mirror of
https://gitee.com/openharmony/third_party_ffmpeg
synced 2024-11-24 19:59:46 +00:00
bb6f569072
Originally committed as revision 1088 to svn://svn.ffmpeg.org/ffmpeg/trunk
230 lines
5.5 KiB
C
230 lines
5.5 KiB
C
/*
|
|
* FFT/IFFT transforms
|
|
* Copyright (c) 2002 Fabrice Bellard.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include "dsputil.h"
|
|
|
|
/**
|
|
* The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
|
|
* done
|
|
*/
|
|
int fft_init(FFTContext *s, int nbits, int inverse)
|
|
{
|
|
int i, j, m, n;
|
|
float alpha, c1, s1, s2;
|
|
|
|
s->nbits = nbits;
|
|
n = 1 << nbits;
|
|
|
|
s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
|
|
if (!s->exptab)
|
|
goto fail;
|
|
s->revtab = av_malloc(n * sizeof(uint16_t));
|
|
if (!s->revtab)
|
|
goto fail;
|
|
s->inverse = inverse;
|
|
|
|
s2 = inverse ? 1.0 : -1.0;
|
|
|
|
for(i=0;i<(n/2);i++) {
|
|
alpha = 2 * M_PI * (float)i / (float)n;
|
|
c1 = cos(alpha);
|
|
s1 = sin(alpha) * s2;
|
|
s->exptab[i].re = c1;
|
|
s->exptab[i].im = s1;
|
|
}
|
|
s->fft_calc = fft_calc_c;
|
|
s->exptab1 = NULL;
|
|
|
|
/* compute constant table for HAVE_SSE version */
|
|
#if defined(HAVE_MMX) && 0
|
|
if (mm_flags & MM_SSE) {
|
|
int np, nblocks, np2, l;
|
|
FFTComplex *q;
|
|
|
|
np = 1 << nbits;
|
|
nblocks = np >> 3;
|
|
np2 = np >> 1;
|
|
s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
|
|
if (!s->exptab1)
|
|
goto fail;
|
|
q = s->exptab1;
|
|
do {
|
|
for(l = 0; l < np2; l += 2 * nblocks) {
|
|
*q++ = s->exptab[l];
|
|
*q++ = s->exptab[l + nblocks];
|
|
|
|
q->re = -s->exptab[l].im;
|
|
q->im = s->exptab[l].re;
|
|
q++;
|
|
q->re = -s->exptab[l + nblocks].im;
|
|
q->im = s->exptab[l + nblocks].re;
|
|
q++;
|
|
}
|
|
nblocks = nblocks >> 1;
|
|
} while (nblocks != 0);
|
|
av_freep(&s->exptab);
|
|
}
|
|
#endif
|
|
|
|
/* compute bit reverse table */
|
|
|
|
for(i=0;i<n;i++) {
|
|
m=0;
|
|
for(j=0;j<nbits;j++) {
|
|
m |= ((i >> j) & 1) << (nbits-j-1);
|
|
}
|
|
s->revtab[i]=m;
|
|
}
|
|
return 0;
|
|
fail:
|
|
av_freep(&s->revtab);
|
|
av_freep(&s->exptab);
|
|
av_freep(&s->exptab1);
|
|
return -1;
|
|
}
|
|
|
|
/* butter fly op */
|
|
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
|
{\
|
|
FFTSample ax, ay, bx, by;\
|
|
bx=pre1;\
|
|
by=pim1;\
|
|
ax=qre1;\
|
|
ay=qim1;\
|
|
pre = (bx + ax);\
|
|
pim = (by + ay);\
|
|
qre = (bx - ax);\
|
|
qim = (by - ay);\
|
|
}
|
|
|
|
#define MUL16(a,b) ((a) * (b))
|
|
|
|
#define CMUL(pre, pim, are, aim, bre, bim) \
|
|
{\
|
|
pre = (MUL16(are, bre) - MUL16(aim, bim));\
|
|
pim = (MUL16(are, bim) + MUL16(bre, aim));\
|
|
}
|
|
|
|
/**
|
|
* Do a complex FFT with the parameters defined in fft_init(). The
|
|
* input data must be permuted before with s->revtab table. No
|
|
* 1.0/sqrt(n) normalization is done.
|
|
*/
|
|
void fft_calc_c(FFTContext *s, FFTComplex *z)
|
|
{
|
|
int ln = s->nbits;
|
|
int j, np, np2;
|
|
int nblocks, nloops;
|
|
register FFTComplex *p, *q;
|
|
FFTComplex *exptab = s->exptab;
|
|
int l;
|
|
FFTSample tmp_re, tmp_im;
|
|
|
|
np = 1 << ln;
|
|
|
|
/* pass 0 */
|
|
|
|
p=&z[0];
|
|
j=(np >> 1);
|
|
do {
|
|
BF(p[0].re, p[0].im, p[1].re, p[1].im,
|
|
p[0].re, p[0].im, p[1].re, p[1].im);
|
|
p+=2;
|
|
} while (--j != 0);
|
|
|
|
/* pass 1 */
|
|
|
|
|
|
p=&z[0];
|
|
j=np >> 2;
|
|
if (s->inverse) {
|
|
do {
|
|
BF(p[0].re, p[0].im, p[2].re, p[2].im,
|
|
p[0].re, p[0].im, p[2].re, p[2].im);
|
|
BF(p[1].re, p[1].im, p[3].re, p[3].im,
|
|
p[1].re, p[1].im, -p[3].im, p[3].re);
|
|
p+=4;
|
|
} while (--j != 0);
|
|
} else {
|
|
do {
|
|
BF(p[0].re, p[0].im, p[2].re, p[2].im,
|
|
p[0].re, p[0].im, p[2].re, p[2].im);
|
|
BF(p[1].re, p[1].im, p[3].re, p[3].im,
|
|
p[1].re, p[1].im, p[3].im, -p[3].re);
|
|
p+=4;
|
|
} while (--j != 0);
|
|
}
|
|
/* pass 2 .. ln-1 */
|
|
|
|
nblocks = np >> 3;
|
|
nloops = 1 << 2;
|
|
np2 = np >> 1;
|
|
do {
|
|
p = z;
|
|
q = z + nloops;
|
|
for (j = 0; j < nblocks; ++j) {
|
|
BF(p->re, p->im, q->re, q->im,
|
|
p->re, p->im, q->re, q->im);
|
|
|
|
p++;
|
|
q++;
|
|
for(l = nblocks; l < np2; l += nblocks) {
|
|
CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
|
|
BF(p->re, p->im, q->re, q->im,
|
|
p->re, p->im, tmp_re, tmp_im);
|
|
p++;
|
|
q++;
|
|
}
|
|
|
|
p += nloops;
|
|
q += nloops;
|
|
}
|
|
nblocks = nblocks >> 1;
|
|
nloops = nloops << 1;
|
|
} while (nblocks != 0);
|
|
}
|
|
|
|
/**
|
|
* Do the permutation needed BEFORE calling fft_calc()
|
|
*/
|
|
void fft_permute(FFTContext *s, FFTComplex *z)
|
|
{
|
|
int j, k, np;
|
|
FFTComplex tmp;
|
|
const uint16_t *revtab = s->revtab;
|
|
|
|
/* reverse */
|
|
np = 1 << s->nbits;
|
|
for(j=0;j<np;j++) {
|
|
k = revtab[j];
|
|
if (k < j) {
|
|
tmp = z[k];
|
|
z[k] = z[j];
|
|
z[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
void fft_end(FFTContext *s)
|
|
{
|
|
av_freep(&s->revtab);
|
|
av_freep(&s->exptab);
|
|
av_freep(&s->exptab1);
|
|
}
|
|
|