift),
pixel_shift, dc_mapping[i],
dctcoef_get(h->mb_luma_dc[p],
pixel_shift, i));
}
}
} else if (CONFIG_SVQ3_DECODER)
ff_svq3_luma_dc_dequant_idct_c(h->mb + p * 256,
h->mb_luma_dc[p], qscale);
}
}
static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type,
int is_h264, int simple,
int transform_bypass,
int pixel_shift,
int *block_offset,
int linesize,
uint8_t *dest_y, int p)
{
void (*idct_add)(uint8_t *dst, int16_t *block, int stride);
int i;
block_offset += 16 * p;
if (!IS_INTRA4x4(mb_type)) {
if (is_h264) {
if (IS_INTRA16x16(mb_type)) {
if (transform_bypass) {
if (h->sps.profile_idc == 244 &&
(h->intra16x16_pred_mode == VERT_PRED8x8 ||
h->intra16x16_pred_mode == HOR_PRED8x8)) {
h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize);
} else {
for (i = 0; i < 16; i++)
if (h->non_zero_count_cache[scan8[i + p * 16]] ||
dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256))
h->h264dsp.h264_add_pixels4_clear(dest_y + block_offset[i],
h->mb + (i * 16 + p * 256 << pixel_shift),
linesize);
}
} else {
h->h264dsp.h264_idct_add16intra(dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize,
h->non_zero_count_cache + p * 5 * 8);
}
} else if (h->cbp & 15) {
if (transform_bypass) {
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
idct_add = IS_8x8DCT(mb_type) ? h->h264dsp.h264_add_pixels8_clear
: h->h264dsp.h264_add_pixels4_clear;
for (i = 0; i < 16; i += di)
if (h->non_zero_count_cache[scan8[i + p * 16]])
idct_add(dest_y + block_offset[i],
h->mb + (i * 16 + p * 256 << pixel_shift),
linesize);
} else {
if (IS_8x8DCT(mb_type))
h->h264dsp.h264_idct8_add4(dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize,
h->non_zero_count_cache + p * 5 * 8);
else
h->h264dsp.h264_idct_add16(dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize,
h->non_zero_count_cache + p * 5 * 8);
}
}
} else if (CONFIG_SVQ3_DECODER) {
for (i = 0; i < 16; i++)
if (h->non_zero_count_cache[scan8[i + p * 16]] || h->mb[i * 16 + p * 256]) {
// FIXME benchmark weird rule, & below
uint8_t *const ptr = dest_y + block_offset[i];
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize,
h->qscale, IS_INTRA(mb_type) ? 1 : 0);
}
}
}
}
#define BITS 8
#define SIMPLE 1
#include "h264_mb_template.c"
#undef BITS
#define BITS 16
#include "h264_mb_template.c"
#undef SIMPLE
#define SIMPLE 0
#include "h264_mb_template.c"
void ff_h264_hl_decode_mb(H264Context *h)
{
const int mb_xy = h->mb_xy;
const int mb_type = h->cur_pic.mb_type[mb_xy];
int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || h->qscale == 0;
if (CHROMA444(h)) {
if (is_complex || h->pixel_shift)
hl_decode_mb_444_complex(h);
else
hl_decode_mb_444_simple_8(h);
} else if (is_complex) {
hl_decode_mb_complex(h);
} else if (h->pixel_shift) {
hl_decode_mb_simple_16(h);
} else
hl_decode_mb_simple_8(h);
}
static int pred_weight_table(H264Context *h)
{
int list, i;
int luma_def, chroma_def;
h->use_weight = 0;
h->use_weight_chroma = 0;
h->luma_log2_weight_denom = get_ue_golomb(&h->gb);
if (h->sps.chroma_format_idc)
h->chroma_log2_weight_denom = get_ue_golomb(&h->gb);
luma_def = 1 << h->luma_log2_weight_denom;
chroma_def = 1 << h->chroma_log2_weight_denom;
for (list = 0; list < 2; list++) {
h->luma_weight_flag[list] = 0;
h->chroma_weight_flag[list] = 0;
for (i = 0; i < h->ref_count[list]; i++) {
int luma_weight_flag, chroma_weight_flag;
luma_weight_flag = get_bits1(&h->gb);
if (luma_weight_flag) {
h->luma_weight[i][list][0] = get_se_golomb(&h->gb);
h->luma_weight[i][list][1] = get_se_golomb(&h->gb);
if (h->luma_weight[i][list][0] != luma_def ||
h->luma_weight[i][list][1] != 0) {
h->use_weight = 1;
h->luma_weight_flag[list] = 1;
}
} else {
h->luma_weight[i][list][0] = luma_def;
h->luma_weight[i][list][1] = 0;
}
if (h->sps.chroma_format_idc) {
chroma_weight_flag = get_bits1(&h->gb);
if (chroma_weight_flag) {
int j;
for (j = 0; j < 2; j++) {
h->chroma_weight[i][list][j][0] = get_se_golomb(&h->gb);
h->chroma_weight[i][list][j][1] = get_se_golomb(&h->gb);
if (h->chroma_weight[i][list][j][0] != chroma_def ||
h->chroma_weight[i][list][j][1] != 0) {
h->use_weight_chroma = 1;
h->chroma_weight_flag[list] = 1;
}
}
} else {
int j;
for (j = 0; j < 2; j++) {
h->chroma_weight[i][list][j][0] = chroma_def;
h->chroma_weight[i][list][j][1] = 0;
}
}
}
}
if (h->slice_type_nos != AV_PICTURE_TYPE_B)
break;
}
h->use_weight = h->use_weight || h->use_weight_chroma;
return 0;
}
/**
* Initialize implicit_weight table.
* @param field 0/1 initialize the weight for interlaced MBAFF
* -1 initializes the rest
*/
static void implicit_weight_table(H264Context *h, int field)
{
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
if (field < 0) {
if (h->picture_structure == PICT_FRAME) {
cur_poc = h->cur_pic_ptr->poc;
} else {
cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
}
if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) {
h->use_weight = 0;
h->use_weight_chroma = 0;
return;
}
ref_start = 0;
ref_count0 = h->ref_count[0];
ref_count1 = h->ref_count[1];
} else {
cur_poc = h->cur_pic_ptr->field_poc[field];
ref_start = 16;
ref_count0 = 16 + 2 * h->ref_count[0];
ref_count1 = 16 + 2 * h->ref_count[1];
}
h->use_weight = 2;
h->use_weight_chroma = 2;
h->luma_log2_weight_denom = 5;
h->chroma_log2_weight_denom = 5;
for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
int poc0 = h->ref_list[0][ref0].poc;
for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
int w = 32;
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
int poc1 = h->ref_list[1][ref1].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if (td) {
int tb = av_clip(cur_poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
int dist_scale_factor = (tb * tx + 32) >> 8;
if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
w = 64 - dist_scale_factor;
}
}
if (field < 0) {
h->implicit_weight[ref0][ref1][0] =
h->implicit_weight[ref0][ref1][1] = w;
} else {
h->implicit_weight[ref0][ref1][field] = w;
}
}
}
}
/**
* instantaneous decoder refresh.
*/
static void idr(H264Context *h)
{
int i;
ff_h264_remove_all_refs(h);
h->prev_frame_num = 0;
h->prev_frame_num_offset = 0;
h->prev_poc_msb = 1<<16;
h->prev_poc_lsb = 0;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
}
/* forget old pics after a seek */
static void flush_change(H264Context *h)
{
int i, j;
h->outputed_poc = h->next_outputed_poc = INT_MIN;
h->prev_interlaced_frame = 1;
idr(h);
h->prev_frame_num = -1;
if (h->cur_pic_ptr) {
h->cur_pic_ptr->reference = 0;
for (j=i=0; h->delayed_pic[i]; i++)
if (h->delayed_pic[i] != h->cur_pic_ptr)
h->delayed_pic[j++] = h->delayed_pic[i];
h->delayed_pic[j] = NULL;
}
h->first_field = 0;
memset(h->ref_list[0], 0, sizeof(h->ref_list[0]));
memset(h->ref_list[1], 0, sizeof(h->ref_list[1]));
memset(h->default_ref_list[0], 0, sizeof(h->default_ref_list[0]));
memset(h->default_ref_list[1], 0, sizeof(h->default_ref_list[1]));
ff_h264_reset_sei(h);
h->recovery_frame= -1;
h->sync= 0;
h->list_count = 0;
h->current_slice = 0;
}
/* forget old pics after a seek */
static void flush_dpb(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
for (i = 0; i <= MAX_DELAYED_PIC_COUNT; i++) {
if (h->delayed_pic[i])
h->delayed_pic[i]->reference = 0;
h->delayed_pic[i] = NULL;
}
flush_change(h);
if (h->DPB)
for (i = 0; i < MAX_PICTURE_COUNT; i++)
unref_picture(h, &h->DPB[i]);
h->cur_pic_ptr = NULL;
unref_picture(h, &h->cur_pic);
h->mb_x = h->mb_y = 0;
h->parse_context.state = -1;
h->parse_context.frame_start_found = 0;
h->parse_context.overread = 0;
h->parse_context.overread_index = 0;
h->parse_context.index = 0;
h->parse_context.last_index = 0;
}
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
{
const int max_frame_num = 1 << h->sps.log2_max_frame_num;
int field_poc[2];
h->frame_num_offset = h->prev_frame_num_offset;
if (h->frame_num < h->prev_frame_num)
h->frame_num_offset += max_frame_num;
if (h->sps.poc_type == 0) {
const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb;
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2)
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
else if (h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2)
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
else
h->poc_msb = h->prev_poc_msb;
field_poc[0] =
field_poc[1] = h->poc_msb + h->poc_lsb;
if (h->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc_bottom;
} else if (h->sps.poc_type == 1) {
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
int i;
if (h->sps.poc_cycle_length != 0)
abs_frame_num = h->frame_num_offset + h->frame_num;
else
abs_frame_num = 0;
if (h->nal_ref_idc == 0 && abs_frame_num > 0)
abs_frame_num--;
expected_delta_per_poc_cycle = 0;
for (i = 0; i < h->sps.poc_cycle_length; i++)
// FIXME integrate during sps parse
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i];
if (abs_frame_num > 0) {
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
for (i = 0; i <= frame_num_in_poc_cycle; i++)
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i];
} else
expectedpoc = 0;
if (h->nal_ref_idc == 0)
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
field_poc[0] = expectedpoc + h->delta_poc[0];
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
if (h->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc[1];
} else {
int poc = 2 * (h->frame_num_offset + h->frame_num);
if (!h->nal_ref_idc)
poc--;
field_poc[0] = poc;
field_poc[1] = poc;
}
if (h->picture_structure != PICT_BOTTOM_FIELD)
pic_field_poc[0] = field_poc[0];
if (h->picture_structure != PICT_TOP_FIELD)
pic_field_poc[1] = field_poc[1];
if (pic_poc)
*pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]);
return 0;
}
/**
* initialize scan tables
*/
static void init_scan_tables(H264Context *h)
{
int i;
for (i = 0; i < 16; i++) {
#define T(x) (x >> 2) | ((x << 2) & 0xF)
h->zigzag_scan[i] = T(zigzag_scan[i]);
h->field_scan[i] = T(field_scan[i]);
#undef T
}
for (i = 0; i < 64; i++) {
#define T(x) (x >> 3) | ((x & 7) << 3)
h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
h->field_scan8x8[i] = T(field_scan8x8[i]);
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
#undef T
}
if (h->sps.transform_bypass) { // FIXME same ugly
memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
} else {
memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
}
}
static int field_end(H264Context *h, int in_setup)
{
AVCodecContext *const avctx = h->avctx;
int err = 0;
h->mb_y = 0;
if (CONFIG_H264_VDPAU_DECODER &&
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_set_reference_frames(h);
if (in_setup || !(avctx->active_thread_type & FF_THREAD_FRAME)) {
if (!h->droppable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb = h->poc_msb;
h->prev_poc_lsb = h->poc_lsb;
}
h->prev_frame_num_offset = h->frame_num_offset;
h->prev_frame_num = h->frame_num;
h->outputed_poc = h->next_outputed_poc;
}
if (avctx->hwaccel) {
if (avctx->hwaccel->end_frame(avctx) < 0)
av_log(avctx, AV_LOG_ERROR,
"hardware accelerator failed to decode picture\n");
}
if (CONFIG_H264_VDPAU_DECODER &&
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_picture_complete(h);
/*
* FIXME: Error handling code does not seem to support interlaced
* when slices span multiple rows
* The ff_er_add_slice calls don't work right for bottom
* fields; they cause massive erroneous error concealing
* Error marking covers both fields (top and bottom).
* This causes a mismatched s->error_count
* and a bad error table. Further, the error count goes to
* INT_MAX when called for bottom field, because mb_y is
* past end by one (callers fault) and resync_mb_y != 0
* causes problems for the first MB line, too.
*/
if (CONFIG_ERROR_RESILIENCE &&
!FIELD_PICTURE(h) && h->current_slice && !h->sps.new) {
h->er.cur_pic = h->cur_pic_ptr;
ff_er_frame_end(&h->er);
}
if (!in_setup && !h->droppable)
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
emms_c();
h->current_slice = 0;
return err;
}
/**
* Replicate H264 "master" context to thread contexts.
*/
static int clone_slice(H264Context *dst, H264Context *src)
{
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
dst->cur_pic_ptr = src->cur_pic_ptr;
dst->cur_pic = src->cur_pic;
dst->linesize = src->linesize;
dst->uvlinesize = src->uvlinesize;
dst->first_field = src->first_field;
dst->prev_poc_msb = src->prev_poc_msb;
dst->prev_poc_lsb = src->prev_poc_lsb;
dst->prev_frame_num_offset = src->prev_frame_num_offset;
dst->prev_frame_num = src->prev_frame_num;
dst->short_ref_count = src->short_ref_count;
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
return 0;
}
/**
* Compute profile from profile_idc and constraint_set?_flags.
*
* @param sps SPS
*
* @return profile as defined by FF_PROFILE_H264_*
*/
int ff_h264_get_profile(SPS *sps)
{
int profile = sps->profile_idc;
switch (sps->profile_idc) {
case FF_PROFILE_H264_BASELINE:
// constraint_set1_flag set to 1
profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0;
break;
case FF_PROFILE_H264_HIGH_10:
case FF_PROFILE_H264_HIGH_422:
case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
// constraint_set3_flag set to 1
profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0;
break;
}
return profile;
}
static int h264_set_parameter_from_sps(H264Context *h)
{
if (h->flags & CODEC_FLAG_LOW_DELAY ||
(h->sps.bitstream_restriction_flag &&
!h->sps.num_reorder_frames)) {
if (h->avctx->has_b_frames > 1 || h->delayed_pic[0])
av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. "
"Reenabling low delay requires a codec flush.\n");
else
h->low_delay = 1;
}
if (h->avctx->has_b_frames < 2)
h->avctx->has_b_frames = !h->low_delay;
if (h->sps.bit_depth_luma != h->sps.bit_depth_chroma) {
avpriv_request_sample(h->avctx,
"Different chroma and luma bit depth");
return AVERROR_PATCHWELCOME;
}
if (h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
h->cur_chroma_format_idc != h->sps.chroma_format_idc) {
if (h->avctx->codec &&
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU &&
(h->sps.bit_depth_luma != 8 || h->sps.chroma_format_idc > 1)) {
av_log(h->avctx, AV_LOG_ERROR,
"VDPAU decoding does not support video colorspace.\n");
return AVERROR_INVALIDDATA;
}
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 14 &&
h->sps.bit_depth_luma != 11 && h->sps.bit_depth_luma != 13) {
h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
h->cur_chroma_format_idc = h->sps.chroma_format_idc;
h->pixel_shift = h->sps.bit_depth_luma > 8;
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma,
h->sps.chroma_format_idc);
ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma);
ff_h264qpel_init(&h->h264qpel, h->sps.bit_depth_luma);
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, h->sps.bit_depth_luma,
h->sps.chroma_format_idc);
if (CONFIG_ERROR_RESILIENCE)
ff_dsputil_init(&h->dsp, h->avctx);
ff_videodsp_init(&h->vdsp, h->sps.bit_depth_luma);
} else {
av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d\n",
h->sps.bit_depth_luma);
return AVERROR_INVALIDDATA;
}
}
return 0;
}
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
{
switch (h->sps.bit_depth_luma) {
case 9:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP9;
} else
return AV_PIX_FMT_YUV444P9;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P9;
else
return AV_PIX_FMT_YUV420P9;
break;
case 10:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP10;
} else
return AV_PIX_FMT_YUV444P10;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P10;
else
return AV_PIX_FMT_YUV420P10;
break;
case 12:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP12;
} else
return AV_PIX_FMT_YUV444P12;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P12;
else
return AV_PIX_FMT_YUV420P12;
break;
case 14:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP14;
} else
return AV_PIX_FMT_YUV444P14;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P14;
else
return AV_PIX_FMT_YUV420P14;
break;
case 8:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
av_log(h->avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n");
return AV_PIX_FMT_GBR24P;
} else if (h->avctx->colorspace == AVCOL_SPC_YCGCO) {
av_log(h->avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n");
}
return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ444P
: AV_PIX_FMT_YUV444P;
} else if (CHROMA422(h)) {
return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ422P
: AV_PIX_FMT_YUV422P;
} else {
int i;
const enum AVPixelFormat * fmt = h->avctx->codec->pix_fmts ?
h->avctx->codec->pix_fmts :
h->avctx->color_range == AVCOL_RANGE_JPEG ?
h264_hwaccel_pixfmt_list_jpeg_420 :
h264_hwaccel_pixfmt_list_420;
for (i=0; fmt[i] != AV_PIX_FMT_NONE; i++)
if (fmt[i] == h->avctx->pix_fmt && !force_callback)
return fmt[i];
return ff_thread_get_format(h->avctx, fmt);
}
break;
default:
av_log(h->avctx, AV_LOG_ERROR,
"Unsupported bit depth: %d\n", h->sps.bit_depth_luma);
return AVERROR_INVALIDDATA;
}
}
/* export coded and cropped frame dimensions to AVCodecContext */
static int init_dimensions(H264Context *h)
{
int width = h->width - (h->sps.crop_right + h->sps.crop_left);
int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width);
av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height);
/* handle container cropping */
if (!h->sps.crop &&
FFALIGN(h->avctx->width, 16) == h->width &&
FFALIGN(h->avctx->height, 16) == h->height) {
width = h->avctx->width;
height = h->avctx->height;
}
if (width <= 0 || height <= 0) {
av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
width, height);
if (h->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
h->sps.crop_bottom = h->sps.crop_top = h->sps.crop_right = h->sps.crop_left = 0;
h->sps.crop = 0;
width = h->width;
height = h->height;
}
h->avctx->coded_width = h->width;
h->avctx->coded_height = h->height;
h->avctx->width = width;
h->avctx->height = height;
return 0;
}
static int h264_slice_header_init(H264Context *h, int reinit)
{
int nb_slices = (HAVE_THREADS &&
h->avctx->active_thread_type & FF_THREAD_SLICE) ?
h->avctx->thread_count : 1;
int i;
h->avctx->sample_aspect_ratio = h->sps.sar;
av_assert0(h->avctx->sample_aspect_ratio.den);
av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
&h->chroma_x_shift, &h->chroma_y_shift);
if (h->sps.timing_info_present_flag) {
int64_t den = h->sps.time_scale;
if (h->x264_build < 44U)
den *= 2;
av_reduce(&h->avctx->time_base.num, &h->avctx->time_base.den,
h->sps.num_units_in_tick, den, 1 << 30);
}
h->avctx->hwaccel = ff_find_hwaccel(h->avctx->codec->id, h->avctx->pix_fmt);
if (reinit)
free_tables(h, 0);
h->first_field = 0;
h->prev_interlaced_frame = 1;
init_scan_tables(h);
if (ff_h264_alloc_tables(h) < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"Could not allocate memory for h264\n");
return AVERROR(ENOMEM);
}
if (nb_slices > MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
int max_slices;
if (h->mb_height)
max_slices = FFMIN(MAX_THREADS, h->mb_height);
else
max_slices = MAX_THREADS;
av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices (%d),"
" reducing to %d\n", nb_slices, max_slices);
nb_slices = max_slices;
}
h->slice_context_count = nb_slices;
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
if (context_init(h) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
return -1;
}
} else {
for (i = 1; i < h->slice_context_count; i++) {
H264Context *c;
c = h->thread_context[i] = av_mallocz(sizeof(H264Context));
c->avctx = h->avctx;
if (CONFIG_ERROR_RESILIENCE) {
c->dsp = h->dsp;
}
c->vdsp = h->vdsp;
c->h264dsp = h->h264dsp;
c->h264qpel = h->h264qpel;
c->h264chroma = h->h264chroma;
c->sps = h->sps;
c->pps = h->pps;
c->pixel_shift = h->pixel_shift;
c->cur_chroma_format_idc = h->cur_chroma_format_idc;
c->width = h->width;
c->height = h->height;
c->linesize = h->linesize;
c->uvlinesize = h->uvlinesize;
c->chroma_x_shift = h->chroma_x_shift;
c->chroma_y_shift = h->chroma_y_shift;
c->qscale = h->qscale;
c->droppable = h->droppable;
c->data_partitioning = h->data_partitioning;
c->low_delay = h->low_delay;
c->mb_width = h->mb_width;
c->mb_height = h->mb_height;
c->mb_stride = h->mb_stride;
c->mb_num = h->mb_num;
c->flags = h->flags;
c->workaround_bugs = h->workaround_bugs;
c->pict_type = h->pict_type;
init_scan_tables(c);
clone_tables(c, h, i);
c->context_initialized = 1;
}
for (i = 0; i < h->slice_context_count; i++)
if (context_init(h->thread_context[i]) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
return -1;
}
}
h->context_initialized = 1;
return 0;
}
/**
* Decode a slice header.
* This will also call ff_MPV_common_init() and frame_start() as needed.
*
* @param h h264context
* @param h0 h264 master context (differs from 'h' when doing sliced based
* parallel decoding)
*
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
*/
static int decode_slice_header(H264Context *h, H264Context *h0)
{
unsigned int first_mb_in_slice;
unsigned int pps_id;
int num_ref_idx_active_override_flag, ret;
unsigned int slice_type, tmp, i, j;
int last_pic_structure, last_pic_droppable;
int must_reinit;
int needs_reinit = 0;
h->me.qpel_put = h->h264qpel.put_h264_qpel_pixels_tab;
h->me.qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab;
first_mb_in_slice = get_ue_golomb_long(&h->gb);
if (first_mb_in_slice == 0) { // FIXME better field boundary detection
if (h0->current_slice && FIELD_PICTURE(h)) {
field_end(h, 1);
}
h0->current_slice = 0;
if (!h0->first_field) {
if (h->cur_pic_ptr && !h->droppable) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
}
h->cur_pic_ptr = NULL;
}
}
slice_type = get_ue_golomb_31(&h->gb);
if (slice_type > 9) {
av_log(h->avctx, AV_LOG_ERROR,
"slice type too large (%d) at %d %d\n",
slice_type, h->mb_x, h->mb_y);
return -1;
}
if (slice_type > 4) {
slice_type -= 5;
h->slice_type_fixed = 1;
} else
h->slice_type_fixed = 0;
slice_type = golomb_to_pict_type[slice_type];
h->slice_type = slice_type;
h->slice_type_nos = slice_type & 3;
// to make a few old functions happy, it's wrong though
h->pict_type = h->slice_type;
pps_id = get_ue_golomb(&h->gb);
if (pps_id >= MAX_PPS_COUNT) {
av_log(h->avctx, AV_LOG_ERROR, "pps_id %d out of range\n", pps_id);
return -1;
}
if (!h0->pps_buffers[pps_id]) {
av_log(h->avctx, AV_LOG_ERROR,
"non-existing PPS %u referenced\n",
pps_id);
return -1;
}
h->pps = *h0->pps_buffers[pps_id];
if (!h0->sps_buffers[h->pps.sps_id]) {
av_log(h->avctx, AV_LOG_ERROR,
"non-existing SPS %u referenced\n",
h->pps.sps_id);
return -1;
}
if (h->pps.sps_id != h->current_sps_id ||
h0->sps_buffers[h->pps.sps_id]->new) {
h0->sps_buffers[h->pps.sps_id]->new = 0;
h->current_sps_id = h->pps.sps_id;
h->sps = *h0->sps_buffers[h->pps.sps_id];
if (h->mb_width != h->sps.mb_width ||
h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) ||
h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
h->cur_chroma_format_idc != h->sps.chroma_format_idc
)
needs_reinit = 1;
if (h->bit_depth_luma != h->sps.bit_depth_luma ||
h->chroma_format_idc != h->sps.chroma_format_idc) {
h->bit_depth_luma = h->sps.bit_depth_luma;
h->chroma_format_idc = h->sps.chroma_format_idc;
needs_reinit = 1;
}
if ((ret = h264_set_parameter_from_sps(h)) < 0)
return ret;
}
h->avctx->profile = ff_h264_get_profile(&h->sps);
h->avctx->level = h->sps.level_idc;
h->avctx->refs = h->sps.ref_frame_count;
must_reinit = (h->context_initialized &&
( 16*h->sps.mb_width != h->avctx->coded_width
|| 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height
|| h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma
|| h->cur_chroma_format_idc != h->sps.chroma_format_idc
|| av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio)
|| h->mb_width != h->sps.mb_width
|| h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag)
));
if (h0->avctx->pix_fmt != get_pixel_format(h0, 0))
must_reinit = 1;
h->mb_width = h->sps.mb_width;
h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
h->mb_num = h->mb_width * h->mb_height;
h->mb_stride = h->mb_width + 1;
h->b_stride = h->mb_width * 4;
h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
h->width = 16 * h->mb_width;
h->height = 16 * h->mb_height;
ret = init_dimensions(h);
if (ret < 0)
return ret;
if (h->sps.video_signal_type_present_flag) {
h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
if (h->sps.colour_description_present_flag) {
if (h->avctx->colorspace != h->sps.colorspace)
needs_reinit = 1;
h->avctx->color_primaries = h->sps.color_primaries;
h->avctx->color_trc = h->sps.color_trc;
h->avctx->colorspace = h->sps.colorspace;
}
}
if (h->context_initialized &&
(h->width != h->avctx->coded_width ||
h->height != h->avctx->coded_height ||
must_reinit ||
needs_reinit)) {
if (h != h0) {
av_log(h->avctx, AV_LOG_ERROR, "changing width/height on "
"slice %d\n", h0->current_slice + 1);
return AVERROR_INVALIDDATA;
}
flush_change(h);
if ((ret = get_pixel_format(h, 1)) < 0)
return ret;
h->avctx->pix_fmt = ret;
av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
"pix_fmt: %d\n", h->width, h->height, h->avctx->pix_fmt);
if ((ret = h264_slice_header_init(h, 1)) < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"h264_slice_header_init() failed\n");
return ret;
}
}
if (!h->context_initialized) {
if (h != h0) {
av_log(h->avctx, AV_LOG_ERROR,
"Cannot (re-)initialize context during parallel decoding.\n");
return -1;
}
if ((ret = get_pixel_format(h, 1)) < 0)
return ret;
h->avctx->pix_fmt = ret;
if ((ret = h264_slice_header_init(h, 0)) < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"h264_slice_header_init() failed\n");
return ret;
}
}
if (h == h0 && h->dequant_coeff_pps != pps_id) {
h->dequant_coeff_pps = pps_id;
init_dequant_tables(h);
}
h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num);
h->mb_mbaff = 0;
h->mb_aff_frame = 0;
last_pic_structure = h0->picture_structure;
last_pic_droppable = h0->droppable;
h->droppable = h->nal_ref_idc == 0;
if (h->sps.frame_mbs_only_flag) {
h->picture_structure = PICT_FRAME;
} else {
if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
return -1;
}
if (get_bits1(&h->gb)) { // field_pic_flag
h->picture_structure = PICT_TOP_FIELD + get_bits1(&h->gb); // bottom_field_flag
} else {
h->picture_structure = PICT_FRAME;
h->mb_aff_frame = h->sps.mb_aff;
}
}
h->mb_field_decoding_flag = h->picture_structure != PICT_FRAME;
if (h0->current_slice != 0) {
if (last_pic_structure != h->picture_structure ||
last_pic_droppable != h->droppable) {
av_log(h->avctx, AV_LOG_ERROR,
"Changing field mode (%d -> %d) between slices is not allowed\n",
last_pic_structure, h->picture_structure);
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_INVALIDDATA;
} else if (!h0->cur_pic_ptr) {
av_log(h->avctx, AV_LOG_ERROR,
"unset cur_pic_ptr on %d. slice\n",
h0->current_slice + 1);
return AVERROR_INVALIDDATA;
}
} else {
/* Shorten frame num gaps so we don't have to allocate reference
* frames just to throw them away */
if (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0) {
int unwrap_prev_frame_num = h->prev_frame_num;
int max_frame_num = 1 << h->sps.log2_max_frame_num;
if (unwrap_prev_frame_num > h->frame_num)
unwrap_prev_frame_num -= max_frame_num;
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
if (unwrap_prev_frame_num < 0)
unwrap_prev_frame_num += max_frame_num;
h->prev_frame_num = unwrap_prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* Here, we're using that to see if we should mark previously
* decode frames as "finished".
* We have to do that before the "dummy" in-between frame allocation,
* since that can modify h->cur_pic_ptr. */
if (h0->first_field) {
assert(h0->cur_pic_ptr);
assert(h0->cur_pic_ptr->f.data[0]);
assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
/* Mark old field/frame as completed */
if (!last_pic_droppable && h0->cur_pic_ptr->tf.owner == h0->avctx) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_BOTTOM_FIELD);
}
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
if (!last_pic_droppable && last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
if (h0->cur_pic_ptr->frame_num != h->frame_num) {
/* This and previous field were reference, but had
* different frame_nums. Consider this field first in
* pair. Throw away previous field except for reference
* purposes. */
if (!last_pic_droppable && last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
/* Second field in complementary pair */
if (!((last_pic_structure == PICT_TOP_FIELD &&
h->picture_structure == PICT_BOTTOM_FIELD) ||
(last_pic_structure == PICT_BOTTOM_FIELD &&
h->picture_structure == PICT_TOP_FIELD))) {
av_log(h->avctx, AV_LOG_ERROR,
"Invalid field mode combination %d/%d\n",
last_pic_structure, h->picture_structure);
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_INVALIDDATA;
} else if (last_pic_droppable != h->droppable) {
avpriv_request_sample(h->avctx,
"Found reference and non-reference fields in the same frame, which");
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_PATCHWELCOME;
}
}
}
}
while (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0 && !h0->first_field &&
h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
h->frame_num, h->prev_frame_num);
if (!h->sps.gaps_in_frame_num_allowed_flag)
for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
h->last_pocs[i] = INT_MIN;
if (h264_frame_start(h) < 0)
return -1;
h->prev_frame_num++;
h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
h->cur_pic_ptr->frame_num = h->prev_frame_num;
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
if ((ret = ff_generate_sliding_window_mmcos(h, 1)) < 0 &&
h->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 &&
(h->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
/* Error concealment: if a ref is missing, copy the previous ref in its place.
* FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions
* about there being no actual duplicates.
* FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're
* concealing a lost frame, this probably isn't noticeable by comparison, but it should
* be fixed. */
if (h->short_ref_count) {
if (prev) {
av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize,
(const uint8_t **)prev->f.data, prev->f.linesize,
h->avctx->pix_fmt, h->mb_width * 16, h->mb_height * 16);
h->short_ref[0]->poc = prev->poc + 2;
}
h->short_ref[0]->frame_num = h->prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* We're using that to see whether to continue decoding in that
* frame, or to allocate a new one. */
if (h0->first_field) {
assert(h0->cur_pic_ptr);
assert(h0->cur_pic_ptr->f.data[0]);
assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
h0->cur_pic_ptr = NULL;
h0->first_field = FIELD_PICTURE(h);
} else {
if (h0->cur_pic_ptr->frame_num != h->frame_num) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
h0->picture_structure==PICT_BOTTOM_FIELD);
/* This and the previous field had different frame_nums.
* Consider this field first in pair. Throw away previous
* one except for reference purposes. */
h0->first_field = 1;
h0->cur_pic_ptr = NULL;
} else {
/* Second field in complementary pair */
h0->first_field = 0;
}
}
} else {
/* Frame or first field in a potentially complementary pair */
h0->first_field = FIELD_PICTURE(h);
}
if (!FIELD_PICTURE(h) || h0->first_field) {
if (h264_frame_start(h) < 0) {
h0->first_field = 0;
return -1;
}
} else {
release_unused_pictures(h, 0);
}
/* Some macroblocks can be accessed before they're available in case
* of lost slices, MBAFF or threading. */
if (FIELD_PICTURE(h)) {
for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
} else {
memset(h->slice_table, -1,
(h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
}
h0->last_slice_type = -1;
}
if (h != h0 && (ret = clone_slice(h, h0)) < 0)
return ret;
/* can't be in alloc_tables because linesize isn't known there.
* FIXME: redo bipred weight to not require extra buffer? */
for (i = 0; i < h->slice_context_count; i++)
if (h->thread_context[i]) {
ret = alloc_scratch_buffers(h->thread_context[i], h->linesize);
if (ret < 0)
return ret;
}
h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
av_assert1(h->mb_num == h->mb_width * h->mb_height);
if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
first_mb_in_slice >= h->mb_num) {
av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
return -1;
}
h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width;
h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) << FIELD_OR_MBAFF_PICTURE(h);
if (h->picture_structure == PICT_BOTTOM_FIELD)
h->resync_mb_y = h->mb_y = h->mb_y + 1;
av_assert1(h->mb_y < h->mb_height);
if (h->picture_structure == PICT_FRAME) {
h->curr_pic_num = h->frame_num;
h->max_pic_num = 1 << h->sps.log2_max_frame_num;
} else {
h->curr_pic_num = 2 * h->frame_num + 1;
h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
}
if (h->nal_unit_type == NAL_IDR_SLICE)
get_ue_golomb(&h->gb); /* idr_pic_id */
if (h->sps.poc_type == 0) {
h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb);
if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
h->delta_poc_bottom = get_se_golomb(&h->gb);
}
if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
h->delta_poc[0] = get_se_golomb(&h->gb);
if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
h->delta_poc[1] = get_se_golomb(&h->gb);
}
ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc);
if (h->pps.redundant_pic_cnt_present)
h->redundant_pic_count = get_ue_golomb(&h->gb);
// set defaults, might be overridden a few lines later
h->ref_count[0] = h->pps.ref_count[0];
h->ref_count[1] = h->pps.ref_count[1];
if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
unsigned max[2];
max[0] = max[1] = h->picture_structure == PICT_FRAME ? 15 : 31;
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
h->direct_spatial_mv_pred = get_bits1(&h->gb);
num_ref_idx_active_override_flag = get_bits1(&h->gb);
if (num_ref_idx_active_override_flag) {
h->ref_count[0] = get_ue_golomb(&h->gb) + 1;
if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
h->ref_count[1] = get_ue_golomb(&h->gb) + 1;
} else
// full range is spec-ok in this case, even for frames
h->ref_count[1] = 1;
}
if (h->ref_count[0]-1 > max[0] || h->ref_count[1]-1 > max[1]){
av_log(h->avctx, AV_LOG_ERROR, "reference overflow %u > %u or %u > %u\n", h->ref_count[0]-1, max[0], h->ref_count[1]-1, max[1]);
h->ref_count[0] = h->ref_count[1] = 0;
return AVERROR_INVALIDDATA;
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
h->list_count = 2;
else
h->list_count = 1;
} else {
h->list_count = 0;
h->ref_count[0] = h->ref_count[1] = 0;
}
if (slice_type != AV_PICTURE_TYPE_I &&
(h0->current_slice == 0 ||
slice_type != h0->last_slice_type ||
memcmp(h0->last_ref_count, h0->ref_count, sizeof(h0->ref_count)))) {
ff_h264_fill_default_ref_list(h);
}
if (h->slice_type_nos != AV_PICTURE_TYPE_I &&
ff_h264_decode_ref_pic_list_reordering(h) < 0) {
h->ref_count[1] = h->ref_count[0] = 0;
return -1;
}
if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) ||
(h->pps.weighted_bipred_idc == 1 &&
h->slice_type_nos == AV_PICTURE_TYPE_B))
pred_weight_table(h);
else if (h->pps.weighted_bipred_idc == 2 &&
h->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, -1);
} else {
h->use_weight = 0;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
}
// If frame-mt is enabled, only update mmco tables for the first slice
// in a field. Subsequent slices can temporarily clobber h->mmco_index
// or h->mmco, which will cause ref list mix-ups and decoding errors
// further down the line. This may break decoding if the first slice is
// corrupt, thus we only do this if frame-mt is enabled.
if (h->nal_ref_idc &&
ff_h264_decode_ref_pic_marking(h0, &h->gb,
!(h->avctx->active_thread_type & FF_THREAD_FRAME) ||
h0->current_slice == 0) < 0 &&
(h->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
if (FRAME_MBAFF(h)) {
ff_h264_fill_mbaff_ref_list(h);
if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, 0);
implicit_weight_table(h, 1);
}
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
ff_h264_direct_dist_scale_factor(h);
ff_h264_direct_ref_list_init(h);
if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
tmp = get_ue_golomb_31(&h->gb);
if (tmp > 2) {
av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
return -1;
}
h->cabac_init_idc = tmp;
}
h->last_qscale_diff = 0;
tmp = h->pps.init_qp + get_se_golomb(&h->gb);
if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
return -1;
}
h->qscale = tmp;
h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
// FIXME qscale / qp ... stuff
if (h->slice_type == AV_PICTURE_TYPE_SP)
get_bits1(&h->gb); /* sp_for_switch_flag */
if (h->slice_type == AV_PICTURE_TYPE_SP ||
h->slice_type == AV_PICTURE_TYPE_SI)
get_se_golomb(&h->gb); /* slice_qs_delta */
h->deblocking_filter = 1;
h->slice_alpha_c0_offset = 52;
h->slice_beta_offset = 52;
if (h->pps.deblocking_filter_parameters_present) {
tmp = get_ue_golomb_31(&h->gb);
if (tmp > 2) {
av_log(h->avctx, AV_LOG_ERROR,
"deblocking_filter_idc %u out of range\n", tmp);
return -1;
}
h->deblocking_filter = tmp;
if (h->deblocking_filter < 2)
h->deblocking_filter ^= 1; // 1<->0
if (h->deblocking_filter) {
h->slice_alpha_c0_offset += get_se_golomb(&h->gb) << 1;
h->slice_beta_offset += get_se_golomb(&h->gb) << 1;
if (h->slice_alpha_c0_offset > 104U ||
h->slice_beta_offset > 104U) {
av_log(h->avctx, AV_LOG_ERROR,
"deblocking filter parameters %d %d out of range\n",
h->slice_alpha_c0_offset, h->slice_beta_offset);
return -1;
}
}
}
if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
h->slice_type_nos != AV_PICTURE_TYPE_I) ||
(h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
h->slice_type_nos == AV_PICTURE_TYPE_B) ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
h->nal_ref_idc == 0))
h->deblocking_filter = 0;
if (h->deblocking_filter == 1 && h0->max_contexts > 1) {
if (h->avctx->flags2 & CODEC_FLAG2_FAST) {
/* Cheat slightly for speed:
* Do not bother to deblock across slices. */
h->deblocking_filter = 2;
} else {
h0->max_contexts = 1;
if (!h0->single_decode_warning) {
av_log(h->avctx, AV_LOG_INFO,
"Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
h0->single_decode_warning = 1;
}
if (h != h0) {
av_log(h->avctx, AV_LOG_ERROR,
"Deblocking switched inside frame.\n");
return 1;
}
}
}
h->qp_thresh = 15 + 52 -
FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) -
FFMAX3(0,
h->pps.chroma_qp_index_offset[0],
h->pps.chroma_qp_index_offset[1]) +
6 * (h->sps.bit_depth_luma - 8);
h0->last_slice_type = slice_type;
memcpy(h0->last_ref_count, h0->ref_count, sizeof(h0->last_ref_count));
h->slice_num = ++h0->current_slice;
if (h->slice_num)
h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y;
if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y
&& h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y
&& h->slice_num >= MAX_SLICES) {
//in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES);
}
for (j = 0; j < 2; j++) {
int id_list[16];
int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j];
for (i = 0; i < 16; i++) {
id_list[i] = 60;
if (j < h->list_count && i < h->ref_count[j] && h->ref_list[j][i].f.buf[0]) {
int k;
AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer;
for (k = 0; k < h->short_ref_count; k++)
if (h->short_ref[k]->f.buf[0]->buffer == buf) {
id_list[i] = k;
break;
}
for (k = 0; k < h->long_ref_count; k++)
if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) {
id_list[i] = h->short_ref_count + k;
break;
}
}
}
ref2frm[0] =
ref2frm[1] = -1;
for (i = 0; i < 16; i++)
ref2frm[i + 2] = 4 * id_list[i] +
(h->ref_list[j][i].reference & 3);
ref2frm[18 + 0] =
ref2frm[18 + 1] = -1;
for (i = 16; i < 48; i++)
ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
(h->ref_list[j][i].reference & 3);
}
if (h->ref_count[0]) h->er.last_pic = &h->ref_list[0][0];
if (h->ref_count[1]) h->er.next_pic = &h->ref_list[1][0];
if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
av_log(h->avctx, AV_LOG_DEBUG,
"slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
h->slice_num,
(h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
first_mb_in_slice,
av_get_picture_type_char(h->slice_type),
h->slice_type_fixed ? " fix" : "",
h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
pps_id, h->frame_num,
h->cur_pic_ptr->field_poc[0],
h->cur_pic_ptr->field_poc[1],
h->ref_count[0], h->ref_count[1],
h->qscale,
h->deblocking_filter,
h->slice_alpha_c0_offset / 2 - 26, h->slice_beta_offset / 2 - 26,
h->use_weight,
h->use_weight == 1 && h->use_weight_chroma ? "c" : "",
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
}
return 0;
}
int ff_h264_get_slice_type(const H264Context *h)
{
switch (h->slice_type) {
case AV_PICTURE_TYPE_P:
return 0;
case AV_PICTURE_TYPE_B:
return 1;
case AV_PICTURE_TYPE_I:
return 2;
case AV_PICTURE_TYPE_SP:
return 3;
case AV_PICTURE_TYPE_SI:
return 4;
default:
return -1;
}
}
static av_always_inline void fill_filter_caches_inter(H264Context *h,
int mb_type, int top_xy,
int left_xy[LEFT_MBS],
int top_type,
int left_type[LEFT_MBS],
int mb_xy, int list)
{
int b_stride = h->b_stride;
int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
if (USES_LIST(top_type, list)) {
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
const int b8_xy = 4 * top_xy + 2;
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
ref_cache[0 - 1 * 8] =
ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]];
ref_cache[2 - 1 * 8] =
ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]];
} else {
AV_ZERO128(mv_dst - 1 * 8);
AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
}
if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
if (USES_LIST(left_type[LTOP], list)) {
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
const int b8_xy = 4 * left_xy[LTOP] + 1;
int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
} else {
AV_ZERO32(mv_dst - 1 + 0);
AV_ZERO32(mv_dst - 1 + 8);
AV_ZERO32(mv_dst - 1 + 16);
AV_ZERO32(mv_dst - 1 + 24);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] =
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = LIST_NOT_USED;
}
}
}
if (!USES_LIST(mb_type, list)) {
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
return;
}
{
int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
AV_WN32A(&ref_cache[0 * 8], ref01);
AV_WN32A(&ref_cache[1 * 8], ref01);
AV_WN32A(&ref_cache[2 * 8], ref23);
AV_WN32A(&ref_cache[3 * 8], ref23);
}
{
int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride];
AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
}
}
/**
*
* @return non zero if the loop filter can be skipped
*/
static int fill_filter_caches(H264Context *h, int mb_type)
{
const int mb_xy = h->mb_xy;
int top_xy, left_xy[LEFT_MBS];
int top_type, left_type[LEFT_MBS];
uint8_t *nnz;
uint8_t *nnz_cache;
top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
if (FRAME_MBAFF(h)) {
const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if (h->mb_y & 1) {
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LTOP] -= h->mb_stride;
} else {
if (curr_mb_field_flag)
top_xy += h->mb_stride &
(((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LBOT] += h->mb_stride;
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[LTOP] = left_xy[LTOP];
h->left_mb_xy[LBOT] = left_xy[LBOT];
{
/* For sufficiently low qp, filtering wouldn't do anything.
* This is a conservative estimate: could also check beta_offset
* and more accurate chroma_qp. */
int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
int qp = h->cur_pic.qscale_table[mb_xy];
if (qp <= qp_thresh &&
(left_xy[LTOP] < 0 ||
((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
(top_xy < 0 ||
((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
if (!FRAME_MBAFF(h))
return 1;
if ((left_xy[LTOP] < 0 ||
((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
(top_xy < h->mb_stride ||
((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
return 1;
}
}
top_type = h->cur_pic.mb_type[top_xy];
left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
if (h->deblocking_filter == 2) {
if (h->slice_table[top_xy] != h->slice_num)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] != h->slice_num)
left_type[LTOP] = left_type[LBOT] = 0;
} else {
if (h->slice_table[top_xy] == 0xFFFF)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
left_type[LTOP] = left_type[LBOT] = 0;
}
h->top_type = top_type;
h->left_type[LTOP] = left_type[LTOP];
h->left_type[LBOT] = left_type[LBOT];
if (IS_INTRA(mb_type))
return 0;
fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 0);
if (h->list_count == 2)
fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 1);
nnz = h->non_zero_count[mb_xy];
nnz_cache = h->non_zero_count_cache;
AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
h->cbp = h->cbp_table[mb_xy];
if (top_type) {
nnz = h->non_zero_count[top_xy];
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
}
if (left_type[LTOP]) {
nnz = h->non_zero_count[left_xy[LTOP]];
nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
}
/* CAVLC 8x8dct requires NNZ values for residual decoding that differ
* from what the loop filter needs */
if (!CABAC(h) && h->pps.transform_8x8_mode) {
if (IS_8x8DCT(top_type)) {
nnz_cache[4 + 8 * 0] =
nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
nnz_cache[6 + 8 * 0] =
nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
}
if (IS_8x8DCT(left_type[LTOP])) {
nnz_cache[3 + 8 * 1] =
nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(left_type[LBOT])) {
nnz_cache[3 + 8 * 3] =
nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(mb_type)) {
nnz_cache[scan8[0]] =
nnz_cache[scan8[1]] =
nnz_cache[scan8[2]] =
nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12;
nnz_cache[scan8[0 + 4]] =
nnz_cache[scan8[1 + 4]] =
nnz_cache[scan8[2 + 4]] =
nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12;
nnz_cache[scan8[0 + 8]] =
nnz_cache[scan8[1 + 8]] =
nnz_cache[scan8[2 + 8]] =
nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12;
nnz_cache[scan8[0 + 12]] =
nnz_cache[scan8[1 + 12]] =
nnz_cache[scan8[2 + 12]] =
nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12;
}
}
return 0;
}
static void loop_filter(H264Context *h, int start_x, int end_x)
{
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize, mb_x, mb_y;
const int end_mb_y = h->mb_y + FRAME_MBAFF(h);
const int old_slice_type = h->slice_type;
const int pixel_shift = h->pixel_shift;
const int block_h = 16 >> h->chroma_y_shift;
if (h->deblocking_filter) {
for (mb_x = start_x; mb_x < end_x; mb_x++)
for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
int mb_xy, mb_type;
mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride;
h->slice_num = h->slice_table[mb_xy];
mb_type = h->cur_pic.mb_type[mb_xy];
h->list_count = h->list_counts[mb_xy];
if (FRAME_MBAFF(h))
h->mb_mbaff =
h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
h->mb_x = mb_x;
h->mb_y = mb_y;
dest_y = h->cur_pic.f.data[0] +
((mb_x << pixel_shift) + mb_y * h->linesize) * 16;
dest_cb = h->cur_pic.f.data[1] +
(mb_x << pixel_shift) * (8 << CHROMA444(h)) +
mb_y * h->uvlinesize * block_h;
dest_cr = h->cur_pic.f.data[2] +
(mb_x << pixel_shift) * (8 << CHROMA444(h)) +
mb_y * h->uvlinesize * block_h;
// FIXME simplify above
if (MB_FIELD(h)) {
linesize = h->mb_linesize = h->linesize * 2;
uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2;
if (mb_y & 1) { // FIXME move out of this function?
dest_y -= h->linesize * 15;
dest_cb -= h->uvlinesize * (block_h - 1);
dest_cr -= h->uvlinesize * (block_h - 1);
}
} else {
linesize = h->mb_linesize = h->linesize;
uvlinesize = h->mb_uvlinesize = h->uvlinesize;
}
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
uvlinesize, 0);
if (fill_filter_caches(h, mb_type))
continue;
h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
if (FRAME_MBAFF(h)) {
ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr,
linesize, uvlinesize);
} else {
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb,
dest_cr, linesize, uvlinesize);
}
}
}
h->slice_type = old_slice_type;
h->mb_x = end_x;
h->mb_y = end_mb_y - FRAME_MBAFF(h);
h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
}
static void predict_field_decoding_flag(H264Context *h)
{
const int mb_xy = h->mb_x + h->mb_y * h->mb_stride;
int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ?
h->cur_pic.mb_type[mb_xy - 1] :
(h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ?
h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* Draw edges and report progress for the last MB row.
*/
static void decode_finish_row(H264Context *h)
{
int top = 16 * (h->mb_y >> FIELD_PICTURE(h));
int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
int height = 16 << FRAME_MBAFF(h);
int deblock_border = (16 + 4) << FRAME_MBAFF(h);
if (h->deblocking_filter) {
if ((top + height) >= pic_height)
height += deblock_border;
top -= deblock_border;
}
if (top >= pic_height || (top + height) < 0)
return;
height = FFMIN(height, pic_height - top);
if (top < 0) {
height = top + height;
top = 0;
}
ff_h264_draw_horiz_band(h, top, height);
if (h->droppable || h->er.error_occurred)
return;
ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
h->picture_structure == PICT_BOTTOM_FIELD);
}
static void er_add_slice(H264Context *h, int startx, int starty,
int endx, int endy, int status)
{
if (CONFIG_ERROR_RESILIENCE) {
ERContext *er = &h->er;
er->ref_count = h->ref_count[0];
ff_er_add_slice(er, startx, starty, endx, endy, status);
}
}
static int decode_slice(struct AVCodecContext *avctx, void *arg)
{
H264Context *h = *(void **)arg;
int lf_x_start = h->mb_x;
h->mb_skip_run = -1;
av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * h->linesize * ((scan8[15] - scan8[0]) >> 3));
h->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
avctx->codec_id != AV_CODEC_ID_H264 ||
(CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY));
if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->er.error_status_table) {
const int start_i = av_clip(h->resync_mb_x + h->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
if (start_i) {
int prev_status = h->er.error_status_table[h->er.mb_index2xy[start_i - 1]];
prev_status &= ~ VP_START;
if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
h->er.error_occurred = 1;
}
}
if (h->pps.cabac) {
/* realign */
align_get_bits(&h->gb);
/* init cabac */
ff_init_cabac_decoder(&h->cabac,
h->gb.buffer + get_bits_count(&h->gb) / 8,
(get_bits_left(&h->gb) + 7) / 8);
ff_h264_init_cabac_states(h);
for (;;) {
// START_TIMER
int ret = ff_h264_decode_mb_cabac(h);
int eos;
// STOP_TIMER("decode_mb_cabac")
if (ret >= 0)
ff_h264_hl_decode_mb(h);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF(h)) {
h->mb_y++;
ret = ff_h264_decode_mb_cabac(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
h->mb_y--;
}
eos = get_cabac_terminate(&h->cabac);
if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
h->cabac.bytestream > h->cabac.bytestream_end + 2) {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
h->mb_y, ER_MB_END);
if (h->mb_x >= lf_x_start)
loop_filter(h, lf_x_start, h->mb_x + 1);
return 0;
}
if (h->cabac.bytestream > h->cabac.bytestream_end + 2 )
av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %td\n", h->cabac.bytestream_end - h->cabac.bytestream);
if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d, bytestream (%td)\n",
h->mb_x, h->mb_y,
h->cabac.bytestream_end - h->cabac.bytestream);
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
h->mb_y, ER_MB_ERROR);
return -1;
}
if (++h->mb_x >= h->mb_width) {
loop_filter(h, lf_x_start, h->mb_x);
h->mb_x = lf_x_start = 0;
decode_finish_row(h);
++h->mb_y;
if (FIELD_OR_MBAFF_PICTURE(h)) {
++h->mb_y;
if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
predict_field_decoding_flag(h);
}
}
if (eos || h->mb_y >= h->mb_height) {
tprintf(h->avctx, "slice end %d %d\n",
get_bits_count(&h->gb), h->gb.size_in_bits);
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
h->mb_y, ER_MB_END);
if (h->mb_x > lf_x_start)
loop_filter(h, lf_x_start, h->mb_x);
return 0;
}
}
} else {
for (;;) {
int ret = ff_h264_decode_mb_cavlc(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF(h)) {
h->mb_y++;
ret = ff_h264_decode_mb_cavlc(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
h->mb_y--;
}
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d\n", h->mb_x, h->mb_y);
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
h->mb_y, ER_MB_ERROR);
return -1;
}
if (++h->mb_x >= h->mb_width) {
loop_filter(h, lf_x_start, h->mb_x);
h->mb_x = lf_x_start = 0;
decode_finish_row(h);
++h->mb_y;
if (FIELD_OR_MBAFF_PICTURE(h)) {
++h->mb_y;
if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
predict_field_decoding_flag(h);
}
if (h->mb_y >= h->mb_height) {
tprintf(h->avctx, "slice end %d %d\n",
get_bits_count(&h->gb), h->gb.size_in_bits);
if ( get_bits_left(&h->gb) == 0
|| get_bits_left(&h->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
h->mb_x - 1, h->mb_y,
ER_MB_END);
return 0;
} else {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
h->mb_x, h->mb_y,
ER_MB_END);
return -1;
}
}
}
if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) {
tprintf(h->avctx, "slice end %d %d\n",
get_bits_count(&h->gb), h->gb.size_in_bits);
if (get_bits_left(&h->gb) == 0) {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
h->mb_x - 1, h->mb_y,
ER_MB_END);
if (h->mb_x > lf_x_start)
loop_filter(h, lf_x_start, h->mb_x);
return 0;
} else {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
h->mb_y, ER_MB_ERROR);
return -1;
}
}
}
}
}
/**
* Call decode_slice() for each context.
*
* @param h h264 master context
* @param context_count number of contexts to execute
*/
static int execute_decode_slices(H264Context *h, int context_count)
{
AVCodecContext *const avctx = h->avctx;
H264Context *hx;
int i;
if (h->avctx->hwaccel ||
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
return 0;
if (context_count == 1) {
return decode_slice(avctx, &h);
} else {
av_assert0(context_count > 0);
for (i = 1; i < context_count; i++) {
hx = h->thread_context[i];
if (CONFIG_ERROR_RESILIENCE) {
hx->er.error_count = 0;
}
hx->x264_build = h->x264_build;
}
avctx->execute(avctx, decode_slice, h->thread_context,
NULL, context_count, sizeof(void *));
/* pull back stuff from slices to master context */
hx = h->thread_context[context_count - 1];
h->mb_x = hx->mb_x;
h->mb_y = hx->mb_y;
h->droppable = hx->droppable;
h->picture_structure = hx->picture_structure;
if (CONFIG_ERROR_RESILIENCE) {
for (i = 1; i < context_count; i++)
h->er.error_count += h->thread_context[i]->er.error_count;
}
}
return 0;
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
int parse_extradata)
{
AVCodecContext *const avctx = h->avctx;
H264Context *hx; ///< thread context
int buf_index;
int context_count;
int next_avc;
int pass = !(avctx->active_thread_type & FF_THREAD_FRAME);
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts
int nal_index;
int idr_cleared=0;
int first_slice = 0;
h->nal_unit_type= 0;
if(!h->slice_context_count)
h->slice_context_count= 1;
h->max_contexts = h->slice_context_count;
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) {
h->current_slice = 0;
if (!h->first_field)
h->cur_pic_ptr = NULL;
ff_h264_reset_sei(h);
}
if (h->nal_length_size == 4) {
if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) {
h->is_avc = 0;
}else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size)
h->is_avc = 1;
}
for (; pass <= 1; pass++) {
buf_index = 0;
context_count = 0;
next_avc = h->is_avc ? 0 : buf_size;
nal_index = 0;
for (;;) {
int consumed;
int dst_length;
int bit_length;
const uint8_t *ptr;
int i, nalsize = 0;
int err;
if (buf_index >= next_avc) {
if (buf_index >= buf_size - h->nal_length_size)
break;
nalsize = 0;
for (i = 0; i < h->nal_length_size; i++)
nalsize = (nalsize << 8) | buf[buf_index++];
if (nalsize <= 0 || nalsize > buf_size - buf_index) {
av_log(h->avctx, AV_LOG_ERROR,
"AVC: nal size %d\n", nalsize);
break;
}
next_avc = buf_index + nalsize;
} else {
// start code prefix search
for (; buf_index + 3 < next_avc; buf_index++)
// This should always succeed in the first iteration.
if (buf[buf_index] == 0 &&
buf[buf_index + 1] == 0 &&
buf[buf_index + 2] == 1)
break;
if (buf_index + 3 >= buf_size) {
buf_index = buf_size;
break;
}
buf_index += 3;
if (buf_index >= next_avc)
continue;
}
hx = h->thread_context[context_count];
ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length,
&consumed, next_avc - buf_index);
if (ptr == NULL || dst_length < 0) {
buf_index = -1;
goto end;
}
i = buf_index + consumed;
if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc &&
buf[i] == 0x00 && buf[i + 1] == 0x00 &&
buf[i + 2] == 0x01 && buf[i + 3] == 0xE0)
h->workaround_bugs |= FF_BUG_TRUNCATED;
if (!(h->workaround_bugs & FF_BUG_TRUNCATED))
while(dst_length > 0 && ptr[dst_length - 1] == 0)
dst_length--;
bit_length = !dst_length ? 0
: (8 * dst_length -
decode_rbsp_trailing(h, ptr + dst_length - 1));
if (h->avctx->debug & FF_DEBUG_STARTCODE)
av_log(h->avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d pass %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length, pass);
if (h->is_avc && (nalsize != consumed) && nalsize)
av_log(h->avctx, AV_LOG_DEBUG,
"AVC: Consumed only %d bytes instead of %d\n",
consumed, nalsize);
buf_index += consumed;
nal_index++;
if (pass == 0) {
/* packets can sometimes contain multiple PPS/SPS,
* e.g. two PAFF field pictures in one packet, or a demuxer
* which splits NALs strangely if so, when frame threading we
* can't start the next thread until we've read all of them */
switch (hx->nal_unit_type) {
case NAL_SPS:
case NAL_PPS:
nals_needed = nal_index;
break;
case NAL_DPA:
case NAL_IDR_SLICE:
case NAL_SLICE:
init_get_bits(&hx->gb, ptr, bit_length);
if (!get_ue_golomb(&hx->gb) || !first_slice)
nals_needed = nal_index;
if (!first_slice)
first_slice = hx->nal_unit_type;
}
continue;
}
if (!first_slice)
switch (hx->nal_unit_type) {
case NAL_DPA:
case NAL_IDR_SLICE:
case NAL_SLICE:
first_slice = hx->nal_unit_type;
}
// FIXME do not discard SEI id
if (avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)
continue;
again:
/* Ignore per frame NAL unit type during extradata
* parsing. Decoding slices is not possible in codec init
* with frame-mt */
if (parse_extradata) {
switch (hx->nal_unit_type) {
case NAL_IDR_SLICE:
case NAL_SLICE:
case NAL_DPA:
case NAL_DPB:
case NAL_DPC:
case NAL_AUXILIARY_SLICE:
av_log(h->avctx, AV_LOG_WARNING, "Ignoring NAL %d in global header/extradata\n", hx->nal_unit_type);
hx->nal_unit_type = NAL_FF_IGNORE;
}
}
err = 0;
switch (hx->nal_unit_type) {
case NAL_IDR_SLICE:
if (first_slice != NAL_IDR_SLICE) {
av_log(h->avctx, AV_LOG_ERROR,
"Invalid mix of idr and non-idr slices\n");
buf_index = -1;
goto end;
}
if(!idr_cleared)
idr(h); // FIXME ensure we don't lose some frames if there is reordering
idr_cleared = 1;
case NAL_SLICE:
init_get_bits(&hx->gb, ptr, bit_length);
hx->intra_gb_ptr =
hx->inter_gb_ptr = &hx->gb;
hx->data_partitioning = 0;
if ((err = decode_slice_header(hx, h)))
break;
if (h->sei_recovery_frame_cnt >= 0 && (h->frame_num != h->sei_recovery_frame_cnt || hx->slice_type_nos != AV_PICTURE_TYPE_I))
h->valid_recovery_point = 1;
if ( h->sei_recovery_frame_cnt >= 0
&& ( h->recovery_frame<0
|| ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt)) {
h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) %
(1 << h->sps.log2_max_frame_num);
if (!h->valid_recovery_point)
h->recovery_frame = h->frame_num;
}
h->cur_pic_ptr->f.key_frame |=
(hx->nal_unit_type == NAL_IDR_SLICE);
if (h->recovery_frame == h->frame_num) {
h->cur_pic_ptr->sync |= 1;
h->recovery_frame = -1;
}
h->sync |= !!h->cur_pic_ptr->f.key_frame;
h->sync |= 3*!!(avctx->flags2 & CODEC_FLAG2_SHOW_ALL);
h->cur_pic_ptr->sync |= h->sync;
if (h->current_slice == 1) {
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS))
decode_postinit(h, nal_index >= nals_needed);
if (h->avctx->hwaccel &&
h->avctx->hwaccel->start_frame(h->avctx, NULL, 0) < 0)
return -1;
if (CONFIG_H264_VDPAU_DECODER &&
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_picture_start(h);
}
if (hx->redundant_pic_count == 0 &&
(avctx->skip_frame < AVDISCARD_NONREF ||
hx->nal_ref_idc) &&
(avctx->skip_frame < AVDISCARD_BIDIR ||
hx->slice_type_nos != AV_PICTURE_TYPE_B) &&
(avctx->skip_frame < AVDISCARD_NONKEY ||
hx->slice_type_nos == AV_PICTURE_TYPE_I) &&
avctx->skip_frame < AVDISCARD_ALL) {
if (avctx->hwaccel) {
if (avctx->hwaccel->decode_slice(avctx,
&buf[buf_index - consumed],
consumed) < 0)
return -1;
} else if (CONFIG_H264_VDPAU_DECODER &&
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) {
static const uint8_t start_code[] = {
0x00, 0x00, 0x01 };
ff_vdpau_add_data_chunk(h->cur_pic_ptr->f.data[0], start_code,
sizeof(start_code));
ff_vdpau_add_data_chunk(h->cur_pic_ptr->f.data[0], &buf[buf_index - consumed],
consumed);
} else
context_count++;
}
break;
case NAL_DPA:
init_get_bits(&hx->gb, ptr, bit_length);
hx->intra_gb_ptr =
hx->inter_gb_ptr = NULL;
if ((err = decode_slice_header(hx, h)) < 0)
break;
hx->data_partitioning = 1;
break;
case NAL_DPB:
init_get_bits(&hx->intra_gb, ptr, bit_length);
hx->intra_gb_ptr = &hx->intra_gb;
break;
case NAL_DPC:
init_get_bits(&hx->inter_gb, ptr, bit_length);
hx->inter_gb_ptr = &hx->inter_gb;
av_log(h->avctx, AV_LOG_ERROR, "Partitioned H.264 support is incomplete\n");
break;
if (hx->redundant_pic_count == 0 &&
hx->intra_gb_ptr &&
hx->data_partitioning &&
h->cur_pic_ptr && h->context_initialized &&
(avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) &&
(avctx->skip_frame < AVDISCARD_BIDIR ||
hx->slice_type_nos != AV_PICTURE_TYPE_B) &&
(avctx->skip_frame < AVDISCARD_NONKEY ||
hx->slice_type_nos == AV_PICTURE_TYPE_I) &&
avctx->skip_frame < AVDISCARD_ALL)
context_count++;
break;
case NAL_SEI:
init_get_bits(&h->gb, ptr, bit_length);
ff_h264_decode_sei(h);
break;
case NAL_SPS:
init_get_bits(&h->gb, ptr, bit_length);
if (ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? nalsize : 1)) {
av_log(h->avctx, AV_LOG_DEBUG,
"SPS decoding failure, trying again with the complete NAL\n");
if (h->is_avc)
av_assert0(next_avc - buf_index + consumed == nalsize);
if ((next_avc - buf_index + consumed - 1) >= INT_MAX/8)
break;
init_get_bits(&h->gb, &buf[buf_index + 1 - consumed],
8*(next_avc - buf_index + consumed - 1));
ff_h264_decode_seq_parameter_set(h);
}
break;
case NAL_PPS:
init_get_bits(&h->gb, ptr, bit_length);
ff_h264_decode_picture_parameter_set(h, bit_length);
break;
case NAL_AUD:
case NAL_END_SEQUENCE:
case NAL_END_STREAM:
case NAL_FILLER_DATA:
case NAL_SPS_EXT:
case NAL_AUXILIARY_SLICE:
break;
case NAL_FF_IGNORE:
break;
default:
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n",
hx->nal_unit_type, bit_length);
}
if (context_count == h->max_contexts) {
execute_decode_slices(h, context_count);
context_count = 0;
}
if (err < 0)
av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n");
else if (err == 1) {
/* Slice could not be decoded in parallel mode, copy down
* NAL unit stuff to context 0 and restart. Note that
* rbsp_buffer is not transferred, but since we no longer
* run in parallel mode this should not be an issue. */
h->nal_unit_type = hx->nal_unit_type;
h->nal_ref_idc = hx->nal_ref_idc;
hx = h;
goto again;
}
}
}
if (context_count)
execute_decode_slices(h, context_count);
end:
/* clean up */
if (h->cur_pic_ptr && !h->droppable) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
}
return buf_index;
}
/**
* Return the number of bytes consumed for building the current frame.
*/
static int get_consumed_bytes(int pos, int buf_size)
{
if (pos == 0)
pos = 1; // avoid infinite loops (i doubt that is needed but ...)
if (pos + 10 > buf_size)
pos = buf_size; // oops ;)
return pos;
}
static int output_frame(H264Context *h, AVFrame *dst, Picture *srcp)
{
AVFrame *src = &srcp->f;
int i;
int ret = av_frame_ref(dst, src);
if (ret < 0)
return ret;
if (!srcp->crop)
return 0;
for (i = 0; i < 3; i++) {
int hshift = (i > 0) ? h->chroma_x_shift : 0;
int vshift = (i > 0) ? h->chroma_y_shift : 0;
int off = ((srcp->crop_left >> hshift) << h->pixel_shift) +
(srcp->crop_top >> vshift) * dst->linesize[i];
dst->data[i] += off;
}
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
AVFrame *pict = data;
int buf_index = 0;
Picture *out;
int i, out_idx;
int ret;
h->flags = avctx->flags;
/* end of stream, output what is still in the buffers */
if (buf_size == 0) {
out:
h->cur_pic_ptr = NULL;
h->first_field = 0;
// FIXME factorize this with the output code below
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1;
h->delayed_pic[i] &&
!h->delayed_pic[i]->f.key_frame &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
if (out) {
out->reference &= ~DELAYED_PIC_REF;
ret = output_frame(h, pict, out);
if (ret < 0)
return ret;
*got_frame = 1;
}
return buf_index;
}
if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){
int cnt= buf[5]&0x1f;
const uint8_t *p= buf+6;
while(cnt--){
int nalsize= AV_RB16(p) + 2;
if(nalsize > buf_size - (p-buf) || p[2]!=0x67)
goto not_extra;
p += nalsize;
}
cnt = *(p++);
if(!cnt)
goto not_extra;
while(cnt--){
int nalsize= AV_RB16(p) + 2;
if(nalsize > buf_size - (p-buf) || p[2]!=0x68)
goto not_extra;
p += nalsize;
}
return ff_h264_decode_extradata(h, buf, buf_size);
}
not_extra:
buf_index = decode_nal_units(h, buf, buf_size, 0);
if (buf_index < 0)
return -1;
if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
av_assert0(buf_index <= buf_size);
goto out;
}
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) {
if (avctx->skip_frame >= AVDISCARD_NONREF ||
buf_size >= 4 && !memcmp("Q264", buf, 4))
return buf_size;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return -1;
}
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) ||
(h->mb_y >= h->mb_height && h->mb_height)) {
if (avctx->flags2 & CODEC_FLAG2_CHUNKS)
decode_postinit(h, 1);
field_end(h, 0);
/* Wait for second field. */
*got_frame = 0;
if (h->next_output_pic && (h->next_output_pic->sync || h->sync>1)) {
ret = output_frame(h, pict, h->next_output_pic);
if (ret < 0)
return ret;
*got_frame = 1;
if (CONFIG_MPEGVIDEO) {
ff_print_debug_info2(h->avctx, h->next_output_pic, pict, h->er.mbskip_table,
&h->low_delay,
h->mb_width, h->mb_height, h->mb_stride, 1);
}
}
}
assert(pict->data[0] || !*got_frame);
return get_consumed_bytes(buf_index, buf_size);
}
av_cold void ff_h264_free_context(H264Context *h)
{
int i;
free_tables(h, 1); // FIXME cleanup init stuff perhaps
for (i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for (i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
}
static av_cold int h264_decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
ff_h264_remove_all_refs(h);
ff_h264_free_context(h);
unref_picture(h, &h->cur_pic);
return 0;
}
static const AVProfile profiles[] = {
{ FF_PROFILE_H264_BASELINE, "Baseline" },
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
{ FF_PROFILE_H264_MAIN, "Main" },
{ FF_PROFILE_H264_EXTENDED, "Extended" },
{ FF_PROFILE_H264_HIGH, "High" },
{ FF_PROFILE_H264_HIGH_10, "High 10" },
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
{ FF_PROFILE_UNKNOWN },
};
static const AVOption h264_options[] = {
{"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 1, 0},
{"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 4, 0},
{NULL}
};
static const AVClass h264_class = {
.class_name = "H264 Decoder",
.item_name = av_default_item_name,
.option = h264_options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVClass h264_vdpau_class = {
.class_name = "H264 VDPAU Decoder",
.item_name = av_default_item_name,
.option = h264_options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_h264_decoder = {
.name = "h264",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = h264_decode_end,
.decode = decode_frame,
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 |
CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS |
CODEC_CAP_FRAME_THREADS,
.flush = flush_dpb,
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context),
.profiles = NULL_IF_CONFIG_SMALL(profiles),
.priv_class = &h264_class,
};
#if CONFIG_H264_VDPAU_DECODER
AVCodec ff_h264_vdpau_decoder = {
.name = "h264_vdpau",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = h264_decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
.flush = flush_dpb,
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_VDPAU_H264,
AV_PIX_FMT_NONE},
.profiles = NULL_IF_CONFIG_SMALL(profiles),
.priv_class = &h264_vdpau_class,
};
#endif