Commit Graph

478 Commits

Author SHA1 Message Date
Noah Gorny
6303558aee Use LFS_O_RDWR instead of magic number in lfs_file_* asserts 2020-11-19 01:51:39 +02:00
Noah Gorny
4bd653dd00 Assert that file/dir struct is not reused in lfs_file_opencfg/lfs_dir_open 2020-11-19 01:51:39 +02:00
Christopher Haster
4c9146ea53
Merge pull request #405 from rojer/mfe
Fix -Wmissing-field-initializers
2020-04-09 05:42:46 -05:00
Deomid "rojer" Ryabkov
5a9f38df01 Remove -Wno-missing-field-initializers 2020-04-06 19:51:19 +01:00
Deomid "rojer" Ryabkov
1b033e9ab6 Fix -Wmissing-field-initializers 2020-04-03 02:18:14 +01:00
Christopher Haster
a049f1318e
Merge pull request #372 from ARMmbed/test-revamp
Rework test framework, fix a number of related bugs
2020-03-31 18:25:13 -05:00
Christopher Haster
7257681f5d
Merge branch 'master' into test-revamp 2020-03-31 18:24:54 -05:00
Christopher Haster
2da340af69
Merge pull request #373 from henrygab/patch-1
Indicate C99 standard as target for LittleFS code
2020-03-31 18:22:48 -05:00
Christopher Haster
02881e591b
Merge pull request #360 from jpdoyle/master
Fix incorrect comment on `lfs_npw2`
2020-03-31 18:22:41 -05:00
Christopher Haster
38024d5a17
Merge pull request #356 from zqb-all/patch-1
Update SPEC.md
2020-03-31 18:22:34 -05:00
Christopher Haster
4a9bac4418
Merge pull request #322 from hemmick/master
Allow debug prints without __VA_ARGS__ in non-MSVC
2020-03-31 18:22:27 -05:00
Christopher Haster
6121495444
Merge pull request #266 from FreddieChopin/revert-bypass-cache
Revert "Don't bypass cache in `lfs_cache_prog()` and `lfs_cache_read()`"
2020-03-31 18:22:19 -05:00
John Hemmick
6372f515fe Allow debug prints without __VA_ARGS__
__VA_ARGS__ are frustrating in C. Even for their main purpose (printf),
they fall short in that they don't have a _portable_ way to have zero
arguments after the format string in a printf call.

Even if we detect compilers and use ##__VA_ARGS__ where available, GCC
emits a warning with -pedantic that is _impossible_ to explicitly
disable.

This commit contains the best solution we can think of. A bit of
indirection that adds a hidden "%s" % "" to the end of the format
string. This solution does not work everywhere as it has a runtime
cost, but it is hopefully ok for debug statements.
2020-03-29 21:58:49 -05:00
Christopher Haster
6622f3deee Bumped minor version to v2.2 2020-03-29 21:43:58 -05:00
Christopher Haster
5137e4b0ba Last minute tweaks to debug scripts
- Standardized littlefs debug statements to use hex prefixes and
  brackets for printing pairs.

- Removed the entry behavior for readtree and made -t the default.
  This is because 1. the CTZ skip-list parsing was broken, which is not
  surprising, and 2. the entry parsing was more complicated than useful.
  This functionality may be better implemented as a proper filesystem
  read script, complete with directory tree dumping.

- Changed test.py's --gdb argument to take [init, main, assert],
  this matches the names of the stages in C's startup.

- Added printing of tail to all mdir dumps in readtree/readmdir.

- Added a print for if any mdirs are corrupted in readtree.

- Added debug script side-effects to .gitignore.
2020-03-29 21:19:33 -05:00
Christopher Haster
ff84902970 Moved out block device tracing into separate define
Block device tracing has a lot of potential uses, of course debugging,
but it can also be used for profiling and externally tracking littlefs's
usage of the block device. However, block device tracing emits a massive
amount of output. So keeping block device tracing on by default limits
the usefulness of the filesystem tracing.

So, instead, I've moved the block device tracing into a separate
LFS_TESTBD_YES_TRACE define which switches on the LFS_TESTBD_TRACE
macro. Note that this means in order to get block device tracing, you
need to define both LFS_YES_TRACE and LFS_TESTBD_YES_TRACE. This is
needed as the LFS_TRACE definition is gated by LFS_YES_TRACE in
lfs_util.h.
2020-03-29 18:45:51 -05:00
Christopher Haster
01e42abd10
Merge pull request #401 from thrasher8390/bugfix/thrasher8390/issue-394-lookahead-buffer-corruption
Lookahead corruption fix given an IO Error during traversal
2020-03-29 17:59:00 -05:00
Christopher Haster
f9dbec3d92 Added test case catching issues with errors during a lookahead scan
Original issue found by thrasher8390
2020-03-29 14:12:58 -05:00
Derek Thrasher
f17d3d7eba Minor cleanup
- Removed the declaration of lfs_alloc_ack
- Consistent brackets
2020-03-29 14:12:30 -05:00
Derek Thrasher
5e5b5d8572 (chore) updates from PR, we decided not to move forward with changing v1 code since it can be risky. Let's improve the future! Also renamed and moved around a the lookahead free / reset function 2020-03-29 14:12:30 -05:00
Derek Thrasher
d498b9fb31 (bugfix) adding line function to clear out all the global 'free' information so that we can reset it after a failed traversal 2020-03-29 14:12:30 -05:00
Christopher Haster
4677421aba Added "evil" tests and detecion/recovery from bad pointers and infinite loops
These two features have been much requested by users, and have even had
several PRs proposed to fix these in several cases. Before this, these
error conditions usually were caught by internal asserts, however
asserts prevented users from implementing their own workarounds.

It's taken me a while to provide/accept a useful recovery mechanism
(returning LFS_ERR_CORRUPT instead of asserting) because my original thinking
was that these error conditions only occur due to bugs in the filesystem, and
these bugs should be fixed properly.

While I still think this is mostly true, the point has been made clear
that being able to recover from these conditions is definitely worth the
code cost. Hopefully this new behaviour helps the longevity of devices
even if the storage code fails.

Another, less important, reason I didn't want to accept fixes for these
situations was the lack of tests that prove the code's value. This has
been fixed with the new testing framework thanks to the additional of
"internal tests" which can call C static functions and really take
advantage of the internal information of the filesystem.
2020-03-20 09:26:07 -05:00
Chris Desjardins
cb26157880 Change assert to runtime check.
I had a system that was constantly hitting this assert, after making
this change it recovered immediately.
2020-02-23 22:18:08 -06:00
Christopher Haster
a7dfae4526 Minor tweaks to debugging scripts, fixed explode_asserts.py off-by-1
- Changed readmdir.py to print the metadata pair and revision count,
  which is useful when debugging commit issues.
- Added truncated data view to readtree.py by default. This does mean
  readtree.py must read all files on the filesystem to show the
  truncated data, hopefully this does not end up being a problem.
- Made overall representation hopefully more readable, including moving
  superblock under the root dir, userattrs under files, fixing a gstate
  rendering issue.
- Added rendering of soft-tails as dotted-arrows, hopefully this isn't
  too noisy.
- Fixed explode_asserts.py off-by-1 in #line mapping caused by a strip
  call in the assert generation eating newlines. The script matches
  line numbers between the original+modified files by emitting assert
  statements that use the same number of lines. An off-by-1 here causes
  the entire file to map lines incorrectly, which can be very annoying.
2020-02-22 23:50:03 -06:00
Christopher Haster
50fe8ae258 Renamed test_format -> test_superblocks, tweaked superblock tests
With the superblock expansion stuff, the test_format tests have grown
to test more advanced superblock-related features. This is fine but
deserves a rename so it's more clear.

Also fixed a typo that meant tests never ran with block cycles.
2020-02-22 23:35:28 -06:00
Christopher Haster
0990296619 Limited byte-level tests to native testing due to time
Byte-level writes are expensive and not suggested (caches >= 4 bytes
make much more sense), however there are many corner cases with
byte-level writes that can be easy to miss (power-loss leaving single
bytes written to disk).

Unfortunately, byte-level writes mixed with power-loss testing, the
Travis infrastructure, and Arm Thumb instruction set simulation
exceeds the 50-minute budget Travis allocates for jobs.

For now I'm disabling the byte-level tests under Qemu, with the hope that
performance improvements in littlefs will let us turn these tests back
on in the future.
2020-02-18 18:05:08 -06:00
Christopher Haster
d04b077506 Fixed minor things to get CI passing again
- Added caching to Travis install dirs, because otherwise
  pip3 install fails randomly
- Increased size of littlefs-fuse disk because test script has
  a larger footprint now
- Skip a couple of reentrant tests under byte-level writes because
  the tests just take too long and cause Travis to bail due to no
  output for 10m
- Fixed various Valgrind errors
  - Suppressed uninit checks for tests where LFS_BLOCK_ERASE_VALUE == -1.
    In this case rambd goes uninitialized, which is fine for rambd's
    purposes. Note I couldn't figure out how to limit this suppression
    to only the malloc in rambd, this doesn't seem possible with Valgrind.
  - Fixed memory leaks in exhaustion tests
  - Fixed off-by-1 string null-terminator issue in paths tests
- Fixed lfs_file_sync issue caused by revealed by fixing memory leaks
  in exhaustion tests. Getting ENOSPC during a file write puts the file
  in a bad state where littlefs doesn't know how to write it out safely.
  In this case, lfs_file_sync and lfs_file_close return 0 without
  writing out state so that device-side resources can still be cleaned
  up. To recover from ENOSPC, the file needs to be reopened and the
  writes recreated. Not sure if there is a better way to handle this.
- Added some quality-of-life improvements to Valgrind testing
  - Fit Valgrind messages into truncated output when not in verbose mode
  - Turned on origin tracking
2020-02-18 18:05:03 -06:00
Christopher Haster
c7987a3162 Restructured .travis.yml to span more jobs
The core of littlefs's CI testing is the full test suite, `make test`, run
under a number of configurations:

- Processor architecture:
  - x86 (native)
  - Arm Thumb
  - MIPS
  - PowerPC
- Storage geometry:
  - rs=16   ps=16   cs=64   bs=512   (default)
  - rs=1    ps=1    cs=64   bs=4KiB  (NOR flash)
  - rs=512  ps=512  cs=512  bs=512   (eMMC)
  - rs=4KiB ps=4KiB cs=4KiB bs=32KiB (NAND flash)
- Other corner cases:
  - no intrinsics
  - no inline
  - byte-level read/writes
  - single block-cycles
  - odd block counts
  - odd block sizes

The number of different configurations we need to test quickly exceeds the
50 minute time limit Travis has on jobs. Fortunately, we can split these
tests out into multiple jobs. This seems to be the intended course of
action for large CI "builds" in Travis, as this gives Travis a finer
grain of control over limiting builds.

Unfortunately, this created a couple issues:

1. The Travis configuration isn't actually that flexible. It allows a
   single "matrix expansion" which can be generated from top-level lists
   of different configurations. But it doesn't let you generate a matrix
   from two seperate environment variable lists (for arch + geometry).

   Without multiple matrix expansions, we're stuck writing out each test
   permutation by hand.

   On the bright-side, this was a good chance to really learn how YAML
   anchors work. I'm torn because on one hand anchors add what feels
   like unnecessary complexity to a config language, on the other hand,
   they did help quite a bit in working around Travis's limitations.

2. Now that we have 47 jobs instead of 7, reporting a separate status
   for each job stops making sense.

   What I've opted for here is to use a special NAME variable to
   deduplicate jobs, and used a few state-less rules to hopefully have
   the reported status make sense most of the time.

   - Overwrite "pending" statuses so that the last job to start owns the
     most recent "pending" status
   - Don't overwrite "failure" statuses unless the job number matches
     our own (in the case of CI restarts)
   - Don't write "success" statuses unless the job number matches our
     own, this should delay a green check-mark until the last-to-start
     job finishes
   - Always overwrite non-failures with "failure" statuses

   This does mean a temporary "success" may appear if the last job
   terminates before earlier jobs. But this is the simpliest solution
   I can think of without storing some complex state somewhere.

   Note we can only report the size this way because it's cheap to
   calculate in every job.
2020-02-18 17:34:23 -06:00
Christopher Haster
dcae185a00 Fixed typo in LFS_MKTAG_IF_ELSE 2020-02-12 11:31:34 -06:00
Christopher Haster
f4b17b379c Added test.py support for tmpfs-backed disks
RAM-backed testing is faster than file-backed testing. This is why
test.py uses rambd by default.

So why add support for tmpfs-backed disks if we can already run tests in
RAM? For reentrant testing.

Under reentrant testing we simulate power-loss by forcefully exiting the
test program at specific times. To make this power-loss meaningful, we need to
persist the disk across these power-losses. However, it's interesting to
note this persistence doesn't need to be actually backed by the
filesystem.

It may be possible to rearchitecture the tests to simulate power-loss a
different way, by say, using coroutines or setjmp/longjmp to leave
behind ongoing filesystem operations without terminating the program
completely. But at this point, I think it's best to work with what we
have.

And simply putting the test disks into a tmpfs mount-point seems to
work just fine.

Note this does force serialization of the tests, which isn't required
otherwise. Currently they are only serialized due to limitations in
test.py. If a future change wants to perallelize the tests, it may need
to rework RAM-backed reentrant tests.
2020-02-12 10:48:54 -06:00
Christopher Haster
9f546f154f Updated .travis.yml and added additional geometry constraints
Moved .travis.yml over to use the new test framework. A part of this
involved testing all of the configurations ran on the old framework
and deciding which to carry over. The new framework duplicates some of
the cases tested by the configurations so some configurations could be
dropped.

The .travis.yml includes some extreme ones, such as no inline files,
relocations every cycle, no intrinsics, power-loss every byte, unaligned
block_count and lookahead, and odd read_sizes.

There were several configurations were some tests failed because of
limitations in the tests themselves, so many conditions were added
to make sure the configurations can run on as many tests as possible.
2020-02-11 16:01:57 -06:00
Christopher Haster
b69cf890e6 Fixed CRC check when prog_size causes multiple CRCs per commit
This is a bit of a strange case that can be caused by storage with
very large prog sizes, such as NAND flash. We only have 10 bits to store
the size of our padding, so when the prog_size gets larger than 1024
bytes, we have to use multiple padding tags to commit to the next
prog_size boundary.

This causes some complication for the new logic that checks CRCs in case
our block becomes "readonly" and contains existing commits that just happen
to match our new commit size.

Here we just check the CRC of the first commit. This isn't perfect but
does protect against pure "readonly" blocks.
2020-02-09 22:43:20 -06:00
Christopher Haster
02c84ac5f4 Cleaned up dependent fixes on branch
These should probably have been cleaned up in each commit to allow
cherry-picking, but due to time I haven't been able to.

- Went with creating an mdir copy in lfs_dir_commit. This handles a
  number of related cleanup issues in lfs_dir_compact and it does so
  more robustly. As a plus we can use the copy to update dependencies
  in the mlist.

- Eliminated code left by the ENOSPC file outlining

- Cleaned up TODOs and lingering comments

- Changed the reentrant many directory create/rename/remove test to use
  a smaller set of directories because of space issues when
  READ/PROG_SIZE=512
2020-02-09 12:37:39 -06:00
Christopher Haster
6530cb3a61 Fixed lfs_fs_size doubling metadata-pairs
This was caused by the previous fix for allocations during
lfs_fs_deorphan in this branch. To catch half-orphans during block
allocations we needed to duplicate all metadata-pairs reported to
lfs_fs_traverse. Unfortunately this causes lfs_fs_size to report 2x the
number of metadata-pairs, which would undoubtably confuse users.

The fix here is inelegantly simple, just do a different traversale for
allocations and size measurements. It reuses the same code but touches
slightly different sets of blocks.

Unfortunately, this causes the public lfs_fs_traverse and lfs_fs_size
functions to split in how they report blocks. This is technically
allowed, since lfs_fs_traverse may report blocks multiple times due to
CoW behavior, however it's undesirable and I'm sure there will be some
confusion.

But I don't have a better solution, so from this point lfs_fs_traverse
will be reporting 2x metadata-blocks and shouldn't be used for finding
the number of available blocks on the filesystem.
2020-02-09 12:00:23 -06:00
Christopher Haster
fe957de892 Fixed broken wear-leveling when block_cycles = 2n-1
This was an interesting issue found during a GitHub discussion with
rmollway and thrasher8390.

Blocks in the metadata-pair are relocated every "block_cycles", or, more
mathy, when rev % block_cycles == 0 as long as rev += 1 every block write.

But there's a problem, rev isn't += 1 every block write. There are two
blocks in a metadata-pair, so looking at it from each blocks
perspective, rev += 2 every block write.

This leads to a sort of aliasing issue, where, if block_cycles is
divisible by 2, one block in the metadata-pair is always relocated, and
the other block is _never_ relocated. Causing a complete failure of
block-level wear-leveling.

Fortunately, because of a previous workaround to avoid block_cycles = 1
(since this will cause the relocation algorithm to never terminate), the
actual math is rev % (block_cycles+1) == 0. This means the bug only
shows its head in the much less likely case where block_cycles is a
multiple of 2 plus 1, or, in more mathy terms, block_cycles = 2n+1 for
some n.

To workaround this we can bitwise or our block_cycles with 1 to force it
to never be a multiple of 2n.

(Maybe we should do this during initialization? But then block_cycles
would need to be mutable.)

---

There's a few unrelated changes mixed into this commit that shouldn't be
there since I added this as part of a branch of bug fixes I'm putting
together rather hastily, so unfortunately this is not easily cherry-pickable.
2020-02-09 12:00:23 -06:00
Christopher Haster
6a550844f4 Modified readmdir/readtree to make reading non-truncated data easier
Added indention so there was a more clear separation between the tag
description and tag data.

Also took the best parts of readmdir.py and added it to readtree.py.
Initially I was thinking it was best for these to have completely
independent data representations, since you could always call readtree
to get more info, but this becomes tedius when needed to look at
low-level tag info across multiple directories on the filesystem.
2020-02-09 12:00:23 -06:00
Christopher Haster
f9c2fd93f2 Removed file outlining on ENOSPC in lfs_file_sync
This was initially added as protection against the case where a file
grew to no longer fit in a metadata-pair. While in most cases this
should be caught by the math in lfs_file_write, it doesn't handle a
problem that can happen if the files metadata is large enough that even
small inline files can't fit. This can happen if you combine a small
block size with large file names and many custom attributes.

But trying to outline on ENOSPC creates creates a lot of problems.

If we are actually low on space, this is one of the worst things we can
do. Inline files take up less space than CTZ skip-lists, but inline
files are rendered useless if we outline inline files as soon as we run
low on space.

On top of this, the outlining logic tries multiple mdir commits if it
gets ENOSPC, which can hide errors if ENOSPC is returned for other
reasons.

In a perfect world, we would be using a different error code for
no-room-in-metadata-pair, and no-blocks-on-disk.

For now I've removed the outlining logic and we will need to figure out
how to handle this situation more robustly.
2020-02-09 12:00:23 -06:00
Christopher Haster
44d7112794 Fixed tests/*.toml.* in .gitignore
Running test.py creates a log of garbage here
2020-02-09 12:00:22 -06:00
Christopher Haster
77e3078b9f Added/fixed tests for noop writes (where bd error can't be trusted)
It's interesting how many ways block devices can show failed writes:
1. prog can error
2. erase can error
3. read can error after writing (ECC failure)
4. prog doesn't error but doesn't write the data correctly
5. erase doesn't error but doesn't erase correctly

Can read fail without an error? Yes, though this appears the same as
prog and erase failing.

These weren't all simulated by testbd since I unintentionally assumed
the block device could always error. Fixed by added additional bad-black
behaviors to testbd.

Note: This also includes a small fix where we can miss bad writes if the
underlying block device contains a valid commit with the exact same
size in the exact same offset.
2020-02-09 12:00:22 -06:00
Christopher Haster
517d3414c5 Fixed more bugs, mostly related to ENOSPC on different geometries
Fixes:
- Fixed reproducability issue when we can't read a directory revision
- Fixed incorrect erase assumption if lfs_dir_fetch exceeds block size
- Fixed cleanup issue caused by lfs_fs_relocate failing when trying to
  outline a file in lfs_file_sync
- Fixed cleanup issue if we run out of space while extending a CTZ skip-list
- Fixed missing half-orphans when allocating blocks during lfs_fs_deorphan

Also:
- Added cycle-detection to readtree.py
- Allowed pseudo-C expressions in test conditions (and it's
  beautifully hacky, see line 187 of test.py)
- Better handling of ctrl-C during test runs
- Added build-only mode to test.py
- Limited stdout of test failures to 5 lines unless in verbose mode

Explanation of fixes below

1. Fixed reproducability issue when we can't read a directory revision

   An interesting subtlety of the block-device layer is that the
   block-device is allowed to return LFS_ERR_CORRUPT on reads to
   untouched blocks. This can easily happen if a user is using ECC or
   some sort of CMAC on their blocks. Normally we never run into this,
   except for the optimization around directory revisions where we use
   uninitialized data to start our revision count.

   We correctly handle this case by ignoring whats on disk if the read
   fails, but end up using unitialized RAM instead. This is not an issue
   for normal use, though it can lead to a small information leak.
   However it creates a big problem for reproducability, which is very
   helpful for debugging.

   I ended up running into a case where the RAM values for the revision
   count was different, causing two identical runs to wear-level at
   different times, leading to one version running out of space before a
   bug occured because it expanded the superblock early.

2. Fixed incorrect erase assumption if lfs_dir_fetch exceeds block size

   This could be caused if the previous tag was a valid commit and we
   lost power causing a partially written tag as the start of a new
   commit.

   Fortunately we already have a separate condition for exceeding the
   block size, so we can force that case to always treat the mdir as
   unerased.

3. Fixed cleanup issue caused by lfs_fs_relocate failing when trying to
   outline a file in lfs_file_sync

   Most operations involving metadata-pairs treat the mdir struct as
   entirely temporary and throw it out if any error occurs. Except for
   lfs_file_sync since the mdir is also a part of the file struct.

   This is relevant because of a cleanup issue in lfs_dir_compact that
   usually doesn't have side-effects. The issue is that lfs_fs_relocate
   can fail. It needs to allocate new blocks to relocate to, and as the
   disk reaches its end of life, it can fail with ENOSPC quite often.

   If lfs_fs_relocate fails, the containing lfs_dir_compact would return
   immediately without restoring the previous state of the mdir. If a new
   commit comes in on the same mdir, the old state left there could
   corrupt the filesystem.

   It's interesting to note this is forced to happen in lfs_file_sync,
   since it always tries to outline the file if it gets ENOSPC (ENOSPC
   can mean both no blocks to allocate and that the mdir is full). I'm
   not actually sure this bit of code is necessary anymore, we may be
   able to remove it.

4. Fixed cleanup issue if we run out of space while extending a CTZ
   skip-list

   The actually CTZ skip-list logic itself hasn't been touched in more
   than a year at this point, so I was surprised to find a bug here. But
   it turns out the CTZ skip-list could be put in an invalid state if we
   run out of space while trying to extend the skip-list.

   This only becomes a problem if we keep the file open, clean up some
   space elsewhere, and then continue to write to the open file without
   modifying it. Fortunately an easy fix.

5. Fixed missing half-orphans when allocating blocks during
   lfs_fs_deorphan

   This was a really interesting bug. Normally, we don't have to worry
   about allocations, since we force consistency before we are allowed
   to allocate blocks. But what about the deorphan operation itself?
   Don't we need to allocate blocks if we relocate while deorphaning?

   It turns out the deorphan operation can lead to allocating blocks
   while there's still orphans and half-orphans on the threaded
   linked-list. Orphans aren't an issue, but half-orphans may contain
   references to blocks in the outdated half, which doesn't get scanned
   during the normal allocation pass.

   Fortunately we already fetch directory entries to check CTZ lists, so
   we can also check half-orphans here. However this causes
   lfs_fs_traverse to duplicate all metadata-pairs, not sure what to do
   about this yet.
2020-02-09 11:54:22 -06:00
zhuangqiubin
4fb188369d Update SPEC.md
1.fix size in Layout of the CRC tag
2.update (size) to (size * 8)
2020-02-02 17:42:42 +08:00
Henry Gabryjelski
c8e9a64a21
Indicate C99 standard as target for LittleFS code
Resolve #358
2020-01-27 21:51:12 -08:00
Christopher Haster
aab6aa0ed9 Cleaned up test script and directory naming
- Removed old tests and test scripts
- Reorganize the block devices to live under one directory
- Plugged new test framework into Makefile

renamed:
- scripts/test_.py -> scripts/test.py
- tests_ -> tests
- {file,ram,test}bd/* -> bd/*

It took a surprising amount of effort to make the Makefile behave since
it turns out the "test_%" rule could override "tests/test_%.toml.test"
which is generated as part of test.py.
2020-01-27 10:16:29 -06:00
Christopher Haster
52ef0c1c9e Fixed a crazy consistency issue in test.py
The root of the problem was the notorious Python quirk with mutable
default parameters. The default defines for the TestSuite class ended
up being mutated as the class determined the permutations to test,
corrupting other test's defines.

However, the only define that was mutated this way was the CACHE_SIZE
config in test_entries.

The crazy thing was how this small innocuous change would cause
"./scripts/test.py -nr test_relocations" and "./scripts/test.py -nr"
to drift out of sync only after a commit spanning the different cache
sizes would be written out with a different number of prog calls. This
offset the power-cycle counter enough to cause one case to make it to
an erase, and the other to not.

Normally, the difference between a successful/unsuccessful erase
wouldn't change the result of a test, but in this case it offset the
revision count used for wear-leveling, causing one run run expand the
superblock and the other to not.

This change to the filesystem would then propogate through the rest of
the test, making it difficult to reproduce test failures.

Fortunately the fix was to just make a copy of the default define
dictionary. This should also prevent accidently mutating of dicts
belonging to our caller.

Oh, also fixed a buffer overflow in test_files.
2020-01-26 23:53:53 -06:00
Christopher Haster
b9d0695e0a Rewrote explode_asserts.py to be more efficient
Normally I wouldn't consider optimizing this sort of script, but
explode_asserts.py proved to be terribly inefficient and dominated
the build time for running tests. It was slow enough to be distracting
when attempting to test patches while debugging. Just running
explode_asserts.py was ~10x slower than the rest of the compilation
process.

After implementing a proper tokenizer and switching to a handwritten
recursive descent parser, I was able to speed up explode_asserts.py
by ~5x and make test compilation much more tolerable.

I don't think this was a limitaiton of parsy, but rather switching
to a recursive descent parser made it much easier to find the hotspots
where parsing was wasting cycles (string slicing for one).

It's interesting to note that while the assert patterns can be parsed
with a LL(1) parser (by dumping seen tokens if a pattern fails),
I didn't bother as it's much easier to write the patterns with LL(k)
and parsing asserts is predicated by the "assert" string.

A few other tweaks:
- allowed combining different test modes in one run
- added a --no-internal option
- changed test_.py to start counting cases from 1
- added assert(memcmp(a, b) == 0) matching
- added better handling of string escapes in assert messages

time to run tests:
before: 1m31.122s
after:  0m41.447s
2020-01-26 23:53:53 -06:00
Christopher Haster
a5d614fbfb Added tests for power-cycled-relocations and fixed the bugs that fell out
The power-cycled-relocation test with random renames has been the most
aggressive test applied to littlefs so far, with:
- Random nested directory creation
- Random nested directory removal
- Random nested directory renames (this could make the
  threaded linked-list very interesting)
- Relocating blocks every write (maximum wear-leveling)
- Incrementally cycling power every write

Also added a couple other tests to test_orphans and test_relocations.

The good news is the added testing worked well, it found quite a number
of complex and subtle bugs that have been difficult to find.

1. It's actually possible for our parent to be relocated and go out of
   sync in lfs_mkdir. This can happen if our predecessor's predecessor
   is our parent as we are threading ourselves into the filesystem's
   threaded list. (note this doesn't happen if our predecessor _is_ our
   parent, as we then update our parent in a single commit).

   This is annoying because it only happens if our parent is a long (>1
   pair) directory, otherwise we wouldn't need to catch relocations.
   Fortunately we can reuse the internal open file/dir linked-list to
   catch relocations easily, as long as we're careful to unhook our
   parent whenever lfs_mkdir returns.

2. Even more surprising, it's possible for the child in lfs_remove
   to be relocated while we delete the entry from our parent. This
   can happen if we are our own parent's predecessor, since we need
   to be updated then if our parent relocates.

   Fortunately we can also hook into the open linked-list here.

   Note this same issue was present in lfs_rename.

   Fortunately, this means now all fetched dirs are hooked into the
   open linked-list if they are needed across a commit. This means
   we shouldn't need assumptions about tree movement for correctness.

3. lfs_rename("deja/vu", "deja/vu") with the same source and destination
   was broken and tried to delete the entry twice.

4. Managing gstate deltas when we lose power during relocations was
   broken. And unfortunately complicated.

   The issue happens when we lose power during a relocation while
   removing a directory.

   When we remove a directory, we need to move the contents of its
   gstate delta to another directory or we'll corrupt littlefs gstate.
   (gstate is an xor of all deltas on the filesystem). We used to just
   xor the gstate into our parent's gstate, however this isn't correct.

   The gstate isn't built out of the directory tree, but rather out of
   the threaded linked-list (which exists to make collecting this
   gstate efficient).

   Because we have to remove our dir in two operations, there's a point
   were both the updated parent and child can exist in threaded
   linked-list and duplicate the child's gstate delta.

     .--------.
   ->| parent |-.
     | gstate | |
   .-|   a    |-'
   | '--------'
   |     X <- child is orphaned
   | .--------.
   '>| child  |->
     | gstate |
     |   a    |
     '--------'

   What we need to do is save our child's gstate and only give it to our
   predecessor, since this finalizes the removal of the child.

   However we still need to make valid updates to the gstate to mark
   that we've created an orphan when we start removing the child.

   This led to a small rework of how the gstate is handled. Now we have
   a separation of the gpending state that should be written out ASAP
   and the gdelta state that is collected from orphans awaiting
   deletion.

5. lfs_deorphan wasn't actually able to handle deorphaning/desyncing
   more than one orphan after a power-cycle. Having more than one orphan
   is very rare, but of course very possible. Fortunately this was just
   a mistake with using a break the in the deorphan, perhaps left from
   v1 where multiple orphans weren't possible?

   Note that we use a continue to force a refetch of the orphaned block.
   This is needed in the case of a half-orphan, since the fetched
   half-orphan may have an outdated tail pointer.
2020-01-26 23:45:54 -06:00
Christopher Haster
f4b6a6b328 Fixed issues with neighbor updates during moves
The root of the problem was some assumptions about what tags could be
sent to lfs_dir_commit.

- The first assumption is that there could be only one splice (create/delete)
  tag at a time, which is trivially broken by the core commit in lfs_rename.

- The second assumption is that there is at most one create and one delete in
  a single commit. This is less obvious but turns out to not be true in
  the case that we rename a file such that it overwrites another file in
  the same directory (1 delete for source file, 1 delete for destination).

- The third assumption was that there was an ordering to the
  delete/creates passed to lfs_dir_commit. It may be possible to force all
  deletes to follow creates by rearranging the tags in lfs_rename, but
  this risks overflowing tag ids.

The way the lfs_dir_commit first collected the "deletetag" and "createtag"
broke all three of these assumptions. And because we lose the ordering
information we can no longer apply the directory changes to open files
correctly. The file ids may be shifted in a way that doesn't reflect the
actual operations on disk.

These problems were made worst by lfs_dir_commit cleaning up moves
implicitly, which also creates deletes implicitly. While cleaning up moves
in lfs_dir_commit may save some code size, it makes the commit logic much more
difficult to implement correctly.

This bug turned into pulling out a dead tree stump, roots and all.

I ended up reworking how lfs_dir_commit updates open files so that it
has less assumptions, now it just traverses the commit tags multiple
times in order to update file ids after a successful commit in the
correct order.

This also got rid of the dir copy by carefully updating split dirs
after all files have an up-to-date copy of the original dir.

I also just removed the implicit move cleanup. It turns out the only
commits that can occur before we have cleaned up the move is in
lfs_fs_relocate, so it was simple enough to explicitly handle this case
when we update our parent and pred during a relocate.

Cases where we may need to fix moves:
- In lfs_rename when we move a file/dir
- In lfs_demove if we lose power
- In lfs_fs_relocate if we have to relocate our parent and we find it
  had a pending move (or else the move will be outdated)
- In lfs_fs_relocate if we have to relocate our predecessor and we find it
  had a pending move (or else the move will be outdated)

Note the two cases in lfs_fs_relocate may be recursive. But
lfs_fs_relocate can only trigger other lfs_fs_relocates so it's not
possible for pending moves to spill out into other filesystem commits

And of couse, I added several tests to cover these situations. Hopefully
the rename-with-open-files logic should be fairly locked down now.

found with initial fix by eastmoutain
2020-01-20 19:27:27 -06:00
Christopher Haster
9453ebd15d Added/improved disk-reading debug scripts
Also fixed a bug in dir splitting when there's a large number of open
files, which was the main reason I was trying to make it easier to debug
disk images.

One part of the recent test changes was to move away from the
file-per-block emubd and instead simulate storage with a single
contiguous file. The file-per-block format was marginally useful
at the beginning, but as the remaining bugs get more subtle, it
becomes more useful to inspect littlefs through scripts that
make the underlying metadata more human-readable.

The key benefit of switching to a contiguous file is these same
scripts can be reused for real disk images and can even read through
/dev/sdb or similar.

- ./scripts/readblock.py disk block_size block

  off       data
  00000000: 71 01 00 00 f0 0f ff f7 6c 69 74 74 6c 65 66 73  q.......littlefs
  00000010: 2f e0 00 10 00 00 02 00 00 02 00 00 00 04 00 00  /...............
  00000020: ff 00 00 00 ff ff ff 7f fe 03 00 00 20 00 04 19  ...............
  00000030: 61 00 00 0c 00 62 20 30 0c 09 a0 01 00 00 64 00  a....b 0......d.
  ...

  readblock.py prints a hex dump of a given block on disk. It's basically
  just "dd if=disk bs=block_size count=1 skip=block | xxd -g1 -" but with
  less typing.

- ./scripts/readmdir.py disk block_size block1 block2

  off       tag       type            id  len  data (truncated)
  0000003b: 0020000a  dir              0   10  63 6f 6c 64 63 6f 66 66 coldcoff
  00000049: 20000008  dirstruct        0    8  02 02 00 00 03 02 00 00 ........
  00000008: 00200409  dir              1    9  68 6f 74 63 6f 66 66 65 hotcoffe
  00000015: 20000408  dirstruct        1    8  fe 01 00 00 ff 01 00 00 ........

  readmdir.py prints info about the tags in a metadata pair on disk. It
  can print the currently active tags as well as the raw log of the
  metadata pair.

- ./scripts/readtree.py disk block_size

  superblock "littlefs"
    version v2.0
    block_size 512
    block_count 1024
    name_max 255
    file_max 2147483647
    attr_max 1022
  gstate 0x000000000000000000000000
  dir "/"
  mdir {0x0, 0x1} rev 3
  v id 0 superblock "littlefs" inline size 24
  mdir {0x77, 0x78} rev 1
    id 0 dir "coffee" dir {0x1fc, 0x1fd}
  dir "/coffee"
  mdir {0x1fd, 0x1fc} rev 2
    id 0 dir "coldcoffee" dir {0x202, 0x203}
    id 1 dir "hotcoffee" dir {0x1fe, 0x1ff}
  dir "/coffee/coldcoffee"
  mdir {0x202, 0x203} rev 1
  dir "/coffee/warmcoffee"
  mdir {0x200, 0x201} rev 1

  readtree.py parses the littlefs tree and prints info about the
  semantics of what's on disk. This includes the superblock,
  global-state, and directories/metadata-pairs. It doesn't print
  the filesystem tree though, that could be a different tool.
2020-01-20 19:27:27 -06:00
Christopher Haster
fb65057a3c Restructured block devices again for better test exploitation
Also finished migrating tests with test_relocations and test_exhaustion.

The issue I was running into when migrating these tests was a lack of
flexibility with what you could do with the block devices. It was
possible to hack in some hooks for things like bad blocks and power
loss, but it wasn't clean or easily extendable.

The solution here was to just put all of these test extensions into a
third block device, testbd, that uses the other two example block
devices internally.

testbd has several useful features for testing. Note this makes it a
pretty terrible block device _example_ since these hooks look more
complicated than a block device needs to be.

- testbd can simulate different erase values, supporting 1s, 0s, other byte
  patterns, or no erases at all (which can cause surprising bugs). This
  actually depends on the simulated erase values in ramdb and filebd.

  I did try to move this out of rambd/filebd, but it's not possible to
  simulate erases in testbd without buffering entire blocks and creating
  an excessive amount of extra write operations.

- testbd also helps simulate power-loss by containing a "power cycles"
  counter that is decremented every write operation until it calls exit.

  This is notably faster than the previous gdb approach, which is
  valuable since the reentrant tests tend to take a while to resolve.

- testbd also tracks wear, which can be manually set and read. This is
  very useful for testing things like bad block handling, wear leveling,
  or even changing the effective size of the block device at runtime.
2020-01-20 19:27:24 -06:00
Christopher Haster
ecc2857c0e Migrated bad-block tests
Even with adding better reentrance testing, the bad-block tests are
still very useful at isolating the block eviction logic.

This also required rewriting a bit of the internal testing wirework
to allow custom block devices which opens up quite a bit more straegies
for testing.
2020-01-14 12:04:20 -06:00