third_party_littlefs/lfs.c

3203 lines
88 KiB
C
Raw Normal View History

/*
* The little filesystem
*
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lfs.h"
#include "lfs_util.h"
/// Caching block device operations ///
static int lfs_cache_read(lfs_t *lfs, lfs_cache_t *rcache,
const lfs_cache_t *pcache, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
while (size > 0) {
if (pcache && block == pcache->block && off >= pcache->off &&
off < pcache->off + lfs->cfg->prog_size) {
// is already in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->prog_size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
if (block == rcache->block && off >= rcache->off &&
off < rcache->off + lfs->cfg->read_size) {
// is already in rcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->read_size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) {
// bypass cache?
lfs_size_t diff = size - (size % lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, block, off, data, diff);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// load to cache, first condition can no longer fail
LFS_ASSERT(block < lfs->cfg->block_count);
rcache->block = block;
rcache->off = off - (off % lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, rcache->block,
rcache->off, rcache->buffer, lfs->cfg->read_size);
if (err) {
return err;
}
}
return 0;
}
static int lfs_cache_cmp(lfs_t *lfs, lfs_cache_t *rcache,
const lfs_cache_t *pcache, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs_cache_read(lfs, rcache, pcache,
block, off+i, &c, 1);
if (err) {
return err;
}
if (c != data[i]) {
return false;
}
}
return true;
}
static int lfs_cache_crc(lfs_t *lfs, lfs_cache_t *rcache,
const lfs_cache_t *pcache, lfs_block_t block,
lfs_off_t off, lfs_size_t size, uint32_t *crc) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs_cache_read(lfs, rcache, pcache,
block, off+i, &c, 1);
if (err) {
return err;
}
lfs_crc(crc, &c, 1);
}
return 0;
}
static int lfs_cache_flush(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache) {
if (pcache->block != 0xffffffff) {
LFS_ASSERT(pcache->block < lfs->cfg->block_count);
int err = lfs->cfg->prog(lfs->cfg, pcache->block,
pcache->off, pcache->buffer, lfs->cfg->prog_size);
if (err) {
return err;
}
if (rcache) {
int res = lfs_cache_cmp(lfs, rcache, NULL, pcache->block,
pcache->off, pcache->buffer, lfs->cfg->prog_size);
if (res < 0) {
return res;
}
if (!res) {
return LFS_ERR_CORRUPT;
}
}
pcache->block = 0xffffffff;
}
return 0;
}
static int lfs_cache_prog(lfs_t *lfs, lfs_cache_t *pcache,
lfs_cache_t *rcache, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
LFS_ASSERT(off + size <= lfs->cfg->block_size);
while (size > 0) {
if (block == pcache->block && off >= pcache->off &&
off < pcache->off + lfs->cfg->prog_size) {
// is already in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->prog_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
if (off % lfs->cfg->prog_size == 0) {
// eagerly flush out pcache if we fill up
int err = lfs_cache_flush(lfs, pcache, rcache);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS_ASSERT(pcache->block == 0xffffffff);
if (off % lfs->cfg->prog_size == 0 &&
size >= lfs->cfg->prog_size) {
// bypass pcache?
LFS_ASSERT(block < lfs->cfg->block_count);
lfs_size_t diff = size - (size % lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, block, off, data, diff);
if (err) {
return err;
}
if (rcache) {
int res = lfs_cache_cmp(lfs, rcache, NULL,
block, off, data, diff);
if (res < 0) {
return res;
}
if (!res) {
return LFS_ERR_CORRUPT;
}
}
data += diff;
off += diff;
size -= diff;
continue;
}
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = off - (off % lfs->cfg->prog_size);
}
return 0;
}
/// General lfs block device operations ///
static int lfs_bd_read(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
// if we ever do more than writes to alternating pairs,
// this may need to consider pcache
return lfs_cache_read(lfs, &lfs->rcache, NULL,
block, off, buffer, size);
}
static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
return lfs_cache_prog(lfs, &lfs->pcache, NULL,
block, off, buffer, size);
}
static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
return lfs_cache_cmp(lfs, &lfs->rcache, NULL, block, off, buffer, size);
}
static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, uint32_t *crc) {
return lfs_cache_crc(lfs, &lfs->rcache, NULL, block, off, size, crc);
}
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
LFS_ASSERT(block < lfs->cfg->block_count);
return lfs->cfg->erase(lfs->cfg, block);
}
static int lfs_bd_sync(lfs_t *lfs) {
lfs->rcache.block = 0xffffffff;
int err = lfs_cache_flush(lfs, &lfs->pcache, NULL);
if (err) {
return err;
}
return lfs->cfg->sync(lfs->cfg);
}
/// Internal operations predeclared here ///
int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir);
static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_dir_t *parent, lfs_entry_t *entry);
static int lfs_moved(lfs_t *lfs, const void *e);
static int lfs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], const lfs_block_t newpair[2]);
int lfs_deorphan(lfs_t *lfs);
/// Block allocator ///
static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
lfs_t *lfs = p;
lfs_block_t off = ((block - lfs->free.off)
+ lfs->cfg->block_count) % lfs->cfg->block_count;
if (off < lfs->free.size) {
lfs->free.buffer[off / 32] |= 1U << (off % 32);
}
return 0;
}
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
while (true) {
while (lfs->free.i != lfs->free.size) {
lfs_block_t off = lfs->free.i;
lfs->free.i += 1;
lfs->free.ack -= 1;
if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) {
// found a free block
*block = (lfs->free.off + off) % lfs->cfg->block_count;
// eagerly find next off so an alloc ack can
// discredit old lookahead blocks
while (lfs->free.i != lfs->free.size &&
(lfs->free.buffer[lfs->free.i / 32]
& (1U << (lfs->free.i % 32)))) {
lfs->free.i += 1;
lfs->free.ack -= 1;
}
return 0;
}
}
// check if we have looked at all blocks since last ack
if (lfs->free.ack == 0) {
LFS_WARN("No more free space %d", lfs->free.i + lfs->free.off);
return LFS_ERR_NOSPC;
}
lfs->free.off = (lfs->free.off + lfs->free.size)
% lfs->cfg->block_count;
lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack);
lfs->free.i = 0;
// find mask of free blocks from tree
memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs);
if (err) {
return err;
}
}
}
static void lfs_alloc_ack(lfs_t *lfs) {
lfs->free.ack = lfs->cfg->block_count;
}
/// Endian swapping functions ///
static void lfs_dir_fromle32(struct lfs_disk_dir *d) {
d->rev = lfs_fromle32(d->rev);
d->size = lfs_fromle32(d->size);
d->tail[0] = lfs_fromle32(d->tail[0]);
d->tail[1] = lfs_fromle32(d->tail[1]);
}
static void lfs_dir_tole32(struct lfs_disk_dir *d) {
d->rev = lfs_tole32(d->rev);
d->size = lfs_tole32(d->size);
d->tail[0] = lfs_tole32(d->tail[0]);
d->tail[1] = lfs_tole32(d->tail[1]);
}
static void lfs_entry_fromle32(struct lfs_disk_entry *d) {
d->u.dir[0] = lfs_fromle32(d->u.dir[0]);
d->u.dir[1] = lfs_fromle32(d->u.dir[1]);
}
static void lfs_entry_tole32(struct lfs_disk_entry *d) {
d->u.dir[0] = lfs_tole32(d->u.dir[0]);
d->u.dir[1] = lfs_tole32(d->u.dir[1]);
}
static void lfs_superblock_fromle32(struct lfs_disk_superblock *d) {
d->root[0] = lfs_fromle32(d->root[0]);
d->root[1] = lfs_fromle32(d->root[1]);
d->block_size = lfs_fromle32(d->block_size);
d->block_count = lfs_fromle32(d->block_count);
d->version = lfs_fromle32(d->version);
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
d->inline_size = lfs_fromle32(d->inline_size);
d->attrs_size = lfs_fromle32(d->attrs_size);
d->name_size = lfs_fromle32(d->name_size);
}
static void lfs_superblock_tole32(struct lfs_disk_superblock *d) {
d->root[0] = lfs_tole32(d->root[0]);
d->root[1] = lfs_tole32(d->root[1]);
d->block_size = lfs_tole32(d->block_size);
d->block_count = lfs_tole32(d->block_count);
d->version = lfs_tole32(d->version);
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
d->inline_size = lfs_tole32(d->inline_size);
d->attrs_size = lfs_tole32(d->attrs_size);
d->name_size = lfs_tole32(d->name_size);
}
/// Other struct functions ///
static inline lfs_size_t lfs_entry_elen(const lfs_entry_t *entry) {
return (lfs_size_t)(entry->d.elen) |
((lfs_size_t)(entry->d.alen & 0xc0) << 2);
}
static inline lfs_size_t lfs_entry_alen(const lfs_entry_t *entry) {
return entry->d.alen & 0x3f;
}
static inline lfs_size_t lfs_entry_nlen(const lfs_entry_t *entry) {
return entry->d.nlen;
}
static inline lfs_size_t lfs_entry_size(const lfs_entry_t *entry) {
return 4 + lfs_entry_elen(entry) +
lfs_entry_alen(entry) +
lfs_entry_nlen(entry);
}
/// Metadata pair and directory operations ///
static inline void lfs_pairswap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pairisnull(const lfs_block_t pair[2]) {
return pair[0] == 0xffffffff || pair[1] == 0xffffffff;
}
static inline int lfs_paircmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
static inline bool lfs_pairsync(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) {
// allocate pair of dir blocks
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[i]);
if (err) {
return err;
}
}
// rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->d.rev, 4);
dir->d.rev = lfs_fromle32(dir->d.rev);
if (err) {
return err;
}
// set defaults
dir->d.rev += 1;
dir->d.size = sizeof(dir->d)+4;
dir->d.tail[0] = 0xffffffff;
dir->d.tail[1] = 0xffffffff;
dir->off = sizeof(dir->d);
// don't write out yet, let caller take care of that
return 0;
}
static int lfs_dir_fetch(lfs_t *lfs,
lfs_dir_t *dir, const lfs_block_t pair[2]) {
// copy out pair, otherwise may be aliasing dir
const lfs_block_t tpair[2] = {pair[0], pair[1]};
bool valid = false;
// check both blocks for the most recent revision
for (int i = 0; i < 2; i++) {
struct lfs_disk_dir test;
int err = lfs_bd_read(lfs, tpair[i], 0, &test, sizeof(test));
lfs_dir_fromle32(&test);
if (err) {
return err;
}
if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
continue;
}
if ((0x7fffffff & test.size) < sizeof(test)+4 ||
(0x7fffffff & test.size) > lfs->cfg->block_size) {
continue;
}
uint32_t crc = 0xffffffff;
lfs_dir_tole32(&test);
lfs_crc(&crc, &test, sizeof(test));
lfs_dir_fromle32(&test);
err = lfs_bd_crc(lfs, tpair[i], sizeof(test),
(0x7fffffff & test.size) - sizeof(test), &crc);
if (err) {
return err;
}
if (crc != 0) {
continue;
}
valid = true;
// setup dir in case it's valid
dir->pair[0] = tpair[(i+0) % 2];
dir->pair[1] = tpair[(i+1) % 2];
dir->off = sizeof(dir->d);
dir->d = test;
}
if (!valid) {
LFS_ERROR("Corrupted dir pair at %d %d", tpair[0], tpair[1]);
return LFS_ERR_CORRUPT;
}
return 0;
}
struct lfs_region {
enum {
LFS_FROM_MEM,
LFS_FROM_REGION,
2018-04-06 04:23:14 +00:00
LFS_FROM_ATTRS,
} type;
lfs_off_t oldoff;
lfs_size_t oldsize;
const void *buffer;
lfs_size_t newsize;
};
struct lfs_region_attrs {
2018-04-06 04:23:14 +00:00
const struct lfs_attr *attrs;
int count;
};
struct lfs_region_region {
lfs_block_t block;
lfs_off_t off;
struct lfs_region *regions;
int count;
};
static int lfs_commit_region(lfs_t *lfs, uint32_t *crc,
lfs_block_t oldblock, lfs_off_t oldoff,
lfs_block_t newblock, lfs_off_t newoff,
lfs_off_t regionoff, lfs_size_t regionsize,
const struct lfs_region *regions, int count) {
int i = 0;
lfs_size_t newend = newoff + regionsize;
while (newoff < newend) {
// commit from different types of regions
if (i < count && regions[i].oldoff == oldoff - regionoff) {
switch (regions[i].type) {
case LFS_FROM_MEM: {
lfs_crc(crc, regions[i].buffer, regions[i].newsize);
int err = lfs_bd_prog(lfs, newblock, newoff,
regions[i].buffer, regions[i].newsize);
if (err) {
return err;
}
newoff += regions[i].newsize;
oldoff += regions[i].oldsize;
break;
}
case LFS_FROM_REGION: {
const struct lfs_region_region *disk = regions[i].buffer;
int err = lfs_commit_region(lfs, crc,
disk->block, disk->off,
newblock, newoff,
disk->off, regions[i].newsize,
disk->regions, disk->count);
if (err) {
return err;
}
newoff += regions[i].newsize;
oldoff -= regions[i].oldsize;
break;
}
2018-04-06 04:23:14 +00:00
case LFS_FROM_ATTRS: {
const struct lfs_region_attrs *attrs = regions[i].buffer;
2018-04-06 04:23:14 +00:00
// order doesn't matter, so we write new attrs first. this
// is still O(n^2) but only O(n) disk access
for (int j = 0; j < attrs->count; j++) {
if (attrs->attrs[j].size == 0) {
continue;
}
lfs_entry_attr_t attr;
attr.d.type = attrs->attrs[j].type;
attr.d.len = attrs->attrs[j].size;
2018-04-06 04:23:14 +00:00
lfs_crc(crc, &attr.d, sizeof(attr.d));
int err = lfs_bd_prog(lfs, newblock, newoff,
&attr.d, sizeof(attr.d));
if (err) {
return err;
}
lfs_crc(crc,
attrs->attrs[j].buffer, attrs->attrs[j].size);
err = lfs_bd_prog(lfs, newblock, newoff+sizeof(attr.d),
attrs->attrs[j].buffer, attrs->attrs[j].size);
if (err) {
return err;
}
newoff += 2+attrs->attrs[j].size;
2018-04-06 04:23:14 +00:00
}
// copy over attributes without updates
lfs_off_t oldend = oldoff + regions[i].oldsize;
while (oldoff < oldend) {
lfs_entry_attr_t attr;
2018-04-06 04:23:14 +00:00
int err = lfs_bd_read(lfs, oldblock, oldoff,
&attr.d, sizeof(attr.d));
if (err) {
return err;
}
bool updating = false;
for (int j = 0; j < attrs->count; j++) {
if (attr.d.type == attrs->attrs[j].type) {
updating = true;
}
}
if (!updating) {
err = lfs_commit_region(lfs, crc,
2018-04-06 04:23:14 +00:00
oldblock, oldoff,
newblock, newoff,
0, 2+attr.d.len,
NULL, 0);
2018-04-06 04:23:14 +00:00
if (err) {
return err;
}
newoff += 2+attr.d.len;
}
oldoff += 2+attr.d.len;
}
break;
}
}
i += 1;
} else {
// copy data from old block if not covered by region
uint8_t data;
int err = lfs_bd_read(lfs, oldblock, oldoff, &data, 1);
if (err) {
return err;
}
lfs_crc(crc, &data, 1);
err = lfs_bd_prog(lfs, newblock, newoff, &data, 1);
if (err) {
return err;
}
oldoff += 1;
newoff += 1;
}
}
2018-04-06 04:23:14 +00:00
// sanity check our commit math
LFS_ASSERT(newoff == newend);
return 0;
}
static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir,
const struct lfs_region *regions, int count) {
// state for copying over
const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]};
bool relocated = false;
// increment revision count
dir->d.rev += 1;
// keep pairs in order such that pair[0] is most recent
lfs_pairswap(dir->pair);
for (int i = 0; i < count; i++) {
dir->d.size += regions[i].newsize;
dir->d.size -= regions[i].oldsize;
}
while (true) {
if (true) {
int err = lfs_bd_erase(lfs, dir->pair[0]);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit header
uint32_t crc = 0xffffffff;
lfs_dir_tole32(&dir->d);
lfs_crc(&crc, &dir->d, sizeof(dir->d));
err = lfs_bd_prog(lfs, dir->pair[0], 0, &dir->d, sizeof(dir->d));
lfs_dir_fromle32(&dir->d);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit region
err = lfs_commit_region(lfs, &crc,
dir->pair[1], sizeof(dir->d),
dir->pair[0], sizeof(dir->d),
0, (0x7fffffff & dir->d.size)-sizeof(dir->d)-4,
regions, count);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit crc
crc = lfs_tole32(crc);
err = lfs_bd_prog(lfs, dir->pair[0],
(0x7fffffff & dir->d.size)-4, &crc, 4);
crc = lfs_fromle32(crc);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
err = lfs_bd_sync(lfs);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// successful commit, check checksum to make sure
uint32_t ncrc = 0xffffffff;
err = lfs_bd_crc(lfs, dir->pair[0], 0,
(0x7fffffff & dir->d.size)-4, &ncrc);
if (err) {
return err;
}
if (ncrc != crc) {
goto relocate;
}
}
break;
relocate:
//commit was corrupted
LFS_DEBUG("Bad block at %d", dir->pair[0]);
// drop caches and prepare to relocate block
relocated = true;
lfs->pcache.block = 0xffffffff;
// can't relocate superblock, filesystem is now frozen
if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
LFS_WARN("Superblock %d has become unwritable", oldpair[0]);
return LFS_ERR_CORRUPT;
}
// relocate half of pair
int err = lfs_alloc(lfs, &dir->pair[0]);
if (err) {
return err;
}
}
if (relocated) {
// update references if we relocated
LFS_DEBUG("Relocating %d %d to %d %d",
oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
int err = lfs_relocate(lfs, oldpair, dir->pair);
if (err) {
return err;
}
}
// shift over any directories that are affected
for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
if (lfs_paircmp(d->pair, dir->pair) == 0) {
d->pair[0] = dir->pair[0];
d->pair[1] = dir->pair[1];
}
}
return 0;
}
static int lfs_dir_get(lfs_t *lfs, const lfs_dir_t *dir,
lfs_off_t off, void *buffer, lfs_size_t size) {
return lfs_bd_read(lfs, dir->pair[0], off, buffer, size);
}
static int lfs_dir_set(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry,
struct lfs_region *regions, int count) {
lfs_ssize_t diff = 0;
for (int i = 0; i < count; i++) {
diff += regions[i].newsize;
diff -= regions[i].oldsize;
}
lfs_size_t oldsize = entry->size;
if (entry->off == 0) {
entry->off = (0x7fffffff & dir->d.size) - 4;
}
if ((0x7fffffff & dir->d.size) + diff > lfs->cfg->block_size) {
lfs_dir_t olddir = *dir;
lfs_off_t oldoff = entry->off;
if (oldsize) {
// mark as moving
uint8_t type;
int err = lfs_dir_get(lfs, &olddir, oldoff, &type, 1);
if (err) {
return err;
}
type |= LFS_STRUCT_MOVED;
err = lfs_dir_commit(lfs, &olddir, (struct lfs_region[]){
{LFS_FROM_MEM, oldoff, 1, &type, 1}}, 1);
if (err) {
return err;
}
}
lfs_dir_t pdir = olddir;
// find available block or create a new one
while ((0x7fffffff & dir->d.size) + oldsize + diff
> lfs->cfg->block_size) {
// we need to allocate a new dir block
if (!(0x80000000 & dir->d.size)) {
pdir = *dir;
int err = lfs_dir_alloc(lfs, dir);
if (err) {
return err;
}
dir->d.tail[0] = pdir.d.tail[0];
dir->d.tail[1] = pdir.d.tail[1];
break;
}
int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
}
// writing out new entry
entry->off = dir->d.size - 4;
entry->size += diff;
int err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){
{LFS_FROM_REGION, entry->off, 0, &(struct lfs_region_region){
olddir.pair[0], oldoff,
regions, count}, entry->size}}, 1);
if (err) {
return err;
}
// update pred dir, unless pred == old we can coalesce
if (!oldsize || lfs_paircmp(pdir.pair, olddir.pair) != 0) {
pdir.d.size |= 0x80000000;
pdir.d.tail[0] = dir->pair[0];
pdir.d.tail[1] = dir->pair[1];
err = lfs_dir_commit(lfs, &pdir, NULL, 0);
if (err) {
return err;
}
} else if (oldsize) {
olddir.d.size |= 0x80000000;
olddir.d.tail[0] = dir->pair[0];
olddir.d.tail[1] = dir->pair[1];
}
// remove old entry
if (oldsize) {
lfs_entry_t oldentry;
oldentry.off = oldoff;
err = lfs_dir_set(lfs, &olddir, &oldentry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, oldsize, NULL, 0}}, 1);
if (err) {
return err;
}
}
goto shift;
}
if ((0x7fffffff & dir->d.size) + diff == sizeof(dir->d)+4) {
lfs_dir_t pdir;
int res = lfs_pred(lfs, dir->pair, &pdir);
if (res < 0) {
return res;
}
if (pdir.d.size & 0x80000000) {
pdir.d.size &= dir->d.size | 0x7fffffff;
pdir.d.tail[0] = dir->d.tail[0];
pdir.d.tail[1] = dir->d.tail[1];
int err = lfs_dir_commit(lfs, &pdir, NULL, 0);
if (err) {
return err;
}
goto shift;
}
}
for (int i = 0; i < count; i++) {
regions[i].oldoff += entry->off;
}
int err = lfs_dir_commit(lfs, dir, regions, count);
if (err) {
return err;
}
entry->size += diff;
shift:
// shift over any files/directories that are affected
for (lfs_file_t *f = lfs->files; f; f = f->next) {
if (lfs_paircmp(f->pair, dir->pair) == 0) {
if (f->pairoff == entry->off && entry->size == 0) {
f->pair[0] = 0xffffffff;
f->pair[1] = 0xffffffff;
} else if (f->pairoff > entry->off) {
f->pairoff += diff;
}
}
}
for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
if (lfs_paircmp(d->pair, dir->pair) == 0) {
if (d->off > entry->off) {
d->off += diff;
d->pos += diff;
}
}
}
return 0;
}
static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
while (dir->off >= (0x7fffffff & dir->d.size)-4) {
if (!(0x80000000 & dir->d.size)) {
entry->off = dir->off;
return LFS_ERR_NOENT;
}
int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
dir->off = sizeof(dir->d);
dir->pos += sizeof(dir->d) + 4;
}
int err = lfs_dir_get(lfs, dir, dir->off, &entry->d, sizeof(entry->d));
lfs_entry_fromle32(&entry->d);
if (err) {
return err;
}
entry->off = dir->off;
entry->size = lfs_entry_size(entry);
dir->off += entry->size;
dir->pos += entry->size;
return 0;
}
static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
lfs_entry_t *entry, const char **path) {
const char *pathname = *path;
lfs_size_t pathlen;
while (true) {
nextname:
// skip slashes
pathname += strspn(pathname, "/");
pathlen = strcspn(pathname, "/");
// special case for root dir
if (pathname[0] == '\0') {
*entry = (lfs_entry_t){
.d.type = LFS_STRUCT_DIR | LFS_TYPE_DIR,
.d.u.dir[0] = lfs->root[0],
.d.u.dir[1] = lfs->root[1],
};
return 0;
}
// skip '.' and root '..'
if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) ||
(pathlen == 2 && memcmp(pathname, "..", 2) == 0)) {
pathname += pathlen;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = pathname + pathlen;
lfs_size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
pathname = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// update what we've found
*path = pathname;
// find path
while (true) {
int err = lfs_dir_next(lfs, dir, entry);
if (err) {
return err;
}
if (((0xf & entry->d.type) != LFS_TYPE_REG &&
(0xf & entry->d.type) != LFS_TYPE_DIR) ||
entry->d.nlen != pathlen) {
continue;
}
int res = lfs_bd_cmp(lfs, dir->pair[0],
entry->off + entry->size - pathlen,
pathname, pathlen);
if (res < 0) {
return res;
}
// found match
if (res) {
break;
}
}
// check that entry has not been moved
if (entry->d.type & LFS_STRUCT_MOVED) {
int moved = lfs_moved(lfs, &entry->d.u);
if (moved < 0 || moved) {
return (moved < 0) ? moved : LFS_ERR_NOENT;
}
entry->d.type &= ~LFS_STRUCT_MOVED;
}
pathname += pathlen;
pathname += strspn(pathname, "/");
if (pathname[0] == '\0') {
return 0;
}
// continue on if we hit a directory
if ((0xf & entry->d.type) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir);
if (err) {
return err;
}
}
}
/// Internal attribute operations ///
static int lfs_dir_getinfo(lfs_t *lfs,
lfs_dir_t *dir, const lfs_entry_t *entry, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
info->type = 0xf & entry->d.type;
if (entry->d.type == (LFS_STRUCT_CTZ | LFS_TYPE_REG)) {
info->size = entry->d.u.file.size;
} else if (entry->d.type == (LFS_STRUCT_INLINE | LFS_TYPE_REG)) {
info->size = lfs_entry_elen(entry);
}
if (lfs_paircmp(entry->d.u.dir, lfs->root) == 0) {
strcpy(info->name, "/");
} else {
int err = lfs_dir_get(lfs, dir,
entry->off + entry->size - entry->d.nlen,
info->name, entry->d.nlen);
if (err) {
return err;
}
}
return 0;
}
2018-04-06 04:23:14 +00:00
static int lfs_dir_getattrs(lfs_t *lfs,
lfs_dir_t *dir, const lfs_entry_t *entry,
2018-04-06 04:23:14 +00:00
const struct lfs_attr *attrs, int count) {
// set to zero in case we can't find the attributes or size mismatch
for (int j = 0; j < count; j++) {
memset(attrs[j].buffer, 0, attrs[j].size);
}
// search for attribute in attribute region
lfs_off_t off = entry->off + 4+lfs_entry_elen(entry);
lfs_off_t end = off + lfs_entry_alen(entry);
while (off < end) {
lfs_entry_attr_t attr;
int err = lfs_dir_get(lfs, dir, off, &attr.d, sizeof(attr.d));
if (err) {
return err;
}
2018-04-06 04:23:14 +00:00
for (int j = 0; j < count; j++) {
if (attrs[j].type == attr.d.type) {
if (attrs[j].size < attr.d.len) {
2018-04-06 04:23:14 +00:00
return LFS_ERR_RANGE;
}
err = lfs_dir_get(lfs, dir, off+sizeof(attr.d),
2018-04-06 04:23:14 +00:00
attrs[j].buffer, attr.d.len);
if (err) {
return err;
}
}
}
off += 2+attr.d.len;
}
2018-04-06 04:23:14 +00:00
return 0;
}
2018-04-06 04:23:14 +00:00
static lfs_ssize_t lfs_dir_checkattrs(lfs_t *lfs,
lfs_dir_t *dir, lfs_entry_t *entry,
2018-04-06 04:23:14 +00:00
const struct lfs_attr *attrs, int count) {
// check that attributes fit
// two separate passes so disk access is O(n)
2018-04-06 04:23:14 +00:00
lfs_size_t nsize = 0;
for (int j = 0; j < count; j++) {
if (attrs[j].size > 0) {
nsize += 2+attrs[j].size;
}
2018-04-06 04:23:14 +00:00
}
lfs_off_t off = entry->off + 4+lfs_entry_elen(entry);
lfs_off_t end = off + lfs_entry_alen(entry);
while (off < end) {
lfs_entry_attr_t attr;
int err = lfs_dir_get(lfs, dir, off, &attr.d, sizeof(attr.d));
if (err) {
return err;
}
2018-04-06 04:23:14 +00:00
bool updated = false;
for (int j = 0; j < count; j++) {
if (attr.d.type == attrs[j].type) {
updated = true;
}
}
2018-04-06 04:23:14 +00:00
if (!updated) {
nsize += 2+attr.d.len;
}
off += 2+attr.d.len;
}
2018-04-06 04:23:14 +00:00
if (nsize > lfs->attrs_size || (
lfs_entry_size(entry) - lfs_entry_alen(entry) + nsize
> lfs->cfg->block_size)) {
return LFS_ERR_NOSPC;
}
2018-04-06 04:23:14 +00:00
return nsize;
}
2018-04-06 04:23:14 +00:00
static int lfs_dir_setattrs(lfs_t *lfs,
lfs_dir_t *dir, lfs_entry_t *entry,
const struct lfs_attr *attrs, int count) {
// make sure attributes fit
lfs_size_t oldlen = lfs_entry_alen(entry);
lfs_ssize_t newlen = lfs_dir_checkattrs(lfs, dir, entry, attrs, count);
if (newlen < 0) {
return newlen;
}
2018-04-06 04:23:14 +00:00
// commit to entry, majority of work is in LFS_FROM_ATTRS
entry->d.alen = (0xc0 & entry->d.alen) | newlen;
2018-04-06 04:23:14 +00:00
return lfs_dir_set(lfs, dir, entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 4, &entry->d, 4},
{LFS_FROM_ATTRS, 4+lfs_entry_elen(entry), oldlen,
&(struct lfs_region_attrs){attrs, count}, newlen}}, 2);
}
/// Top level directory operations ///
int lfs_mkdir(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
if (!lfs->deorphaned) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
// fetch parent directory
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err != LFS_ERR_NOENT || strchr(path, '/') != NULL) {
return err ? err : LFS_ERR_EXIST;
}
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_size) {
return LFS_ERR_NAMETOOLONG;
}
// build up new directory
lfs_alloc_ack(lfs);
lfs_dir_t dir;
err = lfs_dir_alloc(lfs, &dir);
if (err) {
return err;
}
dir.d.tail[0] = cwd.d.tail[0];
dir.d.tail[1] = cwd.d.tail[1];
err = lfs_dir_commit(lfs, &dir, NULL, 0);
if (err) {
return err;
}
entry.d.type = LFS_STRUCT_DIR | LFS_TYPE_DIR;
entry.d.elen = sizeof(entry.d) - 4;
entry.d.alen = 0;
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
entry.d.nlen = nlen;
entry.d.u.dir[0] = dir.pair[0];
entry.d.u.dir[1] = dir.pair[1];
entry.size = 0;
cwd.d.tail[0] = dir.pair[0];
cwd.d.tail[1] = dir.pair[1];
lfs_entry_tole32(&entry.d);
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 0, &entry.d, sizeof(entry.d)},
{LFS_FROM_MEM, 0, 0, path, nlen}}, 2);
if (err) {
return err;
}
lfs_alloc_ack(lfs);
return 0;
}
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
dir->pair[0] = lfs->root[0];
dir->pair[1] = lfs->root[1];
2017-03-25 23:11:45 +00:00
int err = lfs_dir_fetch(lfs, dir, dir->pair);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, dir, &entry, &path);
if (err) {
return err;
} else if (entry.d.type != (LFS_STRUCT_DIR | LFS_TYPE_DIR)) {
return LFS_ERR_NOTDIR;
}
err = lfs_dir_fetch(lfs, dir, entry.d.u.dir);
if (err) {
return err;
}
// setup head dir
// special offset for '.' and '..'
dir->head[0] = dir->pair[0];
dir->head[1] = dir->pair[1];
dir->pos = sizeof(dir->d) - 2;
dir->off = sizeof(dir->d);
// add to list of directories
dir->next = lfs->dirs;
lfs->dirs = dir;
return 0;
}
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// remove from list of directories
for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) {
if (*p == dir) {
*p = dir->next;
break;
}
}
return 0;
}
2017-03-25 23:11:45 +00:00
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
// special offset for '.' and '..'
if (dir->pos == sizeof(dir->d) - 2) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, ".");
dir->pos += 1;
return 1;
} else if (dir->pos == sizeof(dir->d) - 1) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, "..");
dir->pos += 1;
return 1;
}
2017-03-25 23:11:45 +00:00
lfs_entry_t entry;
while (true) {
int err = lfs_dir_next(lfs, dir, &entry);
if (err) {
return (err == LFS_ERR_NOENT) ? 0 : err;
}
if ((0xf & entry.d.type) != LFS_TYPE_REG &&
(0xf & entry.d.type) != LFS_TYPE_DIR) {
continue;
}
// check that entry has not been moved
if (entry.d.type & LFS_STRUCT_MOVED) {
int moved = lfs_moved(lfs, &entry.d.u);
if (moved < 0) {
return moved;
}
if (moved) {
continue;
}
entry.d.type &= ~LFS_STRUCT_MOVED;
}
break;
2017-03-25 23:11:45 +00:00
}
int err = lfs_dir_getinfo(lfs, dir, &entry, info);
2017-03-25 23:11:45 +00:00
if (err) {
return err;
}
return 1;
}
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// simply walk from head dir
int err = lfs_dir_rewind(lfs, dir);
if (err) {
return err;
}
dir->pos = off;
while (off > (0x7fffffff & dir->d.size)) {
off -= 0x7fffffff & dir->d.size;
if (!(0x80000000 & dir->d.size)) {
return LFS_ERR_INVAL;
}
2018-01-29 19:53:28 +00:00
err = lfs_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
}
dir->off = off;
return 0;
}
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
(void)lfs;
return dir->pos;
}
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// reload the head dir
int err = lfs_dir_fetch(lfs, dir, dir->head);
if (err) {
return err;
}
dir->pair[0] = dir->head[0];
dir->pair[1] = dir->head[1];
dir->pos = sizeof(dir->d) - 2;
dir->off = sizeof(dir->d);
return 0;
}
/// File index list operations ///
static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
lfs_off_t size = *off;
lfs_off_t b = lfs->cfg->block_size - 2*4;
lfs_off_t i = size / b;
if (i == 0) {
return 0;
}
i = (size - 4*(lfs_popc(i-1)+2)) / b;
*off = size - b*i - 4*lfs_popc(i);
return i;
}
static int lfs_ctz_find(lfs_t *lfs,
lfs_cache_t *rcache, const lfs_cache_t *pcache,
lfs_block_t head, lfs_size_t size,
lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
if (size == 0) {
*block = 0xffffffff;
*off = 0;
return 0;
}
lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
lfs_off_t target = lfs_ctz_index(lfs, &pos);
while (current > target) {
lfs_size_t skip = lfs_min(
lfs_npw2(current-target+1) - 1,
lfs_ctz(current));
int err = lfs_cache_read(lfs, rcache, pcache, head, 4*skip, &head, 4);
head = lfs_fromle32(head);
if (err) {
return err;
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
current -= 1 << skip;
}
*block = head;
*off = pos;
return 0;
}
static int lfs_ctz_extend(lfs_t *lfs,
lfs_cache_t *rcache, lfs_cache_t *pcache,
lfs_block_t head, lfs_size_t size,
lfs_block_t *block, lfs_off_t *off) {
while (true) {
// go ahead and grab a block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count);
if (true) {
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (size == 0) {
*block = nblock;
*off = 0;
return 0;
}
size -= 1;
lfs_off_t index = lfs_ctz_index(lfs, &size);
size += 1;
// just copy out the last block if it is incomplete
if (size != lfs->cfg->block_size) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t data;
2018-01-29 19:53:28 +00:00
err = lfs_cache_read(lfs, rcache, NULL,
head, i, &data, 1);
if (err) {
return err;
}
err = lfs_cache_prog(lfs, pcache, rcache,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
*block = nblock;
*off = size;
return 0;
}
// append block
index += 1;
lfs_size_t skips = lfs_ctz(index) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
head = lfs_tole32(head);
2018-01-29 19:53:28 +00:00
err = lfs_cache_prog(lfs, pcache, rcache,
nblock, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (i != skips-1) {
err = lfs_cache_read(lfs, rcache, NULL,
head, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
return err;
}
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
}
*block = nblock;
*off = 4*skips;
return 0;
}
relocate:
LFS_DEBUG("Bad block at %d", nblock);
// just clear cache and try a new block
pcache->block = 0xffffffff;
}
}
static int lfs_ctz_traverse(lfs_t *lfs,
lfs_cache_t *rcache, const lfs_cache_t *pcache,
lfs_block_t head, lfs_size_t size,
int (*cb)(void*, lfs_block_t), void *data) {
if (size == 0) {
return 0;
}
lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
while (true) {
int err = cb(data, head);
if (err) {
return err;
}
if (index == 0) {
return 0;
}
lfs_block_t heads[2];
int count = 2 - (index & 1);
err = lfs_cache_read(lfs, rcache, pcache, head, 0, &heads, count*4);
heads[0] = lfs_fromle32(heads[0]);
heads[1] = lfs_fromle32(heads[1]);
if (err) {
return err;
}
for (int i = 0; i < count-1; i++) {
err = cb(data, heads[i]);
if (err) {
return err;
}
}
head = heads[count-1];
index -= count;
}
}
/// Top level file operations ///
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
// deorphan if we haven't yet, needed at most once after poweron
if ((flags & 3) != LFS_O_RDONLY && !lfs->deorphaned) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
// allocate entry for file if it doesn't exist
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err && (err != LFS_ERR_NOENT || strchr(path, '/') != NULL)) {
return err;
}
if (err == LFS_ERR_NOENT) {
if (!(flags & LFS_O_CREAT)) {
return LFS_ERR_NOENT;
}
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_size) {
return LFS_ERR_NAMETOOLONG;
}
// create entry to remember name
entry.d.type = LFS_STRUCT_INLINE | LFS_TYPE_REG;
entry.d.elen = 0;
entry.d.alen = 0;
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
entry.d.nlen = nlen;
entry.size = 0;
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 0, &entry.d, 4},
{LFS_FROM_MEM, 0, 0, path, nlen}}, 2);
if (err) {
return err;
}
} else if ((0xf & entry.d.type) == LFS_TYPE_DIR) {
return LFS_ERR_ISDIR;
} else if (flags & LFS_O_EXCL) {
return LFS_ERR_EXIST;
}
// allocate buffer if needed
file->cache.block = 0xffffffff;
if (lfs->cfg->file_buffer) {
file->cache.buffer = lfs->cfg->file_buffer;
} else if ((file->flags & 3) == LFS_O_RDONLY) {
file->cache.buffer = lfs_malloc(lfs->cfg->read_size);
if (!file->cache.buffer) {
return LFS_ERR_NOMEM;
}
} else {
file->cache.buffer = lfs_malloc(lfs->cfg->prog_size);
if (!file->cache.buffer) {
return LFS_ERR_NOMEM;
}
}
// setup file struct
file->pair[0] = cwd.pair[0];
file->pair[1] = cwd.pair[1];
file->pairoff = entry.off;
file->flags = flags;
file->pos = 0;
// calculate max inline size based on the size of the entry
file->inline_size = lfs_min(lfs->inline_size,
lfs->cfg->block_size - (sizeof(cwd.d)+4) -
(lfs_entry_size(&entry) - lfs_entry_elen(&entry)));
if ((0x70 & entry.d.type) == LFS_STRUCT_INLINE) {
// load inline files
file->head = 0xfffffffe;
file->size = lfs_entry_elen(&entry);
file->flags |= LFS_F_INLINE;
file->cache.block = file->head;
file->cache.off = 0;
err = lfs_dir_get(lfs, &cwd,
entry.off + 4,
file->cache.buffer, file->size);
if (err) {
lfs_free(file->cache.buffer);
return err;
}
} else {
// use ctz list from entry
file->head = entry.d.u.file.head;
file->size = entry.d.u.file.size;
}
// truncate if requested
if (flags & LFS_O_TRUNC) {
if (file->size != 0) {
file->flags |= LFS_F_DIRTY;
}
file->head = 0xfffffffe;
file->size = 0;
file->flags |= LFS_F_INLINE;
file->cache.block = file->head;
file->cache.off = 0;
}
// add to list of files
file->next = lfs->files;
lfs->files = file;
return 0;
}
int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_sync(lfs, file);
// remove from list of files
for (lfs_file_t **p = &lfs->files; *p; p = &(*p)->next) {
if (*p == file) {
*p = file->next;
break;
}
}
// clean up memory
if (!lfs->cfg->file_buffer) {
lfs_free(file->cache.buffer);
}
return err;
}
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
relocate:;
// just relocate what exists into new block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// either read from dirty cache or disk
for (lfs_off_t i = 0; i < file->off; i++) {
uint8_t data;
err = lfs_cache_read(lfs, &lfs->rcache, &file->cache,
file->block, i, &data, 1);
if (err) {
return err;
}
err = lfs_cache_prog(lfs, &lfs->pcache, &lfs->rcache,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// copy over new state of file
memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->prog_size);
file->cache.block = lfs->pcache.block;
file->cache.off = lfs->pcache.off;
lfs->pcache.block = 0xffffffff;
file->block = nblock;
return 0;
}
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
if (file->flags & LFS_F_READING) {
file->flags &= ~LFS_F_READING;
}
if (file->flags & LFS_F_WRITING) {
lfs_off_t pos = file->pos;
if (!(file->flags & LFS_F_INLINE)) {
// copy over anything after current branch
lfs_file_t orig = {
.head = file->head,
.size = file->size,
.flags = LFS_O_RDONLY,
.pos = file->pos,
.cache = lfs->rcache,
};
lfs->rcache.block = 0xffffffff;
while (file->pos < file->size) {
// copy over a byte at a time, leave it up to caching
// to make this efficient
uint8_t data;
lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1);
if (res < 0) {
return res;
}
res = lfs_file_write(lfs, file, &data, 1);
if (res < 0) {
return res;
}
// keep our reference to the rcache in sync
if (lfs->rcache.block != 0xffffffff) {
orig.cache.block = 0xffffffff;
lfs->rcache.block = 0xffffffff;
}
}
// write out what we have
while (true) {
int err = lfs_cache_flush(lfs, &file->cache, &lfs->rcache);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
break;
relocate:
LFS_DEBUG("Bad block at %d", file->block);
err = lfs_file_relocate(lfs, file);
if (err) {
return err;
}
}
} else {
file->size = lfs_max(file->pos, file->size);
}
// actual file updates
file->head = file->block;
file->size = file->pos;
file->flags &= ~LFS_F_WRITING;
file->flags |= LFS_F_DIRTY;
file->pos = pos;
}
return 0;
}
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
if ((file->flags & LFS_F_DIRTY) &&
!(file->flags & LFS_F_ERRED) &&
!lfs_pairisnull(file->pair)) {
// update dir entry
lfs_dir_t cwd;
2018-01-29 19:53:28 +00:00
err = lfs_dir_fetch(lfs, &cwd, file->pair);
if (err) {
return err;
}
lfs_entry_t entry = {.off = file->pairoff};
err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4);
if (err) {
return err;
}
entry.size = lfs_entry_size(&entry);
LFS_ASSERT((0xf & entry.d.type) == LFS_TYPE_REG);
lfs_size_t oldelen = lfs_entry_elen(&entry);
lfs_size_t oldalen = lfs_entry_alen(&entry);
const void *buffer;
lfs_size_t size;
// either update the references or inline the whole file
if (!(file->flags & LFS_F_INLINE)) {
entry.d.type = LFS_STRUCT_CTZ | LFS_TYPE_REG;
entry.d.u.file.head = file->head;
entry.d.u.file.size = file->size;
lfs_entry_tole32(&entry.d);
buffer = (const uint8_t *)&entry.d + 4;
size = sizeof(entry.d) - 4;
} else {
entry.d.type = LFS_STRUCT_INLINE | LFS_TYPE_REG;
buffer = file->cache.buffer;
size = file->size;
}
// get new alen from disk
lfs_ssize_t newalen = lfs_dir_checkattrs(lfs, &cwd, &entry,
file->attrs, file->attrcount);
if (newalen < 0) {
return newalen;
}
entry.d.elen = size & 0xff;
entry.d.alen = (newalen & 0x3f) | ((size >> 2) & 0xc0);
// write out update
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 4, &entry.d, 4},
{LFS_FROM_MEM, 4, oldelen, buffer, size},
{LFS_FROM_ATTRS, 4+oldelen, oldalen,
&(struct lfs_region_attrs){file->attrs, file->attrcount},
newalen}}, 3);
if (err) {
return err;
}
file->flags &= ~LFS_F_DIRTY;
}
return 0;
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_WRONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_WRITING) {
// flush out any writes
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if (file->pos >= file->size) {
// eof if past end
return 0;
}
size = lfs_min(size, file->size - file->pos);
nsize = size;
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_READING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
int err = lfs_ctz_find(lfs, &file->cache, NULL,
file->head, file->size,
file->pos, &file->block, &file->off);
if (err) {
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_READING;
}
// read as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
int err = lfs_cache_read(lfs, &file->cache, NULL,
file->block, file->off, data, diff);
if (err) {
return err;
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_READING) {
// drop any reads
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if ((file->flags & LFS_O_APPEND) && file->pos < file->size) {
file->pos = file->size;
}
if (!(file->flags & LFS_F_WRITING) && file->pos > file->size) {
// fill with zeros
lfs_off_t pos = file->pos;
file->pos = file->size;
while (file->pos < pos) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
}
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
if ((file->flags & LFS_F_INLINE) &&
file->pos + nsize >= file->inline_size) {
// inline file doesn't fit anymore
file->block = 0xfffffffe;
file->off = file->pos;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
file->flags &= ~LFS_F_INLINE;
file->flags |= LFS_F_WRITING;
}
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_WRITING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
// find out which block we're extending from
int err = lfs_ctz_find(lfs, &file->cache, NULL,
file->head, file->size,
file->pos-1, &file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
// mark cache as dirty since we may have read data into it
file->cache.block = 0xffffffff;
}
// extend file with new blocks
lfs_alloc_ack(lfs);
int err = lfs_ctz_extend(lfs, &lfs->rcache, &file->cache,
file->block, file->pos,
&file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_WRITING;
}
// program as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
while (true) {
int err = lfs_cache_prog(lfs, &file->cache, &lfs->rcache,
file->block, file->off, data, diff);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
break;
relocate:
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
lfs_alloc_ack(lfs);
}
file->flags &= ~LFS_F_ERRED;
return size;
}
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence) {
// write out everything beforehand, may be noop if rdonly
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// update pos
if (whence == LFS_SEEK_SET) {
file->pos = off;
} else if (whence == LFS_SEEK_CUR) {
if (off < 0 && (lfs_off_t)-off > file->pos) {
return LFS_ERR_INVAL;
}
file->pos = file->pos + off;
} else if (whence == LFS_SEEK_END) {
if (off < 0 && (lfs_off_t)-off > file->size) {
return LFS_ERR_INVAL;
}
file->pos = file->size + off;
}
return file->pos;
}
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
lfs_off_t oldsize = lfs_file_size(lfs, file);
if (size < oldsize) {
// need to flush since directly changing metadata
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// lookup new head in ctz skip list
err = lfs_ctz_find(lfs, &file->cache, NULL,
file->head, file->size,
size, &file->head, &(lfs_off_t){0});
if (err) {
return err;
}
file->size = size;
file->flags |= LFS_F_DIRTY;
} else if (size > oldsize) {
lfs_off_t pos = file->pos;
// flush+seek if not already at end
if (file->pos != oldsize) {
int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END);
if (err < 0) {
return err;
}
}
// fill with zeros
while (file->pos < size) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
// restore pos
int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET);
if (err < 0) {
return err;
}
}
return 0;
}
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
return file->pos;
}
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET);
if (res < 0) {
return res;
}
return 0;
}
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
if (file->flags & LFS_F_WRITING) {
return lfs_max(file->pos, file->size);
} else {
return file->size;
}
}
int lfs_file_getattrs(lfs_t *lfs, lfs_file_t *file,
const struct lfs_attr *attrs, int count) {
// set to null in case we can't find the attrs (missing file?)
for (int j = 0; j < count; j++) {
memset(attrs[j].buffer, 0, attrs[j].size);
}
// load from disk if we haven't already been deleted
if (!lfs_pairisnull(file->pair)) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, file->pair);
if (err) {
return err;
}
lfs_entry_t entry = {.off = file->pairoff};
err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4);
if (err) {
return err;
}
entry.size = lfs_entry_size(&entry);
err = lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count);
if (err) {
return err;
}
}
// override an attrs we have stored locally
for (int i = 0; i < file->attrcount; i++) {
for (int j = 0; j < count; j++) {
if (attrs[j].type == file->attrs[i].type) {
if (attrs[j].size < file->attrs[i].size) {
return LFS_ERR_RANGE;
}
memcpy(attrs[j].buffer,
file->attrs[i].buffer, file->attrs[i].size);
}
}
}
return 0;
}
int lfs_file_setattrs(lfs_t *lfs, lfs_file_t *file,
const struct lfs_attr *attrs, int count) {
// just tack to the file, will be written at sync time
file->attrs = attrs;
file->attrcount = count;
// at least make sure attributes fit
if (!lfs_pairisnull(file->pair)) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, file->pair);
if (err) {
return err;
}
lfs_entry_t entry = {.off = file->pairoff};
err = lfs_dir_get(lfs, &cwd, entry.off, &entry.d, 4);
if (err) {
return err;
}
entry.size = lfs_entry_size(&entry);
lfs_ssize_t res = lfs_dir_checkattrs(lfs, &cwd, &entry, attrs, count);
if (res < 0) {
return res;
}
}
return 0;
}
2018-01-30 19:07:37 +00:00
/// General fs operations ///
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err) {
return err;
}
return lfs_dir_getinfo(lfs, &cwd, &entry, info);
}
int lfs_remove(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
if (!lfs->deorphaned) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err) {
return err;
}
lfs_dir_t dir;
if ((0xf & entry.d.type) == LFS_TYPE_DIR) {
// must be empty before removal, checking size
// without masking top bit checks for any case where
// dir is not empty
2018-01-29 19:53:28 +00:00
err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
if (err) {
return err;
} else if (dir.d.size != sizeof(dir.d)+4) {
return LFS_ERR_NOTEMPTY;
}
}
// remove the entry
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1);
if (err) {
return err;
}
// if we were a directory, find pred, replace tail
if ((0xf & entry.d.type) == LFS_TYPE_DIR) {
int res = lfs_pred(lfs, dir.pair, &cwd);
if (res < 0) {
return res;
}
LFS_ASSERT(res); // must have pred
cwd.d.tail[0] = dir.d.tail[0];
cwd.d.tail[1] = dir.d.tail[1];
err = lfs_dir_commit(lfs, &cwd, NULL, 0);
if (err) {
return err;
}
}
return 0;
}
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// deorphan if we haven't yet, needed at most once after poweron
if (!lfs->deorphaned) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
// find old entry
lfs_dir_t oldcwd;
int err = lfs_dir_fetch(lfs, &oldcwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t oldentry;
err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath);
if (err) {
return err;
}
// allocate new entry
lfs_dir_t newcwd;
err = lfs_dir_fetch(lfs, &newcwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t preventry;
err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath);
if (err && (err != LFS_ERR_NOENT || strchr(newpath, '/') != NULL)) {
return err;
}
bool prevexists = (err != LFS_ERR_NOENT);
bool samepair = (lfs_paircmp(oldcwd.pair, newcwd.pair) == 0);
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
// check that name fits
lfs_size_t nlen = strlen(newpath);
if (nlen > lfs->name_size) {
return LFS_ERR_NAMETOOLONG;
}
// must have same type
if (prevexists && preventry.d.type != oldentry.d.type) {
return LFS_ERR_ISDIR;
}
lfs_dir_t dir;
if (prevexists && (0xf & preventry.d.type) == LFS_TYPE_DIR) {
// must be empty before removal, checking size
// without masking top bit checks for any case where
// dir is not empty
2018-01-29 19:53:28 +00:00
err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir);
if (err) {
return err;
} else if (dir.d.size != sizeof(dir.d)+4) {
return LFS_ERR_NOTEMPTY;
}
}
// mark as moving
oldentry.d.type |= LFS_STRUCT_MOVED;
err = lfs_dir_set(lfs, &oldcwd, &oldentry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 1, &oldentry.d.type, 1}}, 1);
oldentry.d.type &= ~LFS_STRUCT_MOVED;
if (err) {
return err;
}
// update pair if newcwd == oldcwd
if (samepair) {
newcwd = oldcwd;
}
// move to new location
lfs_entry_t newentry = preventry;
newentry.d = oldentry.d;
newentry.d.type &= ~LFS_STRUCT_MOVED;
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
newentry.d.nlen = nlen;
newentry.size = prevexists ? preventry.size : 0;
lfs_size_t newsize = oldentry.size - oldentry.d.nlen + newentry.d.nlen;
err = lfs_dir_set(lfs, &newcwd, &newentry, (struct lfs_region[]){
{LFS_FROM_REGION, 0, prevexists ? preventry.size : 0,
&(struct lfs_region_region){
oldcwd.pair[0], oldentry.off, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 4, &newentry.d, 4},
{LFS_FROM_MEM, newsize-nlen, 0, newpath, nlen}}, 2},
newsize}}, 1);
if (err) {
return err;
}
// update pair if newcwd == oldcwd
if (samepair) {
oldcwd = newcwd;
}
// remove old entry
err = lfs_dir_set(lfs, &oldcwd, &oldentry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, oldentry.size, NULL, 0}}, 1);
if (err) {
return err;
}
// if we were a directory, find pred, replace tail
if (prevexists && (0xf & preventry.d.type) == LFS_TYPE_DIR) {
int res = lfs_pred(lfs, dir.pair, &newcwd);
if (res < 0) {
return res;
}
LFS_ASSERT(res); // must have pred
newcwd.d.tail[0] = dir.d.tail[0];
newcwd.d.tail[1] = dir.d.tail[1];
err = lfs_dir_commit(lfs, &newcwd, NULL, 0);
if (err) {
return err;
}
}
return 0;
}
2018-04-06 04:23:14 +00:00
int lfs_getattrs(lfs_t *lfs, const char *path,
const struct lfs_attr *attrs, int count) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err) {
return err;
}
2018-04-06 04:23:14 +00:00
return lfs_dir_getattrs(lfs, &cwd, &entry, attrs, count);
}
2018-04-06 04:23:14 +00:00
int lfs_setattrs(lfs_t *lfs, const char *path,
const struct lfs_attr *attrs, int count) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err) {
return err;
}
2018-04-06 04:23:14 +00:00
return lfs_dir_setattrs(lfs, &cwd, &entry, attrs, count);
}
/// Filesystem operations ///
static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
lfs->cfg = cfg;
// setup read cache
lfs->rcache.block = 0xffffffff;
if (lfs->cfg->read_buffer) {
lfs->rcache.buffer = lfs->cfg->read_buffer;
} else {
lfs->rcache.buffer = lfs_malloc(lfs->cfg->read_size);
if (!lfs->rcache.buffer) {
return LFS_ERR_NOMEM;
}
}
// setup program cache
lfs->pcache.block = 0xffffffff;
if (lfs->cfg->prog_buffer) {
lfs->pcache.buffer = lfs->cfg->prog_buffer;
} else {
lfs->pcache.buffer = lfs_malloc(lfs->cfg->prog_size);
if (!lfs->pcache.buffer) {
return LFS_ERR_NOMEM;
}
}
// setup lookahead, round down to nearest 32-bits
LFS_ASSERT(lfs->cfg->lookahead % 32 == 0);
LFS_ASSERT(lfs->cfg->lookahead > 0);
if (lfs->cfg->lookahead_buffer) {
lfs->free.buffer = lfs->cfg->lookahead_buffer;
} else {
lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8);
if (!lfs->free.buffer) {
return LFS_ERR_NOMEM;
}
}
// check that program and read sizes are multiples of the block size
LFS_ASSERT(lfs->cfg->prog_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0);
// check that the block size is large enough to fit ctz pointers
LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
<= lfs->cfg->block_size);
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
// check that the size limits are sane
LFS_ASSERT(lfs->cfg->inline_size <= LFS_INLINE_MAX);
LFS_ASSERT(lfs->cfg->inline_size <= lfs->cfg->read_size);
lfs->inline_size = lfs->cfg->inline_size;
if (!lfs->inline_size) {
lfs->inline_size = lfs_min(LFS_INLINE_MAX, lfs->cfg->read_size);
}
LFS_ASSERT(lfs->cfg->attrs_size <= LFS_ATTRS_MAX);
lfs->attrs_size = lfs->cfg->attrs_size;
if (!lfs->attrs_size) {
lfs->attrs_size = LFS_ATTRS_MAX;
}
LFS_ASSERT(lfs->cfg->name_size <= LFS_NAME_MAX);
lfs->name_size = lfs->cfg->name_size;
if (!lfs->name_size) {
lfs->name_size = LFS_NAME_MAX;
}
// setup default state
lfs->root[0] = 0xffffffff;
lfs->root[1] = 0xffffffff;
lfs->files = NULL;
lfs->dirs = NULL;
lfs->deorphaned = false;
return 0;
}
static int lfs_deinit(lfs_t *lfs) {
// free allocated memory
if (!lfs->cfg->read_buffer) {
lfs_free(lfs->rcache.buffer);
}
if (!lfs->cfg->prog_buffer) {
lfs_free(lfs->pcache.buffer);
}
2017-04-29 17:50:23 +00:00
if (!lfs->cfg->lookahead_buffer) {
lfs_free(lfs->free.buffer);
2017-04-29 17:50:23 +00:00
}
return 0;
}
int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// create free lookahead
memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
lfs->free.off = 0;
lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count);
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// create superblock dir
lfs_dir_t superdir;
err = lfs_dir_alloc(lfs, &superdir);
if (err) {
return err;
}
// write root directory
lfs_dir_t root;
err = lfs_dir_alloc(lfs, &root);
if (err) {
return err;
}
err = lfs_dir_commit(lfs, &root, NULL, 0);
if (err) {
return err;
}
2017-03-25 23:11:45 +00:00
lfs->root[0] = root.pair[0];
lfs->root[1] = root.pair[1];
superdir.d.tail[0] = lfs->root[0];
superdir.d.tail[1] = lfs->root[1];
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
// write one superblock
lfs_superblock_t superblock;
superblock.d.version = LFS_DISK_VERSION,
superblock.d.root[0] = lfs->root[0];
superblock.d.root[1] = lfs->root[1];
superblock.d.block_size = lfs->cfg->block_size;
superblock.d.block_count = lfs->cfg->block_count;
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
superblock.d.inline_size = lfs->inline_size;
superblock.d.attrs_size = lfs->attrs_size;
superblock.d.name_size = lfs->name_size;
lfs_entry_t superentry;
superentry.d.type = LFS_STRUCT_DIR | LFS_TYPE_SUPERBLOCK;
superentry.d.elen = sizeof(superblock.d);
superentry.d.alen = 0;
superentry.d.nlen = strlen("littlefs");
superentry.off = sizeof(superdir.d);
superentry.size = 0;
lfs_entry_tole32(&superentry.d);
lfs_superblock_tole32(&superblock.d);
err = lfs_dir_set(lfs, &superdir, &superentry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 0, &superentry.d, 4},
{LFS_FROM_MEM, 0, 0, &superblock.d, sizeof(superblock.d)},
{LFS_FROM_MEM, 0, 0, "littlefs", superentry.d.nlen}}, 3);
if (err) {
return err;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
return lfs_deinit(lfs);
}
int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// setup free lookahead
lfs->free.off = 0;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// load superblock
lfs_dir_t dir;
err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
if (err) {
if (err == LFS_ERR_CORRUPT) {
LFS_ERROR("Invalid superblock at %d %d", 0, 1);
}
return err;
}
lfs_entry_t entry = {.off = sizeof(dir.d)};
err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4);
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
if (err) {
return err;
}
lfs_superblock_t superblock;
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
memset(&superblock.d, 0, sizeof(superblock.d));
err = lfs_dir_get(lfs, &dir,
sizeof(dir.d)+4, &superblock.d,
lfs_min(sizeof(superblock.d), lfs_entry_elen(&entry)));
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
lfs_superblock_fromle32(&superblock.d);
if (err) {
return err;
}
char magic[8];
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
err = lfs_dir_get(lfs, &dir,
sizeof(dir.d)+lfs_entry_size(&entry)-entry.d.nlen, magic,
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
lfs_min(sizeof(magic), entry.d.nlen));
if (err) {
return err;
}
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
if (memcmp(magic, "littlefs", 8) != 0) {
LFS_ERROR("Invalid superblock at %d %d", 0, 1);
return LFS_ERR_CORRUPT;
}
uint16_t major_version = (0xffff & (superblock.d.version >> 16));
uint16_t minor_version = (0xffff & (superblock.d.version >> 0));
if ((major_version != LFS_DISK_VERSION_MAJOR ||
minor_version > LFS_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %d.%d", major_version, minor_version);
return LFS_ERR_INVAL;
}
Added disk-backed limits on the name/attrs/inline sizes Being a portable, microcontroller-scale embedded filesystem, littlefs is presented with a relatively unique challenge. The amount of RAM available is on completely different scales from machine to machine, and what is normally a reasonable RAM assumption may break completely on an embedded system. A great example of this is file names. On almost every PC these days, the limit for a file name is 255 bytes. It's a very convenient limit for a number of reasons. However, on microcontrollers, allocating 255 bytes of RAM to do a file search can be unreasonable. The simplest solution (and one that has existing in littlefs for a while), is to let this limit be redefined to a smaller value on devices that need to save RAM. However, this presents an interesting portability issue. If these devices are plugged into a PC with relatively infinite RAM, nothing stops the PC from writing files with full 255-byte file names, which can't be read on the small device. One solution here is to store this limit on the superblock during format time. When mounting a disk, the filesystem implementation is responsible for checking this limit in the superblock. If it's larger than what can be read, raise an error. If it's smaller, respect the limit on the superblock and raise an error if the user attempts to exceed it. In this commit, this strategy is adopted for file names, inline files, and the size of all attributes, since these could impact the memory consumption of the filesystem. (Recording the attribute's limit is iffy, but is the only other arbitrary limit and could be used for disabling support of custom attributes). Note! This changes makes it very important to configure littlefs correctly at format time. If littlefs is formatted on a PC without changing the limits appropriately, it will be rejected by a smaller device.
2018-04-01 20:36:29 +00:00
if (superblock.d.inline_size) {
if (superblock.d.inline_size > lfs->inline_size) {
LFS_ERROR("Unsupported inline size (%d > %d)",
superblock.d.inline_size, lfs->inline_size);
return LFS_ERR_INVAL;
}
lfs->inline_size = superblock.d.inline_size;
}
if (superblock.d.attrs_size) {
if (superblock.d.attrs_size > lfs->attrs_size) {
LFS_ERROR("Unsupported attrs size (%d > %d)",
superblock.d.attrs_size, lfs->attrs_size);
return LFS_ERR_INVAL;
}
lfs->attrs_size = superblock.d.attrs_size;
}
if (superblock.d.name_size) {
if (superblock.d.name_size > lfs->name_size) {
LFS_ERROR("Unsupported name size (%d > %d)",
superblock.d.name_size, lfs->name_size);
return LFS_ERR_INVAL;
}
lfs->name_size = superblock.d.name_size;
}
lfs->root[0] = superblock.d.root[0];
lfs->root[1] = superblock.d.root[1];
return 0;
}
int lfs_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// Internal filesystem filesystem operations ///
int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// iterate over metadata pairs
lfs_block_t cwd[2] = {0, 1};
while (true) {
for (int i = 0; i < 2; i++) {
int err = cb(data, cwd[i]);
if (err) {
return err;
}
}
lfs_dir_t dir;
int err = lfs_dir_fetch(lfs, &dir, cwd);
if (err) {
return err;
}
// iterate over contents
lfs_entry_t entry;
while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
err = lfs_dir_get(lfs, &dir,
dir.off, &entry.d, sizeof(entry.d));
lfs_entry_fromle32(&entry.d);
if (err) {
return err;
}
dir.off += lfs_entry_size(&entry);
if ((0x70 & entry.d.type) == LFS_STRUCT_CTZ) {
2018-01-29 19:53:28 +00:00
err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL,
entry.d.u.file.head, entry.d.u.file.size, cb, data);
if (err) {
return err;
}
}
}
cwd[0] = dir.d.tail[0];
cwd[1] = dir.d.tail[1];
if (lfs_pairisnull(cwd)) {
break;
}
}
// iterate over any open files
for (lfs_file_t *f = lfs->files; f; f = f->next) {
if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
f->head, f->size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
return 0;
}
static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// iterate over all directory directory entries
int err = lfs_dir_fetch(lfs, pdir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
while (!lfs_pairisnull(pdir->d.tail)) {
if (lfs_paircmp(pdir->d.tail, dir) == 0) {
return true;
}
2018-01-29 19:53:28 +00:00
err = lfs_dir_fetch(lfs, pdir, pdir->d.tail);
if (err) {
return err;
}
}
return false;
}
static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_dir_t *parent, lfs_entry_t *entry) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
parent->d.tail[0] = 0;
parent->d.tail[1] = 1;
// iterate over all directory directory entries
while (!lfs_pairisnull(parent->d.tail)) {
int err = lfs_dir_fetch(lfs, parent, parent->d.tail);
if (err) {
return err;
}
while (true) {
2018-01-29 19:53:28 +00:00
err = lfs_dir_next(lfs, parent, entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
if (((0x70 & entry->d.type) == LFS_STRUCT_DIR) &&
lfs_paircmp(entry->d.u.dir, dir) == 0) {
return true;
}
}
}
return false;
}
static int lfs_moved(lfs_t *lfs, const void *e) {
if (lfs_pairisnull(lfs->root)) {
return 0;
}
// skip superblock
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
// iterate over all directory directory entries
lfs_entry_t entry;
while (!lfs_pairisnull(cwd.d.tail)) {
2018-01-29 19:53:28 +00:00
err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail);
if (err) {
return err;
}
while (true) {
2018-01-29 19:53:28 +00:00
err = lfs_dir_next(lfs, &cwd, &entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
if (!(LFS_STRUCT_MOVED & entry.d.type) &&
memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
return true;
}
}
}
return false;
}
static int lfs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], const lfs_block_t newpair[2]) {
// find parent
lfs_dir_t parent;
lfs_entry_t entry;
int res = lfs_parent(lfs, oldpair, &parent, &entry);
if (res < 0) {
return res;
}
if (res) {
// update disk, this creates a desync
entry.d.u.dir[0] = newpair[0];
entry.d.u.dir[1] = newpair[1];
lfs_entry_tole32(&entry.d);
int err = lfs_dir_set(lfs, &parent, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, sizeof(entry.d),
&entry.d, sizeof(entry.d)}}, 1);
if (err) {
return err;
}
// update internal root
if (lfs_paircmp(oldpair, lfs->root) == 0) {
LFS_DEBUG("Relocating root %d %d", newpair[0], newpair[1]);
lfs->root[0] = newpair[0];
lfs->root[1] = newpair[1];
}
// clean up bad block, which should now be a desync
return lfs_deorphan(lfs);
}
// find pred
res = lfs_pred(lfs, oldpair, &parent);
if (res < 0) {
return res;
}
if (res) {
// just replace bad pair, no desync can occur
parent.d.tail[0] = newpair[0];
parent.d.tail[1] = newpair[1];
return lfs_dir_commit(lfs, &parent, NULL, 0);
}
// couldn't find dir, must be new
return 0;
}
int lfs_deorphan(lfs_t *lfs) {
lfs->deorphaned = true;
if (lfs_pairisnull(lfs->root)) {
return 0;
}
lfs_dir_t pdir = {.d.size = 0x80000000};
lfs_dir_t cwd = {.d.tail[0] = 0, .d.tail[1] = 1};
// iterate over all directory directory entries
while (!lfs_pairisnull(cwd.d.tail)) {
int err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!(0x80000000 & pdir.d.size)) {
// check if we have a parent
lfs_dir_t parent;
lfs_entry_t entry;
int res = lfs_parent(lfs, pdir.d.tail, &parent, &entry);
if (res < 0) {
return res;
}
if (!res) {
// we are an orphan
LFS_DEBUG("Found orphan %d %d",
pdir.d.tail[0], pdir.d.tail[1]);
pdir.d.tail[0] = cwd.d.tail[0];
pdir.d.tail[1] = cwd.d.tail[1];
err = lfs_dir_commit(lfs, &pdir, NULL, 0);
if (err) {
return err;
}
break;
}
if (!lfs_pairsync(entry.d.u.dir, pdir.d.tail)) {
// we have desynced
LFS_DEBUG("Found desync %d %d",
entry.d.u.dir[0], entry.d.u.dir[1]);
pdir.d.tail[0] = entry.d.u.dir[0];
pdir.d.tail[1] = entry.d.u.dir[1];
err = lfs_dir_commit(lfs, &pdir, NULL, 0);
if (err) {
return err;
}
break;
}
}
// check entries for moves
lfs_entry_t entry;
while (true) {
2018-01-29 19:53:28 +00:00
err = lfs_dir_next(lfs, &cwd, &entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
// found moved entry
if (entry.d.type & LFS_STRUCT_MOVED) {
int moved = lfs_moved(lfs, &entry.d.u);
if (moved < 0) {
return moved;
}
if (moved) {
LFS_DEBUG("Found move %d %d",
entry.d.u.dir[0], entry.d.u.dir[1]);
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, entry.size, NULL, 0}}, 1);
if (err) {
return err;
}
} else {
LFS_DEBUG("Found partial move %d %d",
entry.d.u.dir[0], entry.d.u.dir[1]);
entry.d.type &= ~LFS_STRUCT_MOVED;
err = lfs_dir_set(lfs, &cwd, &entry, (struct lfs_region[]){
{LFS_FROM_MEM, 0, 1, &entry.d, 1}}, 1);
if (err) {
return err;
}
}
}
}
memcpy(&pdir, &cwd, sizeof(pdir));
}
return 0;
}
/// External filesystem filesystem operations ///
int lfs_fs_getattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) {
lfs_dir_t dir;
int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
lfs_entry_t entry = {.off = sizeof(dir.d)};
err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4);
if (err) {
return err;
}
entry.size = lfs_entry_size(&entry);
return lfs_dir_getattrs(lfs, &dir, &entry, attrs, count);
}
int lfs_fs_setattrs(lfs_t *lfs, const struct lfs_attr *attrs, int count) {
lfs_dir_t dir;
int err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
lfs_entry_t entry = {.off = sizeof(dir.d)};
err = lfs_dir_get(lfs, &dir, entry.off, &entry.d, 4);
if (err) {
return err;
}
entry.size = lfs_entry_size(&entry);
return lfs_dir_setattrs(lfs, &dir, &entry, attrs, count);
}
static int lfs_fs_size_count(void *p, lfs_block_t block) {
lfs_size_t *size = p;
*size += 1;
return 0;
}
lfs_ssize_t lfs_fs_size(lfs_t *lfs) {
lfs_size_t size = 0;
int err = lfs_traverse(lfs, lfs_fs_size_count, &size);
if (err) {
return err;
}
return size;
}