third_party_ffmpeg/libavcodec/dct-test.c
Diego Biurrun c26abfa541 Rename ABS macro to FFABS.
Originally committed as revision 6666 to svn://svn.ffmpeg.org/ffmpeg/trunk
2006-10-11 23:17:58 +00:00

536 lines
15 KiB
C

/*
* (c) 2001 Fabrice Bellard
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file dct-test.c
* DCT test. (c) 2001 Fabrice Bellard.
* Started from sample code by Juan J. Sierralta P.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include "dsputil.h"
#include "simple_idct.h"
#include "faandct.h"
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
#undef printf
void *fast_memcpy(void *a, const void *b, size_t c){return memcpy(a,b,c);};
/* reference fdct/idct */
extern void fdct(DCTELEM *block);
extern void idct(DCTELEM *block);
extern void ff_idct_xvid_mmx(DCTELEM *block);
extern void ff_idct_xvid_mmx2(DCTELEM *block);
extern void init_fdct();
extern void j_rev_dct(DCTELEM *data);
extern void ff_mmx_idct(DCTELEM *data);
extern void ff_mmxext_idct(DCTELEM *data);
extern void odivx_idct_c (short *block);
#define AANSCALE_BITS 12
static const unsigned short aanscales[64] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
int64_t gettime(void)
{
struct timeval tv;
gettimeofday(&tv,NULL);
return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
}
#define NB_ITS 20000
#define NB_ITS_SPEED 50000
static short idct_mmx_perm[64];
static short idct_simple_mmx_perm[64]={
0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
};
void idct_mmx_init(void)
{
int i;
/* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
for (i = 0; i < 64; i++) {
idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
// idct_simple_mmx_perm[i] = simple_block_permute_op(i);
}
}
static DCTELEM block[64] __attribute__ ((aligned (8)));
static DCTELEM block1[64] __attribute__ ((aligned (8)));
static DCTELEM block_org[64] __attribute__ ((aligned (8)));
void dct_error(const char *name, int is_idct,
void (*fdct_func)(DCTELEM *block),
void (*fdct_ref)(DCTELEM *block), int test)
{
int it, i, scale;
int err_inf, v;
int64_t err2, ti, ti1, it1;
int64_t sysErr[64], sysErrMax=0;
int maxout=0;
int blockSumErrMax=0, blockSumErr;
srandom(0);
err_inf = 0;
err2 = 0;
for(i=0; i<64; i++) sysErr[i]=0;
for(it=0;it<NB_ITS;it++) {
for(i=0;i<64;i++)
block1[i] = 0;
switch(test){
case 0:
for(i=0;i<64;i++)
block1[i] = (random() % 512) -256;
if (is_idct){
fdct(block1);
for(i=0;i<64;i++)
block1[i]>>=3;
}
break;
case 1:{
int num= (random()%10)+1;
for(i=0;i<num;i++)
block1[random()%64] = (random() % 512) -256;
}break;
case 2:
block1[0]= (random()%4096)-2048;
block1[63]= (block1[0]&1)^1;
break;
}
#if 0 // simulate mismatch control
{ int sum=0;
for(i=0;i<64;i++)
sum+=block1[i];
if((sum&1)==0) block1[63]^=1;
}
#endif
for(i=0; i<64; i++)
block_org[i]= block1[i];
if (fdct_func == ff_mmx_idct ||
fdct_func == j_rev_dct || fdct_func == ff_mmxext_idct) {
for(i=0;i<64;i++)
block[idct_mmx_perm[i]] = block1[i];
} else if(fdct_func == ff_simple_idct_mmx ) {
for(i=0;i<64;i++)
block[idct_simple_mmx_perm[i]] = block1[i];
} else {
for(i=0; i<64; i++)
block[i]= block1[i];
}
#if 0 // simulate mismatch control for tested IDCT but not the ref
{ int sum=0;
for(i=0;i<64;i++)
sum+=block[i];
if((sum&1)==0) block[63]^=1;
}
#endif
fdct_func(block);
emms(); /* for ff_mmx_idct */
if (fdct_func == fdct_ifast
#ifndef FAAN_POSTSCALE
|| fdct_func == ff_faandct
#endif
) {
for(i=0; i<64; i++) {
scale = 8*(1 << (AANSCALE_BITS + 11)) / aanscales[i];
block[i] = (block[i] * scale /*+ (1<<(AANSCALE_BITS-1))*/) >> AANSCALE_BITS;
}
}
fdct_ref(block1);
blockSumErr=0;
for(i=0;i<64;i++) {
v = abs(block[i] - block1[i]);
if (v > err_inf)
err_inf = v;
err2 += v * v;
sysErr[i] += block[i] - block1[i];
blockSumErr += v;
if( abs(block[i])>maxout) maxout=abs(block[i]);
}
if(blockSumErrMax < blockSumErr) blockSumErrMax= blockSumErr;
#if 0 // print different matrix pairs
if(blockSumErr){
printf("\n");
for(i=0; i<64; i++){
if((i&7)==0) printf("\n");
printf("%4d ", block_org[i]);
}
for(i=0; i<64; i++){
if((i&7)==0) printf("\n");
printf("%4d ", block[i] - block1[i]);
}
}
#endif
}
for(i=0; i<64; i++) sysErrMax= MAX(sysErrMax, FFABS(sysErr[i]));
#if 1 // dump systematic errors
for(i=0; i<64; i++){
if(i%8==0) printf("\n");
printf("%5d ", (int)sysErr[i]);
}
printf("\n");
#endif
printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
is_idct ? "IDCT" : "DCT",
name, err_inf, (double)err2 / NB_ITS / 64.0, (double)sysErrMax / NB_ITS, maxout, blockSumErrMax);
#if 1 //Speed test
/* speed test */
for(i=0;i<64;i++)
block1[i] = 0;
switch(test){
case 0:
for(i=0;i<64;i++)
block1[i] = (random() % 512) -256;
if (is_idct){
fdct(block1);
for(i=0;i<64;i++)
block1[i]>>=3;
}
break;
case 1:{
case 2:
block1[0] = (random() % 512) -256;
block1[1] = (random() % 512) -256;
block1[2] = (random() % 512) -256;
block1[3] = (random() % 512) -256;
}break;
}
if (fdct_func == ff_mmx_idct ||
fdct_func == j_rev_dct || fdct_func == ff_mmxext_idct) {
for(i=0;i<64;i++)
block[idct_mmx_perm[i]] = block1[i];
} else if(fdct_func == ff_simple_idct_mmx ) {
for(i=0;i<64;i++)
block[idct_simple_mmx_perm[i]] = block1[i];
} else {
for(i=0; i<64; i++)
block[i]= block1[i];
}
ti = gettime();
it1 = 0;
do {
for(it=0;it<NB_ITS_SPEED;it++) {
for(i=0; i<64; i++)
block[i]= block1[i];
// memcpy(block, block1, sizeof(DCTELEM) * 64);
// dont memcpy especially not fastmemcpy because it does movntq !!!
fdct_func(block);
}
it1 += NB_ITS_SPEED;
ti1 = gettime() - ti;
} while (ti1 < 1000000);
emms();
printf("%s %s: %0.1f kdct/s\n",
is_idct ? "IDCT" : "DCT",
name, (double)it1 * 1000.0 / (double)ti1);
#endif
}
static uint8_t img_dest[64] __attribute__ ((aligned (8)));
static uint8_t img_dest1[64] __attribute__ ((aligned (8)));
void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
{
static int init;
static double c8[8][8];
static double c4[4][4];
double block1[64], block2[64], block3[64];
double s, sum, v;
int i, j, k;
if (!init) {
init = 1;
for(i=0;i<8;i++) {
sum = 0;
for(j=0;j<8;j++) {
s = (i==0) ? sqrt(1.0/8.0) : sqrt(1.0/4.0);
c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
sum += c8[i][j] * c8[i][j];
}
}
for(i=0;i<4;i++) {
sum = 0;
for(j=0;j<4;j++) {
s = (i==0) ? sqrt(1.0/4.0) : sqrt(1.0/2.0);
c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
sum += c4[i][j] * c4[i][j];
}
}
}
/* butterfly */
s = 0.5 * sqrt(2.0);
for(i=0;i<4;i++) {
for(j=0;j<8;j++) {
block1[8*(2*i)+j] = (block[8*(2*i)+j] + block[8*(2*i+1)+j]) * s;
block1[8*(2*i+1)+j] = (block[8*(2*i)+j] - block[8*(2*i+1)+j]) * s;
}
}
/* idct8 on lines */
for(i=0;i<8;i++) {
for(j=0;j<8;j++) {
sum = 0;
for(k=0;k<8;k++)
sum += c8[k][j] * block1[8*i+k];
block2[8*i+j] = sum;
}
}
/* idct4 */
for(i=0;i<8;i++) {
for(j=0;j<4;j++) {
/* top */
sum = 0;
for(k=0;k<4;k++)
sum += c4[k][j] * block2[8*(2*k)+i];
block3[8*(2*j)+i] = sum;
/* bottom */
sum = 0;
for(k=0;k<4;k++)
sum += c4[k][j] * block2[8*(2*k+1)+i];
block3[8*(2*j+1)+i] = sum;
}
}
/* clamp and store the result */
for(i=0;i<8;i++) {
for(j=0;j<8;j++) {
v = block3[8*i+j];
if (v < 0)
v = 0;
else if (v > 255)
v = 255;
dest[i * linesize + j] = (int)rint(v);
}
}
}
void idct248_error(const char *name,
void (*idct248_put)(uint8_t *dest, int line_size, int16_t *block))
{
int it, i, it1, ti, ti1, err_max, v;
srandom(0);
/* just one test to see if code is correct (precision is less
important here) */
err_max = 0;
for(it=0;it<NB_ITS;it++) {
/* XXX: use forward transform to generate values */
for(i=0;i<64;i++)
block1[i] = (random() % 256) - 128;
block1[0] += 1024;
for(i=0; i<64; i++)
block[i]= block1[i];
idct248_ref(img_dest1, 8, block);
for(i=0; i<64; i++)
block[i]= block1[i];
idct248_put(img_dest, 8, block);
for(i=0;i<64;i++) {
v = abs((int)img_dest[i] - (int)img_dest1[i]);
if (v == 255)
printf("%d %d\n", img_dest[i], img_dest1[i]);
if (v > err_max)
err_max = v;
}
#if 0
printf("ref=\n");
for(i=0;i<8;i++) {
int j;
for(j=0;j<8;j++) {
printf(" %3d", img_dest1[i*8+j]);
}
printf("\n");
}
printf("out=\n");
for(i=0;i<8;i++) {
int j;
for(j=0;j<8;j++) {
printf(" %3d", img_dest[i*8+j]);
}
printf("\n");
}
#endif
}
printf("%s %s: err_inf=%d\n",
1 ? "IDCT248" : "DCT248",
name, err_max);
ti = gettime();
it1 = 0;
do {
for(it=0;it<NB_ITS_SPEED;it++) {
for(i=0; i<64; i++)
block[i]= block1[i];
// memcpy(block, block1, sizeof(DCTELEM) * 64);
// dont memcpy especially not fastmemcpy because it does movntq !!!
idct248_put(img_dest, 8, block);
}
it1 += NB_ITS_SPEED;
ti1 = gettime() - ti;
} while (ti1 < 1000000);
emms();
printf("%s %s: %0.1f kdct/s\n",
1 ? "IDCT248" : "DCT248",
name, (double)it1 * 1000.0 / (double)ti1);
}
void help(void)
{
printf("dct-test [-i] [<test-number>]\n"
"test-number 0 -> test with random matrixes\n"
" 1 -> test with random sparse matrixes\n"
" 2 -> do 3. test from mpeg4 std\n"
"-i test IDCT implementations\n"
"-4 test IDCT248 implementations\n");
exit(1);
}
int main(int argc, char **argv)
{
int test_idct = 0, test_248_dct = 0;
int c,i;
int test=1;
init_fdct();
idct_mmx_init();
for(i=0;i<256;i++) cropTbl[i + MAX_NEG_CROP] = i;
for(i=0;i<MAX_NEG_CROP;i++) {
cropTbl[i] = 0;
cropTbl[i + MAX_NEG_CROP + 256] = 255;
}
for(;;) {
c = getopt(argc, argv, "ih4");
if (c == -1)
break;
switch(c) {
case 'i':
test_idct = 1;
break;
case '4':
test_248_dct = 1;
break;
default :
case 'h':
help();
break;
}
}
if(optind <argc) test= atoi(argv[optind]);
printf("ffmpeg DCT/IDCT test\n");
if (test_248_dct) {
idct248_error("SIMPLE-C", simple_idct248_put);
} else {
if (!test_idct) {
dct_error("REF-DBL", 0, fdct, fdct, test); /* only to verify code ! */
dct_error("IJG-AAN-INT", 0, fdct_ifast, fdct, test);
dct_error("IJG-LLM-INT", 0, ff_jpeg_fdct_islow, fdct, test);
dct_error("MMX", 0, ff_fdct_mmx, fdct, test);
dct_error("MMX2", 0, ff_fdct_mmx2, fdct, test);
dct_error("FAAN", 0, ff_faandct, fdct, test);
} else {
dct_error("REF-DBL", 1, idct, idct, test);
dct_error("INT", 1, j_rev_dct, idct, test);
dct_error("LIBMPEG2-MMX", 1, ff_mmx_idct, idct, test);
dct_error("LIBMPEG2-MMXEXT", 1, ff_mmxext_idct, idct, test);
dct_error("SIMPLE-C", 1, simple_idct, idct, test);
dct_error("SIMPLE-MMX", 1, ff_simple_idct_mmx, idct, test);
dct_error("XVID-MMX", 1, ff_idct_xvid_mmx, idct, test);
dct_error("XVID-MMX2", 1, ff_idct_xvid_mmx2, idct, test);
// dct_error("ODIVX-C", 1, odivx_idct_c, idct);
//printf(" test against odivx idct\n");
// dct_error("REF", 1, idct, odivx_idct_c);
// dct_error("INT", 1, j_rev_dct, odivx_idct_c);
// dct_error("MMX", 1, ff_mmx_idct, odivx_idct_c);
// dct_error("MMXEXT", 1, ff_mmxext_idct, odivx_idct_c);
// dct_error("SIMPLE-C", 1, simple_idct, odivx_idct_c);
// dct_error("SIMPLE-MMX", 1, ff_simple_idct_mmx, odivx_idct_c);
// dct_error("ODIVX-C", 1, odivx_idct_c, odivx_idct_c);
}
}
return 0;
}