third_party_littlefs/lfs.c
Christopher Haster 12e464e9c3 Fixed issue with writes following a truncate
The problem was not setting the file state correctly after the truncate.
To truncate < size, we end up using the cache to traverse the ctz
skip-list far away from where our file->pos is.

We can leave the last block in the cache in case we're going to append
to the file, but if we do this we need to set up file->block+file->off
to tell use where we are in the file, and set the LFS_F_READING flag to
indicate that our cache contains read data.

Note this is different than the LFS_F_DIRTY, which we need also. The
purpose of the flags are as follows:
- LFS_F_DIRTY - file ctz skip-list branch is out of sync with
  filesystem, need to update metadata
- LFS_F_READING - file cache is in use for reading, need to drop cache
- LFS_F_WRITING - file cache is in use for writing, need to write out
  cache to disk

The difference between flags is subtle but important because read/prog
caches are handled differently. Prog caches have asserts in place to
catch programs without erases (the infamous pcache->block == 0xffffffff
assert).

Though maybe the names deserve an update...

Found by ebinans
2019-05-23 16:43:10 -05:00

4453 lines
129 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lfs.h"
#include "lfs_util.h"
/// Caching block device operations ///
static inline void lfs_cache_drop(lfs_t *lfs, lfs_cache_t *rcache) {
// do not zero, cheaper if cache is readonly or only going to be
// written with identical data (during relocates)
(void)lfs;
rcache->block = 0xffffffff;
}
static inline void lfs_cache_zero(lfs_t *lfs, lfs_cache_t *pcache) {
// zero to avoid information leak
memset(pcache->buffer, 0xff, lfs->cfg->cache_size);
pcache->block = 0xffffffff;
}
static int lfs_bd_read(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
if (off+size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
lfs_size_t diff = size;
if (pcache && block == pcache->block &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs_min(diff, pcache->off-off);
}
if (block == rcache->block &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs_min(diff, rcache->off-off);
}
// load to cache, first condition can no longer fail
LFS_ASSERT(block < lfs->cfg->block_count);
rcache->block = block;
rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
rcache->size = lfs_min(
lfs_min(
lfs_alignup(off+hint, lfs->cfg->read_size),
lfs->cfg->block_size)
- rcache->off,
lfs->cfg->cache_size);
int err = lfs->cfg->read(lfs->cfg, rcache->block,
rcache->off, rcache->buffer, rcache->size);
if (err) {
return err;
}
}
return 0;
}
enum {
LFS_CMP_EQ = 0,
LFS_CMP_LT = 1,
LFS_CMP_GT = 2,
};
static int lfs_bd_cmp(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
for (lfs_off_t i = 0; i < size; i++) {
uint8_t dat;
int err = lfs_bd_read(lfs,
pcache, rcache, hint-i,
block, off+i, &dat, 1);
if (err) {
return err;
}
if (dat != data[i]) {
return (dat < data[i]) ? LFS_CMP_LT : LFS_CMP_GT;
}
}
return LFS_CMP_EQ;
}
static int lfs_bd_flush(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
if (pcache->block != 0xffffffff && pcache->block != 0xfffffffe) {
LFS_ASSERT(pcache->block < lfs->cfg->block_count);
lfs_size_t diff = lfs_alignup(pcache->size, lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, pcache->block,
pcache->off, pcache->buffer, diff);
if (err) {
return err;
}
if (validate) {
// check data on disk
lfs_cache_drop(lfs, rcache);
int res = lfs_bd_cmp(lfs,
NULL, rcache, diff,
pcache->block, pcache->off, pcache->buffer, diff);
if (res < 0) {
return res;
}
if (res != LFS_CMP_EQ) {
return LFS_ERR_CORRUPT;
}
}
lfs_cache_zero(lfs, pcache);
}
return 0;
}
static int lfs_bd_sync(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
lfs_cache_drop(lfs, rcache);
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
return lfs->cfg->sync(lfs->cfg);
}
static int lfs_bd_prog(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
LFS_ASSERT(off + size <= lfs->cfg->block_size);
while (size > 0) {
if (block == pcache->block &&
off >= pcache->off &&
off < pcache->off + lfs->cfg->cache_size) {
// already fits in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->cache_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
pcache->size = off - pcache->off;
if (pcache->size == lfs->cfg->cache_size) {
// eagerly flush out pcache if we fill up
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS_ASSERT(pcache->block == 0xffffffff);
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = lfs_aligndown(off, lfs->cfg->prog_size);
pcache->size = 0;
}
return 0;
}
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
LFS_ASSERT(block < lfs->cfg->block_count);
return lfs->cfg->erase(lfs->cfg, block);
}
/// Small type-level utilities ///
// operations on block pairs
static inline void lfs_pair_swap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pair_isnull(const lfs_block_t pair[2]) {
return pair[0] == 0xffffffff || pair[1] == 0xffffffff;
}
static inline int lfs_pair_cmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
static inline bool lfs_pair_sync(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
static inline void lfs_pair_fromle32(lfs_block_t pair[2]) {
pair[0] = lfs_fromle32(pair[0]);
pair[1] = lfs_fromle32(pair[1]);
}
static inline void lfs_pair_tole32(lfs_block_t pair[2]) {
pair[0] = lfs_tole32(pair[0]);
pair[1] = lfs_tole32(pair[1]);
}
// operations on 32-bit entry tags
typedef uint32_t lfs_tag_t;
typedef int32_t lfs_stag_t;
#define LFS_MKTAG(type, id, size) \
(((lfs_tag_t)(type) << 20) | ((lfs_tag_t)(id) << 10) | (lfs_tag_t)(size))
static inline bool lfs_tag_isvalid(lfs_tag_t tag) {
return !(tag & 0x80000000);
}
static inline bool lfs_tag_isdelete(lfs_tag_t tag) {
return ((int32_t)(tag << 22) >> 22) == -1;
}
static inline uint16_t lfs_tag_type1(lfs_tag_t tag) {
return (tag & 0x70000000) >> 20;
}
static inline uint16_t lfs_tag_type3(lfs_tag_t tag) {
return (tag & 0x7ff00000) >> 20;
}
static inline uint8_t lfs_tag_chunk(lfs_tag_t tag) {
return (tag & 0x0ff00000) >> 20;
}
static inline int8_t lfs_tag_splice(lfs_tag_t tag) {
return (int8_t)lfs_tag_chunk(tag);
}
static inline uint16_t lfs_tag_id(lfs_tag_t tag) {
return (tag & 0x000ffc00) >> 10;
}
static inline lfs_size_t lfs_tag_size(lfs_tag_t tag) {
return tag & 0x000003ff;
}
static inline lfs_size_t lfs_tag_dsize(lfs_tag_t tag) {
return sizeof(tag) + lfs_tag_size(tag + lfs_tag_isdelete(tag));
}
// operations on attributes in attribute lists
struct lfs_mattr {
lfs_tag_t tag;
const void *buffer;
};
struct lfs_diskoff {
lfs_block_t block;
lfs_off_t off;
};
#define LFS_MKATTRS(...) \
(struct lfs_mattr[]){__VA_ARGS__}, \
sizeof((struct lfs_mattr[]){__VA_ARGS__}) / sizeof(struct lfs_mattr)
// operations on global state
static inline void lfs_gstate_xor(struct lfs_gstate *a,
const struct lfs_gstate *b) {
for (int i = 0; i < 3; i++) {
((uint32_t*)a)[i] ^= ((const uint32_t*)b)[i];
}
}
static inline bool lfs_gstate_iszero(const struct lfs_gstate *a) {
for (int i = 0; i < 3; i++) {
if (((uint32_t*)a)[i] != 0) {
return false;
}
}
return true;
}
static inline bool lfs_gstate_hasorphans(const struct lfs_gstate *a) {
return lfs_tag_size(a->tag);
}
static inline uint8_t lfs_gstate_getorphans(const struct lfs_gstate *a) {
return lfs_tag_size(a->tag);
}
static inline bool lfs_gstate_hasmove(const struct lfs_gstate *a) {
return lfs_tag_type1(a->tag);
}
static inline bool lfs_gstate_hasmovehere(const struct lfs_gstate *a,
const lfs_block_t *pair) {
return lfs_tag_type1(a->tag) && lfs_pair_cmp(a->pair, pair) == 0;
}
static inline void lfs_gstate_xororphans(struct lfs_gstate *a,
const struct lfs_gstate *b, bool orphans) {
a->tag ^= LFS_MKTAG(0x800, 0, 0) & (b->tag ^ (orphans << 31));
}
static inline void lfs_gstate_xormove(struct lfs_gstate *a,
const struct lfs_gstate *b, uint16_t id, const lfs_block_t pair[2]) {
a->tag ^= LFS_MKTAG(0x7ff, 0x3ff, 0) & (b->tag ^ (
(id != 0x3ff) ? LFS_MKTAG(LFS_TYPE_DELETE, id, 0) : 0));
a->pair[0] ^= b->pair[0] ^ ((id != 0x3ff) ? pair[0] : 0);
a->pair[1] ^= b->pair[1] ^ ((id != 0x3ff) ? pair[1] : 0);
}
static inline void lfs_gstate_fromle32(struct lfs_gstate *a) {
a->tag = lfs_fromle32(a->tag);
a->pair[0] = lfs_fromle32(a->pair[0]);
a->pair[1] = lfs_fromle32(a->pair[1]);
}
static inline void lfs_gstate_tole32(struct lfs_gstate *a) {
a->tag = lfs_tole32(a->tag);
a->pair[0] = lfs_tole32(a->pair[0]);
a->pair[1] = lfs_tole32(a->pair[1]);
}
// other endianness operations
static void lfs_ctz_fromle32(struct lfs_ctz *ctz) {
ctz->head = lfs_fromle32(ctz->head);
ctz->size = lfs_fromle32(ctz->size);
}
static void lfs_ctz_tole32(struct lfs_ctz *ctz) {
ctz->head = lfs_tole32(ctz->head);
ctz->size = lfs_tole32(ctz->size);
}
static inline void lfs_superblock_fromle32(lfs_superblock_t *superblock) {
superblock->version = lfs_fromle32(superblock->version);
superblock->block_size = lfs_fromle32(superblock->block_size);
superblock->block_count = lfs_fromle32(superblock->block_count);
superblock->name_max = lfs_fromle32(superblock->name_max);
superblock->file_max = lfs_fromle32(superblock->file_max);
superblock->attr_max = lfs_fromle32(superblock->attr_max);
}
static inline void lfs_superblock_tole32(lfs_superblock_t *superblock) {
superblock->version = lfs_tole32(superblock->version);
superblock->block_size = lfs_tole32(superblock->block_size);
superblock->block_count = lfs_tole32(superblock->block_count);
superblock->name_max = lfs_tole32(superblock->name_max);
superblock->file_max = lfs_tole32(superblock->file_max);
superblock->attr_max = lfs_tole32(superblock->attr_max);
}
/// Internal operations predeclared here ///
static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
const struct lfs_mattr *attrs, int attrcount);
static int lfs_dir_compact(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t begin, uint16_t end);
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file);
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file);
static void lfs_fs_preporphans(lfs_t *lfs, int8_t orphans);
static void lfs_fs_prepmove(lfs_t *lfs,
uint16_t id, const lfs_block_t pair[2]);
static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *pdir);
static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *parent);
static int lfs_fs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], lfs_block_t newpair[2]);
static int lfs_fs_forceconsistency(lfs_t *lfs);
static int lfs_deinit(lfs_t *lfs);
#ifdef LFS_MIGRATE
static int lfs1_traverse(lfs_t *lfs,
int (*cb)(void*, lfs_block_t), void *data);
#endif
/// Block allocator ///
static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
lfs_t *lfs = (lfs_t*)p;
lfs_block_t off = ((block - lfs->free.off)
+ lfs->cfg->block_count) % lfs->cfg->block_count;
if (off < lfs->free.size) {
lfs->free.buffer[off / 32] |= 1U << (off % 32);
}
return 0;
}
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
while (true) {
while (lfs->free.i != lfs->free.size) {
lfs_block_t off = lfs->free.i;
lfs->free.i += 1;
lfs->free.ack -= 1;
if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) {
// found a free block
*block = (lfs->free.off + off) % lfs->cfg->block_count;
// eagerly find next off so an alloc ack can
// discredit old lookahead blocks
while (lfs->free.i != lfs->free.size &&
(lfs->free.buffer[lfs->free.i / 32]
& (1U << (lfs->free.i % 32)))) {
lfs->free.i += 1;
lfs->free.ack -= 1;
}
return 0;
}
}
// check if we have looked at all blocks since last ack
if (lfs->free.ack == 0) {
LFS_WARN("No more free space %"PRIu32,
lfs->free.i + lfs->free.off);
return LFS_ERR_NOSPC;
}
lfs->free.off = (lfs->free.off + lfs->free.size)
% lfs->cfg->block_count;
lfs->free.size = lfs_min(8*lfs->cfg->lookahead_size, lfs->free.ack);
lfs->free.i = 0;
// find mask of free blocks from tree
memset(lfs->free.buffer, 0, lfs->cfg->lookahead_size);
int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, lfs);
if (err) {
return err;
}
}
}
static void lfs_alloc_ack(lfs_t *lfs) {
lfs->free.ack = lfs->cfg->block_count;
}
/// Metadata pair and directory operations ///
static lfs_stag_t lfs_dir_getslice(lfs_t *lfs, const lfs_mdir_t *dir,
lfs_tag_t gmask, lfs_tag_t gtag,
lfs_off_t goff, void *gbuffer, lfs_size_t gsize) {
lfs_off_t off = dir->off;
lfs_tag_t ntag = dir->etag;
lfs_stag_t gdiff = 0;
if (lfs_gstate_hasmovehere(&lfs->gstate, dir->pair) &&
lfs_tag_id(gtag) <= lfs_tag_id(lfs->gstate.tag)) {
// synthetic moves
gdiff -= LFS_MKTAG(0, 1, 0);
}
// iterate over dir block backwards (for faster lookups)
while (off >= sizeof(lfs_tag_t) + lfs_tag_dsize(ntag)) {
off -= lfs_tag_dsize(ntag);
lfs_tag_t tag = ntag;
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(ntag),
dir->pair[0], off, &ntag, sizeof(ntag));
if (err) {
return err;
}
ntag = (lfs_frombe32(ntag) ^ tag) & 0x7fffffff;
if (lfs_tag_id(gmask) != 0 &&
lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
lfs_tag_id(tag) <= lfs_tag_id(gtag - gdiff)) {
if (tag == (LFS_MKTAG(LFS_TYPE_CREATE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & (gtag - gdiff)))) {
// found where we were created
return LFS_ERR_NOENT;
}
// move around splices
gdiff += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
if ((gmask & tag) == (gmask & (gtag - gdiff))) {
if (lfs_tag_isdelete(tag)) {
return LFS_ERR_NOENT;
}
lfs_size_t diff = lfs_min(lfs_tag_size(tag), gsize);
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, diff,
dir->pair[0], off+sizeof(tag)+goff, gbuffer, diff);
if (err) {
return err;
}
memset((uint8_t*)gbuffer + diff, 0, gsize - diff);
return tag + gdiff;
}
}
return LFS_ERR_NOENT;
}
static lfs_stag_t lfs_dir_get(lfs_t *lfs, const lfs_mdir_t *dir,
lfs_tag_t gmask, lfs_tag_t gtag, void *buffer) {
return lfs_dir_getslice(lfs, dir,
gmask, gtag,
0, buffer, lfs_tag_size(gtag));
}
static int lfs_dir_getread(lfs_t *lfs, const lfs_mdir_t *dir,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_tag_t gmask, lfs_tag_t gtag,
lfs_off_t off, void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
if (off+size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
lfs_size_t diff = size;
if (pcache && pcache->block == 0xfffffffe &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs_min(diff, pcache->off-off);
}
if (rcache->block == 0xfffffffe &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs_min(diff, rcache->off-off);
}
// load to cache, first condition can no longer fail
rcache->block = 0xfffffffe;
rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
rcache->size = lfs_min(lfs_alignup(off+hint, lfs->cfg->read_size),
lfs->cfg->cache_size);
int err = lfs_dir_getslice(lfs, dir, gmask, gtag,
rcache->off, rcache->buffer, rcache->size);
if (err) {
return err;
}
}
return 0;
}
static int lfs_dir_traverse_filter(void *p,
lfs_tag_t tag, const void *buffer) {
lfs_tag_t *filtertag = p;
(void)buffer;
// check for redundancy
uint32_t mask = LFS_MKTAG(0x7ff, 0x3ff, 0);
if ((mask & tag) == (mask & *filtertag) ||
(mask & tag) == (LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & *filtertag))) {
return true;
}
// check if we need to adjust for created/deleted tags
if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
lfs_tag_id(tag) <= lfs_tag_id(*filtertag)) {
*filtertag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
return false;
}
static int lfs_dir_traverse(lfs_t *lfs,
const lfs_mdir_t *dir, lfs_off_t off, lfs_tag_t ptag,
const struct lfs_mattr *attrs, int attrcount, bool hasseenmove,
lfs_tag_t tmask, lfs_tag_t ttag,
uint16_t begin, uint16_t end, int16_t diff,
int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// iterate over directory and attrs
while (true) {
lfs_tag_t tag;
const void *buffer;
struct lfs_diskoff disk;
if (off+lfs_tag_dsize(ptag) < dir->off) {
off += lfs_tag_dsize(ptag);
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(tag),
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
return err;
}
tag = (lfs_frombe32(tag) ^ ptag) | 0x80000000;
disk.block = dir->pair[0];
disk.off = off+sizeof(lfs_tag_t);
buffer = &disk;
ptag = tag;
} else if (attrcount > 0) {
tag = attrs[0].tag;
buffer = attrs[0].buffer;
attrs += 1;
attrcount -= 1;
} else if (!hasseenmove &&
lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
// Wait, we have pending move? Handle this here (we need to
// or else we risk letting moves fall out of date)
tag = lfs->gpending.tag & LFS_MKTAG(0x7ff, 0x3ff, 0);
buffer = NULL;
hasseenmove = true;
} else {
return 0;
}
lfs_tag_t mask = LFS_MKTAG(0x7ff, 0, 0);
if ((mask & tmask & tag) != (mask & tmask & ttag)) {
continue;
}
// do we need to filter? inlining the filtering logic here allows
// for some minor optimizations
if (lfs_tag_id(tmask) != 0) {
// scan for duplicates and update tag based on creates/deletes
int filter = lfs_dir_traverse(lfs,
dir, off, ptag, attrs, attrcount, hasseenmove,
0, 0, 0, 0, 0,
lfs_dir_traverse_filter, &tag);
if (filter < 0) {
return filter;
}
if (filter) {
continue;
}
// in filter range?
if (!(lfs_tag_id(tag) >= begin && lfs_tag_id(tag) < end)) {
continue;
}
}
// handle special cases for mcu-side operations
if (lfs_tag_type3(tag) == LFS_FROM_NOOP) {
// do nothing
} else if (lfs_tag_type3(tag) == LFS_FROM_MOVE) {
uint16_t fromid = lfs_tag_size(tag);
uint16_t toid = lfs_tag_id(tag);
int err = lfs_dir_traverse(lfs,
buffer, 0, 0xffffffff, NULL, 0, true,
LFS_MKTAG(0x600, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, 0, 0),
fromid, fromid+1, toid-fromid+diff,
cb, data);
if (err) {
return err;
}
} else if (lfs_tag_type3(tag) == LFS_FROM_USERATTRS) {
for (unsigned i = 0; i < lfs_tag_size(tag); i++) {
const struct lfs_attr *a = buffer;
int err = cb(data, LFS_MKTAG(LFS_TYPE_USERATTR + a[i].type,
lfs_tag_id(tag) + diff, a[i].size), a[i].buffer);
if (err) {
return err;
}
}
} else {
int err = cb(data, tag + LFS_MKTAG(0, diff, 0), buffer);
if (err) {
return err;
}
}
}
}
static lfs_stag_t lfs_dir_fetchmatch(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2],
lfs_tag_t fmask, lfs_tag_t ftag, uint16_t *id,
int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// we can find tag very efficiently during a fetch, since we're already
// scanning the entire directory
lfs_stag_t besttag = -1;
// find the block with the most recent revision
uint32_t revs[2] = {0, 0};
int r = 0;
for (int i = 0; i < 2; i++) {
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(revs[i]),
pair[i], 0, &revs[i], sizeof(revs[i]));
revs[i] = lfs_fromle32(revs[i]);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err != LFS_ERR_CORRUPT &&
lfs_scmp(revs[i], revs[(i+1)%2]) > 0) {
r = i;
}
}
dir->pair[0] = pair[(r+0)%2];
dir->pair[1] = pair[(r+1)%2];
dir->rev = revs[(r+0)%2];
dir->off = 0; // nonzero = found some commits
// now scan tags to fetch the actual dir and find possible match
for (int i = 0; i < 2; i++) {
lfs_off_t off = 0;
lfs_tag_t ptag = 0xffffffff;
uint16_t tempcount = 0;
lfs_block_t temptail[2] = {0xffffffff, 0xffffffff};
bool tempsplit = false;
lfs_stag_t tempbesttag = besttag;
dir->rev = lfs_tole32(dir->rev);
uint32_t crc = lfs_crc(0xffffffff, &dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
while (true) {
// extract next tag
lfs_tag_t tag;
off += lfs_tag_dsize(ptag);
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
if (err == LFS_ERR_CORRUPT) {
// can't continue?
dir->erased = false;
break;
}
return err;
}
crc = lfs_crc(crc, &tag, sizeof(tag));
tag = lfs_frombe32(tag) ^ ptag;
// next commit not yet programmed or we're not in valid range
if (!lfs_tag_isvalid(tag) ||
off + lfs_tag_dsize(tag) > lfs->cfg->block_size) {
dir->erased = (lfs_tag_type1(ptag) == LFS_TYPE_CRC &&
dir->off % lfs->cfg->prog_size == 0);
break;
}
ptag = tag;
if (lfs_tag_type1(tag) == LFS_TYPE_CRC) {
// check the crc attr
uint32_t dcrc;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc));
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
dcrc = lfs_fromle32(dcrc);
if (crc != dcrc) {
dir->erased = false;
break;
}
// reset the next bit if we need to
ptag ^= (lfs_tag_chunk(tag) & 1U) << 31;
// toss our crc into the filesystem seed for
// pseudorandom numbers
lfs->seed ^= crc;
// update with what's found so far
besttag = tempbesttag;
dir->off = off + lfs_tag_dsize(tag);
dir->etag = ptag;
dir->count = tempcount;
dir->tail[0] = temptail[0];
dir->tail[1] = temptail[1];
dir->split = tempsplit;
// reset crc
crc = 0xffffffff;
continue;
}
// crc the entry first, hopefully leaving it in the cache
for (lfs_off_t j = sizeof(tag); j < lfs_tag_dsize(tag); j++) {
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+j, &dat, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
crc = lfs_crc(crc, &dat, 1);
}
// directory modification tags?
if (lfs_tag_type1(tag) == LFS_TYPE_NAME) {
// increase count of files if necessary
if (lfs_tag_id(tag) >= tempcount) {
tempcount = lfs_tag_id(tag) + 1;
}
} else if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE) {
tempcount += lfs_tag_splice(tag);
if (tag == (LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & tempbesttag))) {
tempbesttag |= 0x80000000;
} else if (tempbesttag != -1 &&
lfs_tag_id(tag) <= lfs_tag_id(tempbesttag)) {
tempbesttag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
} else if (lfs_tag_type1(tag) == LFS_TYPE_TAIL) {
tempsplit = (lfs_tag_chunk(tag) & 1);
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag), &temptail, 8);
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
}
lfs_pair_fromle32(temptail);
}
// found a match for our fetcher?
if ((fmask & tag) == (fmask & ftag)) {
int res = cb(data, tag, &(struct lfs_diskoff){
dir->pair[0], off+sizeof(tag)});
if (res < 0) {
if (res == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return res;
}
if (res == LFS_CMP_EQ) {
// found a match
tempbesttag = tag;
} else if (res == LFS_CMP_GT &&
lfs_tag_id(tag) <= lfs_tag_id(tempbesttag)) {
// found a greater match, keep track to keep things sorted
tempbesttag = tag | 0x80000000;
}
}
}
// consider what we have good enough
if (dir->off > 0) {
// synthetic move
if (lfs_gstate_hasmovehere(&lfs->gstate, dir->pair)) {
if (lfs_tag_id(lfs->gstate.tag) == lfs_tag_id(besttag)) {
besttag |= 0x80000000;
} else if (besttag != -1 &&
lfs_tag_id(lfs->gstate.tag) < lfs_tag_id(besttag)) {
besttag -= LFS_MKTAG(0, 1, 0);
}
}
// found tag? or found best id?
if (id) {
*id = lfs_min(lfs_tag_id(besttag), dir->count);
}
if (lfs_tag_isvalid(besttag)) {
return besttag;
} else if (lfs_tag_id(besttag) < dir->count) {
return LFS_ERR_NOENT;
} else {
return 0;
}
}
// failed, try the other block?
lfs_pair_swap(dir->pair);
dir->rev = revs[(r+1)%2];
}
LFS_ERROR("Corrupted dir pair at %"PRIu32" %"PRIu32,
dir->pair[0], dir->pair[1]);
return LFS_ERR_CORRUPT;
}
static int lfs_dir_fetch(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2]) {
// note, mask=-1, tag=0 can never match a tag since this
// pattern has the invalid bit set
return lfs_dir_fetchmatch(lfs, dir, pair, -1, 0, NULL, NULL, NULL);
}
static int lfs_dir_getgstate(lfs_t *lfs, const lfs_mdir_t *dir,
struct lfs_gstate *gstate) {
struct lfs_gstate temp;
lfs_stag_t res = lfs_dir_get(lfs, dir, LFS_MKTAG(0x7ff, 0, 0),
LFS_MKTAG(LFS_TYPE_MOVESTATE, 0, sizeof(temp)), &temp);
if (res < 0 && res != LFS_ERR_NOENT) {
return res;
}
if (res != LFS_ERR_NOENT) {
// xor together to find resulting gstate
lfs_gstate_fromle32(&temp);
lfs_gstate_xor(gstate, &temp);
}
return 0;
}
static int lfs_dir_getinfo(lfs_t *lfs, lfs_mdir_t *dir,
uint16_t id, struct lfs_info *info) {
if (id == 0x3ff) {
// special case for root
strcpy(info->name, "/");
info->type = LFS_TYPE_DIR;
return 0;
}
lfs_stag_t tag = lfs_dir_get(lfs, dir, LFS_MKTAG(0x780, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_NAME, id, lfs->name_max+1), info->name);
if (tag < 0) {
return tag;
}
info->type = lfs_tag_type3(tag);
struct lfs_ctz ctz;
tag = lfs_dir_get(lfs, dir, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
return tag;
}
lfs_ctz_fromle32(&ctz);
if (lfs_tag_type3(tag) == LFS_TYPE_CTZSTRUCT) {
info->size = ctz.size;
} else if (lfs_tag_type3(tag) == LFS_TYPE_INLINESTRUCT) {
info->size = lfs_tag_size(tag);
}
return 0;
}
struct lfs_dir_find_match {
lfs_t *lfs;
const void *name;
lfs_size_t size;
};
static int lfs_dir_find_match(void *data,
lfs_tag_t tag, const void *buffer) {
struct lfs_dir_find_match *name = data;
lfs_t *lfs = name->lfs;
const struct lfs_diskoff *disk = buffer;
// compare with disk
lfs_size_t diff = lfs_min(name->size, lfs_tag_size(tag));
int res = lfs_bd_cmp(lfs,
NULL, &lfs->rcache, diff,
disk->block, disk->off, name->name, diff);
if (res != LFS_CMP_EQ) {
return res;
}
// only equal if our size is still the same
if (name->size != lfs_tag_size(tag)) {
return (name->size < lfs_tag_size(tag)) ? LFS_CMP_LT : LFS_CMP_GT;
}
// found a match!
return LFS_CMP_EQ;
}
static int lfs_dir_find(lfs_t *lfs, lfs_mdir_t *dir,
const char **path, uint16_t *id) {
// we reduce path to a single name if we can find it
const char *name = *path;
if (id) {
*id = 0x3ff;
}
// default to root dir
lfs_stag_t tag = LFS_MKTAG(LFS_TYPE_DIR, 0x3ff, 0);
dir->tail[0] = lfs->root[0];
dir->tail[1] = lfs->root[1];
while (true) {
nextname:
// skip slashes
name += strspn(name, "/");
lfs_size_t namelen = strcspn(name, "/");
// skip '.' and root '..'
if ((namelen == 1 && memcmp(name, ".", 1) == 0) ||
(namelen == 2 && memcmp(name, "..", 2) == 0)) {
name += namelen;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = name + namelen;
lfs_size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
name = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// found path
if (name[0] == '\0') {
return tag;
}
// update what we've found so far
*path = name;
// only continue if we hit a directory
if (lfs_tag_type3(tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
// grab the entry data
if (lfs_tag_id(tag) != 0x3ff) {
lfs_stag_t res = lfs_dir_get(lfs, dir, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), dir->tail);
if (res < 0) {
return res;
}
lfs_pair_fromle32(dir->tail);
}
// find entry matching name
while (true) {
tag = lfs_dir_fetchmatch(lfs, dir, dir->tail,
LFS_MKTAG(0x780, 0, 0),
LFS_MKTAG(LFS_TYPE_NAME, 0, namelen),
// are we last name?
(strchr(name, '/') == NULL) ? id : NULL,
lfs_dir_find_match, &(struct lfs_dir_find_match){
lfs, name, namelen});
if (tag < 0) {
return tag;
}
if (tag) {
break;
}
if (!dir->split) {
return LFS_ERR_NOENT;
}
}
// to next name
name += namelen;
}
}
// commit logic
struct lfs_commit {
lfs_block_t block;
lfs_off_t off;
lfs_tag_t ptag;
uint32_t crc;
lfs_off_t begin;
lfs_off_t end;
};
static int lfs_dir_commitprog(lfs_t *lfs, struct lfs_commit *commit,
const void *buffer, lfs_size_t size) {
int err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, false,
commit->block, commit->off ,
(const uint8_t*)buffer, size);
if (err) {
return err;
}
commit->crc = lfs_crc(commit->crc, buffer, size);
commit->off += size;
return 0;
}
static int lfs_dir_commitattr(lfs_t *lfs, struct lfs_commit *commit,
lfs_tag_t tag, const void *buffer) {
// check if we fit
lfs_size_t dsize = lfs_tag_dsize(tag);
if (commit->off + dsize > commit->end) {
return LFS_ERR_NOSPC;
}
// write out tag
lfs_tag_t ntag = lfs_tobe32((tag & 0x7fffffff) ^ commit->ptag);
int err = lfs_dir_commitprog(lfs, commit, &ntag, sizeof(ntag));
if (err) {
return err;
}
if (!(tag & 0x80000000)) {
// from memory
err = lfs_dir_commitprog(lfs, commit, buffer, dsize-sizeof(tag));
if (err) {
return err;
}
} else {
// from disk
const struct lfs_diskoff *disk = buffer;
for (lfs_off_t i = 0; i < dsize-sizeof(tag); i++) {
// rely on caching to make this efficient
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, dsize-sizeof(tag)-i,
disk->block, disk->off+i, &dat, 1);
if (err) {
return err;
}
err = lfs_dir_commitprog(lfs, commit, &dat, 1);
if (err) {
return err;
}
}
}
commit->ptag = tag & 0x7fffffff;
return 0;
}
static int lfs_dir_commitcrc(lfs_t *lfs, struct lfs_commit *commit) {
// align to program units
lfs_off_t off = lfs_alignup(commit->off + 2*sizeof(uint32_t),
lfs->cfg->prog_size);
// read erased state from next program unit
lfs_tag_t tag;
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(tag),
commit->block, off, &tag, sizeof(tag));
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// build crc tag
bool reset = ~lfs_frombe32(tag) >> 31;
tag = LFS_MKTAG(LFS_TYPE_CRC + reset, 0x3ff,
off - (commit->off+sizeof(lfs_tag_t)));
// write out crc
uint32_t footer[2];
footer[0] = lfs_tobe32(tag ^ commit->ptag);
commit->crc = lfs_crc(commit->crc, &footer[0], sizeof(footer[0]));
footer[1] = lfs_tole32(commit->crc);
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, false,
commit->block, commit->off, &footer, sizeof(footer));
if (err) {
return err;
}
commit->off += sizeof(tag)+lfs_tag_size(tag);
commit->ptag = tag ^ (reset << 31);
// flush buffers
err = lfs_bd_sync(lfs, &lfs->pcache, &lfs->rcache, false);
if (err) {
return err;
}
// successful commit, check checksum to make sure
uint32_t crc = 0xffffffff;
lfs_size_t size = commit->off - lfs_tag_size(tag) - commit->begin;
for (lfs_off_t i = 0; i < size; i++) {
// leave it up to caching to make this efficient
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, size-i,
commit->block, commit->begin+i, &dat, 1);
if (err) {
return err;
}
crc = lfs_crc(crc, &dat, 1);
}
if (err) {
return err;
}
if (crc != commit->crc) {
return LFS_ERR_CORRUPT;
}
return 0;
}
static int lfs_dir_alloc(lfs_t *lfs, lfs_mdir_t *dir) {
// allocate pair of dir blocks (backwards, so we write block 1 first)
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]);
if (err) {
return err;
}
}
// rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(dir->rev),
dir->pair[0], 0, &dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// make sure we don't immediately evict
dir->rev += dir->rev & 1;
// set defaults
dir->off = sizeof(dir->rev);
dir->etag = 0xffffffff;
dir->count = 0;
dir->tail[0] = 0xffffffff;
dir->tail[1] = 0xffffffff;
dir->erased = false;
dir->split = false;
// don't write out yet, let caller take care of that
return 0;
}
static int lfs_dir_drop(lfs_t *lfs, lfs_mdir_t *dir, lfs_mdir_t *tail) {
// steal state
int err = lfs_dir_getgstate(lfs, tail, &lfs->gdelta);
if (err) {
return err;
}
// steal tail
lfs_pair_tole32(tail->tail);
err = lfs_dir_commit(lfs, dir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_TAIL + tail->split, 0x3ff, 8), tail->tail}));
lfs_pair_fromle32(tail->tail);
if (err) {
return err;
}
return 0;
}
static int lfs_dir_split(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t split, uint16_t end) {
// create tail directory
lfs_mdir_t tail;
int err = lfs_dir_alloc(lfs, &tail);
if (err) {
return err;
}
tail.split = dir->split;
tail.tail[0] = dir->tail[0];
tail.tail[1] = dir->tail[1];
err = lfs_dir_compact(lfs, &tail, attrs, attrcount, source, split, end);
if (err) {
return err;
}
dir->tail[0] = tail.pair[0];
dir->tail[1] = tail.pair[1];
dir->split = true;
// update root if needed
if (lfs_pair_cmp(dir->pair, lfs->root) == 0 && split == 0) {
lfs->root[0] = tail.pair[0];
lfs->root[1] = tail.pair[1];
}
return 0;
}
static int lfs_dir_commit_size(void *p, lfs_tag_t tag, const void *buffer) {
lfs_size_t *size = p;
(void)buffer;
*size += lfs_tag_dsize(tag);
return 0;
}
struct lfs_dir_commit_commit {
lfs_t *lfs;
struct lfs_commit *commit;
};
static int lfs_dir_commit_commit(void *p, lfs_tag_t tag, const void *buffer) {
struct lfs_dir_commit_commit *commit = p;
return lfs_dir_commitattr(commit->lfs, commit->commit, tag, buffer);
}
static int lfs_dir_compact(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t begin, uint16_t end) {
// save some state in case block is bad
const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]};
bool relocated = false;
bool exhausted = false;
// should we split?
while (end - begin > 1) {
// find size
lfs_size_t size = 0;
int err = lfs_dir_traverse(lfs,
source, 0, 0xffffffff, attrs, attrcount, false,
LFS_MKTAG(0x400, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_NAME, 0, 0),
begin, end, -begin,
lfs_dir_commit_size, &size);
if (err) {
return err;
}
// space is complicated, we need room for tail, crc, gstate,
// cleanup delete, and we cap at half a block to give room
// for metadata updates.
if (end - begin < 0xff &&
size <= lfs_min(lfs->cfg->block_size - 36,
lfs_alignup(lfs->cfg->block_size/2,
lfs->cfg->prog_size))) {
break;
}
// can't fit, need to split, we should really be finding the
// largest size that fits with a small binary search, but right now
// it's not worth the code size
uint16_t split = (end - begin) / 2;
err = lfs_dir_split(lfs, dir, attrs, attrcount,
source, begin+split, end);
if (err) {
// if we fail to split, we may be able to overcompact, unless
// we're too big for even the full block, in which case our
// only option is to error
if (err == LFS_ERR_NOSPC && size <= lfs->cfg->block_size - 36) {
break;
}
return err;
}
end = begin + split;
}
// increment revision count
dir->rev += 1;
if (lfs->cfg->block_cycles &&
(dir->rev % (lfs->cfg->block_cycles+1) == 0)) {
if (lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) {
// oh no! we're writing too much to the superblock,
// should we expand?
lfs_ssize_t res = lfs_fs_size(lfs);
if (res < 0) {
return res;
}
// do we have extra space? littlefs can't reclaim this space
// by itself, so expand cautiously
if ((lfs_size_t)res < lfs->cfg->block_count/2) {
LFS_DEBUG("Expanding superblock at rev %"PRIu32, dir->rev);
int err = lfs_dir_split(lfs, dir, attrs, attrcount,
source, begin, end);
if (err && err != LFS_ERR_NOSPC) {
return err;
}
// welp, we tried, if we ran out of space there's not much
// we can do, we'll error later if we've become frozen
if (!err) {
end = begin;
}
}
} else {
// we're writing too much, time to relocate
exhausted = true;
goto relocate;
}
}
// begin loop to commit compaction to blocks until a compact sticks
while (true) {
{
// There's nothing special about our global delta, so feed it into
// our local global delta
int err = lfs_dir_getgstate(lfs, dir, &lfs->gdelta);
if (err) {
return err;
}
// setup commit state
struct lfs_commit commit = {
.block = dir->pair[1],
.off = 0,
.ptag = 0xffffffff,
.crc = 0xffffffff,
.begin = 0,
.end = lfs->cfg->block_size - 8,
};
// erase block to write to
err = lfs_bd_erase(lfs, dir->pair[1]);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// write out header
dir->rev = lfs_tole32(dir->rev);
err = lfs_dir_commitprog(lfs, &commit,
&dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// traverse the directory, this time writing out all unique tags
err = lfs_dir_traverse(lfs,
source, 0, 0xffffffff, attrs, attrcount, false,
LFS_MKTAG(0x400, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_NAME, 0, 0),
begin, end, -begin,
lfs_dir_commit_commit, &(struct lfs_dir_commit_commit){
lfs, &commit});
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit tail, which may be new after last size check
if (!lfs_pair_isnull(dir->tail)) {
lfs_pair_tole32(dir->tail);
err = lfs_dir_commitattr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_TAIL + dir->split, 0x3ff, 8),
dir->tail);
lfs_pair_fromle32(dir->tail);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
if (!relocated && !lfs_gstate_iszero(&lfs->gdelta)) {
// commit any globals, unless we're relocating,
// in which case our parent will steal our globals
lfs_gstate_tole32(&lfs->gdelta);
err = lfs_dir_commitattr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_MOVESTATE, 0x3ff,
sizeof(lfs->gdelta)), &lfs->gdelta);
lfs_gstate_fromle32(&lfs->gdelta);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
err = lfs_dir_commitcrc(lfs, &commit);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// successful compaction, swap dir pair to indicate most recent
lfs_pair_swap(dir->pair);
dir->count = end - begin;
dir->off = commit.off;
dir->etag = commit.ptag;
dir->erased = (dir->off % lfs->cfg->prog_size == 0);
// note we able to have already handled move here
if (lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
lfs_gstate_xormove(&lfs->gpending,
&lfs->gpending, 0x3ff, NULL);
}
}
break;
relocate:
// commit was corrupted, drop caches and prepare to relocate block
relocated = true;
lfs_cache_drop(lfs, &lfs->pcache);
if (!exhausted) {
LFS_DEBUG("Bad block at %"PRIu32, dir->pair[1]);
}
// can't relocate superblock, filesystem is now frozen
if (lfs_pair_cmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
LFS_WARN("Superblock %"PRIu32" has become unwritable", oldpair[1]);
return LFS_ERR_NOSPC;
}
// relocate half of pair
int err = lfs_alloc(lfs, &dir->pair[1]);
if (err && (err != LFS_ERR_NOSPC && !exhausted)) {
return err;
}
continue;
}
if (!relocated) {
lfs->gstate = lfs->gpending;
lfs->gdelta = (struct lfs_gstate){0};
} else {
// update references if we relocated
LFS_DEBUG("Relocating %"PRIu32" %"PRIu32" to %"PRIu32" %"PRIu32,
oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
int err = lfs_fs_relocate(lfs, oldpair, dir->pair);
if (err) {
return err;
}
}
return 0;
}
static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
const struct lfs_mattr *attrs, int attrcount) {
// check for any inline files that aren't RAM backed and
// forcefully evict them, needed for filesystem consistency
for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
if (dir != &f->m && lfs_pair_cmp(f->m.pair, dir->pair) == 0 &&
f->type == LFS_TYPE_REG && (f->flags & LFS_F_INLINE) &&
f->ctz.size > lfs->cfg->cache_size) {
f->flags &= ~LFS_F_READING;
f->off = 0;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, f);
if (err) {
return err;
}
err = lfs_file_flush(lfs, f);
if (err) {
return err;
}
}
}
// calculate changes to the directory
lfs_tag_t deletetag = 0xffffffff;
lfs_tag_t createtag = 0xffffffff;
for (int i = 0; i < attrcount; i++) {
if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_CREATE) {
createtag = attrs[i].tag;
dir->count += 1;
} else if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_DELETE) {
deletetag = attrs[i].tag;
LFS_ASSERT(dir->count > 0);
dir->count -= 1;
} else if (lfs_tag_type1(attrs[i].tag) == LFS_TYPE_TAIL) {
dir->tail[0] = ((lfs_block_t*)attrs[i].buffer)[0];
dir->tail[1] = ((lfs_block_t*)attrs[i].buffer)[1];
dir->split = (lfs_tag_chunk(attrs[i].tag) & 1);
lfs_pair_fromle32(dir->tail);
}
}
// do we have a pending move?
if (lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
deletetag = lfs->gpending.tag & LFS_MKTAG(0x7ff, 0x3ff, 0);
LFS_ASSERT(dir->count > 0);
dir->count -= 1;
// mark gdelta so we reflect the move we will fix
lfs_gstate_xormove(&lfs->gdelta, &lfs->gpending, 0x3ff, NULL);
}
// should we actually drop the directory block?
if (lfs_tag_isvalid(deletetag) && dir->count == 0) {
lfs_mdir_t pdir;
int err = lfs_fs_pred(lfs, dir->pair, &pdir);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT && pdir.split) {
return lfs_dir_drop(lfs, &pdir, dir);
}
}
if (dir->erased || dir->count >= 0xff) {
// try to commit
struct lfs_commit commit = {
.block = dir->pair[0],
.off = dir->off,
.ptag = dir->etag,
.crc = 0xffffffff,
.begin = dir->off,
.end = lfs->cfg->block_size - 8,
};
// traverse attrs that need to be written out
lfs_pair_tole32(dir->tail);
int err = lfs_dir_traverse(lfs,
dir, dir->off, dir->etag, attrs, attrcount, false,
0, 0, 0, 0, 0,
lfs_dir_commit_commit, &(struct lfs_dir_commit_commit){
lfs, &commit});
lfs_pair_fromle32(dir->tail);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
// commit any global diffs if we have any
if (!lfs_gstate_iszero(&lfs->gdelta)) {
err = lfs_dir_getgstate(lfs, dir, &lfs->gdelta);
if (err) {
return err;
}
lfs_gstate_tole32(&lfs->gdelta);
err = lfs_dir_commitattr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_MOVESTATE, 0x3ff,
sizeof(lfs->gdelta)), &lfs->gdelta);
lfs_gstate_fromle32(&lfs->gdelta);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
}
// finalize commit with the crc
err = lfs_dir_commitcrc(lfs, &commit);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
// successful commit, update dir
dir->off = commit.off;
dir->etag = commit.ptag;
// note we able to have already handled move here
if (lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
lfs_gstate_xormove(&lfs->gpending, &lfs->gpending, 0x3ff, NULL);
}
// update gstate
lfs->gstate = lfs->gpending;
lfs->gdelta = (struct lfs_gstate){0};
} else {
compact:
// fall back to compaction
lfs_cache_drop(lfs, &lfs->pcache);
int err = lfs_dir_compact(lfs, dir, attrs, attrcount,
dir, 0, dir->count);
if (err) {
return err;
}
}
// update any directories that are affected
lfs_mdir_t copy = *dir;
// two passes, once for things that aren't us, and one
// for things that are
for (struct lfs_mlist *d = lfs->mlist; d; d = d->next) {
if (lfs_pair_cmp(d->m.pair, copy.pair) == 0) {
d->m = *dir;
if (d->id == lfs_tag_id(deletetag)) {
d->m.pair[0] = 0xffffffff;
d->m.pair[1] = 0xffffffff;
} else if (d->id > lfs_tag_id(deletetag)) {
d->id -= 1;
if (d->type == LFS_TYPE_DIR) {
((lfs_dir_t*)d)->pos -= 1;
}
} else if (&d->m != dir && d->id >= lfs_tag_id(createtag)) {
d->id += 1;
if (d->type == LFS_TYPE_DIR) {
((lfs_dir_t*)d)->pos += 1;
}
}
while (d->id >= d->m.count && d->m.split) {
// we split and id is on tail now
d->id -= d->m.count;
int err = lfs_dir_fetch(lfs, &d->m, d->m.tail);
if (err) {
return err;
}
}
}
}
return 0;
}
/// Top level directory operations ///
int lfs_mkdir(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
lfs_mdir_t cwd;
uint16_t id;
err = lfs_dir_find(lfs, &cwd, &path, &id);
if (!(err == LFS_ERR_NOENT && id != 0x3ff)) {
return (err < 0) ? err : LFS_ERR_EXIST;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_max) {
return LFS_ERR_NAMETOOLONG;
}
// build up new directory
lfs_alloc_ack(lfs);
lfs_mdir_t dir;
err = lfs_dir_alloc(lfs, &dir);
if (err) {
return err;
}
// find end of list
lfs_mdir_t pred = cwd;
while (pred.split) {
err = lfs_dir_fetch(lfs, &pred, pred.tail);
if (err) {
return err;
}
}
// setup dir
lfs_pair_tole32(pred.tail);
err = lfs_dir_commit(lfs, &dir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), pred.tail}));
lfs_pair_fromle32(pred.tail);
if (err) {
return err;
}
// current block end of list?
if (cwd.split) {
// update tails, this creates a desync
lfs_fs_preporphans(lfs, +1);
lfs_pair_tole32(dir.pair);
err = lfs_dir_commit(lfs, &pred, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), dir.pair}));
lfs_pair_fromle32(dir.pair);
if (err) {
return err;
}
lfs_fs_preporphans(lfs, -1);
}
// now insert into our parent block
lfs_pair_tole32(dir.pair);
err = lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, id, 0), NULL},
{LFS_MKTAG(LFS_TYPE_DIR, id, nlen), path},
{LFS_MKTAG(LFS_TYPE_DIRSTRUCT, id, 8), dir.pair},
{!cwd.split
? LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8)
: LFS_MKTAG(LFS_FROM_NOOP, 0, 0), dir.pair}));
lfs_pair_fromle32(dir.pair);
if (err) {
return err;
}
return 0;
}
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
lfs_stag_t tag = lfs_dir_find(lfs, &dir->m, &path, NULL);
if (tag < 0) {
return tag;
}
if (lfs_tag_type3(tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
lfs_block_t pair[2];
if (lfs_tag_id(tag) == 0x3ff) {
// handle root dir separately
pair[0] = lfs->root[0];
pair[1] = lfs->root[1];
} else {
// get dir pair from parent
lfs_stag_t res = lfs_dir_get(lfs, &dir->m, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
}
// fetch first pair
int err = lfs_dir_fetch(lfs, &dir->m, pair);
if (err) {
return err;
}
// setup entry
dir->head[0] = dir->m.pair[0];
dir->head[1] = dir->m.pair[1];
dir->id = 0;
dir->pos = 0;
// add to list of mdirs
dir->type = LFS_TYPE_DIR;
dir->next = (lfs_dir_t*)lfs->mlist;
lfs->mlist = (struct lfs_mlist*)dir;
return 0;
}
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// remove from list of mdirs
for (struct lfs_mlist **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == (struct lfs_mlist*)dir) {
*p = (*p)->next;
break;
}
}
return 0;
}
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
// special offset for '.' and '..'
if (dir->pos == 0) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, ".");
dir->pos += 1;
return 1;
} else if (dir->pos == 1) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, "..");
dir->pos += 1;
return 1;
}
while (true) {
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return false;
}
int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
if (err) {
return err;
}
dir->id = 0;
}
int err = lfs_dir_getinfo(lfs, &dir->m, dir->id, info);
if (err && err != LFS_ERR_NOENT) {
return err;
}
dir->id += 1;
if (err != LFS_ERR_NOENT) {
break;
}
}
dir->pos += 1;
return true;
}
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// simply walk from head dir
int err = lfs_dir_rewind(lfs, dir);
if (err) {
return err;
}
// first two for ./..
dir->pos = lfs_min(2, off);
off -= dir->pos;
while (off != 0) {
dir->id = lfs_min(dir->m.count, off);
dir->pos += dir->id;
off -= dir->id;
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return LFS_ERR_INVAL;
}
err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
if (err) {
return err;
}
}
}
return 0;
}
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
(void)lfs;
return dir->pos;
}
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// reload the head dir
int err = lfs_dir_fetch(lfs, &dir->m, dir->head);
if (err) {
return err;
}
dir->m.pair[0] = dir->head[0];
dir->m.pair[1] = dir->head[1];
dir->id = 0;
dir->pos = 0;
return 0;
}
/// File index list operations ///
static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
lfs_off_t size = *off;
lfs_off_t b = lfs->cfg->block_size - 2*4;
lfs_off_t i = size / b;
if (i == 0) {
return 0;
}
i = (size - 4*(lfs_popc(i-1)+2)) / b;
*off = size - b*i - 4*lfs_popc(i);
return i;
}
static int lfs_ctz_find(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
if (size == 0) {
*block = 0xffffffff;
*off = 0;
return 0;
}
lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
lfs_off_t target = lfs_ctz_index(lfs, &pos);
while (current > target) {
lfs_size_t skip = lfs_min(
lfs_npw2(current-target+1) - 1,
lfs_ctz(current));
int err = lfs_bd_read(lfs,
pcache, rcache, sizeof(head),
head, 4*skip, &head, sizeof(head));
head = lfs_fromle32(head);
if (err) {
return err;
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
current -= 1 << skip;
}
*block = head;
*off = pos;
return 0;
}
static int lfs_ctz_extend(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
lfs_block_t *block, lfs_off_t *off) {
while (true) {
// go ahead and grab a block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count);
{
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (size == 0) {
*block = nblock;
*off = 0;
return 0;
}
size -= 1;
lfs_off_t index = lfs_ctz_index(lfs, &size);
size += 1;
// just copy out the last block if it is incomplete
if (size != lfs->cfg->block_size) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t data;
err = lfs_bd_read(lfs,
NULL, rcache, size-i,
head, i, &data, 1);
if (err) {
return err;
}
err = lfs_bd_prog(lfs,
pcache, rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
*block = nblock;
*off = size;
return 0;
}
// append block
index += 1;
lfs_size_t skips = lfs_ctz(index) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
head = lfs_tole32(head);
err = lfs_bd_prog(lfs, pcache, rcache, true,
nblock, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (i != skips-1) {
err = lfs_bd_read(lfs,
NULL, rcache, sizeof(head),
head, 4*i, &head, sizeof(head));
head = lfs_fromle32(head);
if (err) {
return err;
}
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
}
*block = nblock;
*off = 4*skips;
return 0;
}
relocate:
LFS_DEBUG("Bad block at %"PRIu32, nblock);
// just clear cache and try a new block
lfs_cache_drop(lfs, pcache);
}
}
static int lfs_ctz_traverse(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
int (*cb)(void*, lfs_block_t), void *data) {
if (size == 0) {
return 0;
}
lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
while (true) {
int err = cb(data, head);
if (err) {
return err;
}
if (index == 0) {
return 0;
}
lfs_block_t heads[2];
int count = 2 - (index & 1);
err = lfs_bd_read(lfs,
pcache, rcache, count*sizeof(head),
head, 0, &heads, count*sizeof(head));
heads[0] = lfs_fromle32(heads[0]);
heads[1] = lfs_fromle32(heads[1]);
if (err) {
return err;
}
for (int i = 0; i < count-1; i++) {
err = cb(data, heads[i]);
if (err) {
return err;
}
}
head = heads[count-1];
index -= count;
}
}
/// Top level file operations ///
int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags,
const struct lfs_file_config *cfg) {
// deorphan if we haven't yet, needed at most once after poweron
if ((flags & 3) != LFS_O_RDONLY) {
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
}
// setup simple file details
int err;
file->cfg = cfg;
file->flags = flags;
file->pos = 0;
file->cache.buffer = NULL;
// allocate entry for file if it doesn't exist
lfs_stag_t tag = lfs_dir_find(lfs, &file->m, &path, &file->id);
if (tag < 0 && !(tag == LFS_ERR_NOENT && file->id != 0x3ff)) {
err = tag;
goto cleanup;
}
// get id, add to list of mdirs to catch update changes
file->type = LFS_TYPE_REG;
file->next = (lfs_file_t*)lfs->mlist;
lfs->mlist = (struct lfs_mlist*)file;
if (tag == LFS_ERR_NOENT) {
if (!(flags & LFS_O_CREAT)) {
err = LFS_ERR_NOENT;
goto cleanup;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_max) {
err = LFS_ERR_NAMETOOLONG;
goto cleanup;
}
// get next slot and create entry to remember name
err = lfs_dir_commit(lfs, &file->m, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, file->id, 0), NULL},
{LFS_MKTAG(LFS_TYPE_REG, file->id, nlen), path},
{LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0), NULL}));
if (err) {
err = LFS_ERR_NAMETOOLONG;
goto cleanup;
}
tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, 0);
} else if (flags & LFS_O_EXCL) {
err = LFS_ERR_EXIST;
goto cleanup;
} else if (lfs_tag_type3(tag) != LFS_TYPE_REG) {
err = LFS_ERR_ISDIR;
goto cleanup;
} else if (flags & LFS_O_TRUNC) {
// truncate if requested
tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0);
file->flags |= LFS_F_DIRTY;
} else {
// try to load what's on disk, if it's inlined we'll fix it later
tag = lfs_dir_get(lfs, &file->m, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, file->id, 8), &file->ctz);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs_ctz_fromle32(&file->ctz);
}
// fetch attrs
for (unsigned i = 0; i < file->cfg->attr_count; i++) {
if ((file->flags & 3) != LFS_O_WRONLY) {
lfs_stag_t res = lfs_dir_get(lfs, &file->m,
LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_USERATTR + file->cfg->attrs[i].type,
file->id, file->cfg->attrs[i].size),
file->cfg->attrs[i].buffer);
if (res < 0 && res != LFS_ERR_NOENT) {
err = res;
goto cleanup;
}
}
if ((file->flags & 3) != LFS_O_RDONLY) {
if (file->cfg->attrs[i].size > lfs->attr_max) {
err = LFS_ERR_NOSPC;
goto cleanup;
}
file->flags |= LFS_F_DIRTY;
}
}
// allocate buffer if needed
if (file->cfg->buffer) {
file->cache.buffer = file->cfg->buffer;
} else {
file->cache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!file->cache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leak
lfs_cache_zero(lfs, &file->cache);
if (lfs_tag_type3(tag) == LFS_TYPE_INLINESTRUCT) {
// load inline files
file->ctz.head = 0xfffffffe;
file->ctz.size = lfs_tag_size(tag);
file->flags |= LFS_F_INLINE;
file->cache.block = file->ctz.head;
file->cache.off = 0;
file->cache.size = lfs->cfg->cache_size;
// don't always read (may be new/trunc file)
if (file->ctz.size > 0) {
lfs_stag_t res = lfs_dir_get(lfs, &file->m,
LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, file->id,
lfs_min(file->cache.size, 0x3fe)),
file->cache.buffer);
if (res < 0) {
err = res;
goto cleanup;
}
}
}
return 0;
cleanup:
// clean up lingering resources
file->flags |= LFS_F_ERRED;
lfs_file_close(lfs, file);
return err;
}
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
static const struct lfs_file_config defaults = {0};
return lfs_file_opencfg(lfs, file, path, flags, &defaults);
}
int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_sync(lfs, file);
// remove from list of mdirs
for (struct lfs_mlist **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == (struct lfs_mlist*)file) {
*p = (*p)->next;
break;
}
}
// clean up memory
if (!file->cfg->buffer) {
lfs_free(file->cache.buffer);
}
return err;
}
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
while (true) {
// just relocate what exists into new block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// either read from dirty cache or disk
for (lfs_off_t i = 0; i < file->off; i++) {
uint8_t data;
if (file->flags & LFS_F_INLINE) {
err = lfs_dir_getread(lfs, &file->m,
// note we evict inline files before they can be dirty
NULL, &file->cache, file->off-i,
LFS_MKTAG(0xfff, 0x1ff, 0),
LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0),
i, &data, 1);
if (err) {
return err;
}
} else {
err = lfs_bd_read(lfs,
&file->cache, &lfs->rcache, file->off-i,
file->block, i, &data, 1);
if (err) {
return err;
}
}
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// copy over new state of file
memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->cache_size);
file->cache.block = lfs->pcache.block;
file->cache.off = lfs->pcache.off;
file->cache.size = lfs->pcache.size;
lfs_cache_zero(lfs, &lfs->pcache);
file->block = nblock;
file->flags &= ~LFS_F_INLINE;
file->flags |= LFS_F_WRITING;
return 0;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, nblock);
// just clear cache and try a new block
lfs_cache_drop(lfs, &lfs->pcache);
}
}
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
if (file->flags & LFS_F_READING) {
if (!(file->flags & LFS_F_INLINE)) {
lfs_cache_drop(lfs, &file->cache);
}
file->flags &= ~LFS_F_READING;
}
if (file->flags & LFS_F_WRITING) {
lfs_off_t pos = file->pos;
if (!(file->flags & LFS_F_INLINE)) {
// copy over anything after current branch
lfs_file_t orig = {
.ctz.head = file->ctz.head,
.ctz.size = file->ctz.size,
.flags = LFS_O_RDONLY,
.pos = file->pos,
.cache = lfs->rcache,
};
lfs_cache_drop(lfs, &lfs->rcache);
while (file->pos < file->ctz.size) {
// copy over a byte at a time, leave it up to caching
// to make this efficient
uint8_t data;
lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1);
if (res < 0) {
return res;
}
res = lfs_file_write(lfs, file, &data, 1);
if (res < 0) {
return res;
}
// keep our reference to the rcache in sync
if (lfs->rcache.block != 0xffffffff) {
lfs_cache_drop(lfs, &orig.cache);
lfs_cache_drop(lfs, &lfs->rcache);
}
}
// write out what we have
while (true) {
int err = lfs_bd_flush(lfs, &file->cache, &lfs->rcache, true);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
break;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, file->block);
err = lfs_file_relocate(lfs, file);
if (err) {
return err;
}
}
} else {
file->ctz.size = lfs_max(file->pos, file->ctz.size);
}
// actual file updates
file->ctz.head = file->block;
file->ctz.size = file->pos;
file->flags &= ~LFS_F_WRITING;
file->flags |= LFS_F_DIRTY;
file->pos = pos;
}
return 0;
}
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
while (true) {
int err = lfs_file_flush(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
if ((file->flags & LFS_F_DIRTY) &&
!(file->flags & LFS_F_ERRED) &&
!lfs_pair_isnull(file->m.pair)) {
// update dir entry
uint16_t type;
const void *buffer;
lfs_size_t size;
struct lfs_ctz ctz;
if (file->flags & LFS_F_INLINE) {
// inline the whole file
type = LFS_TYPE_INLINESTRUCT;
buffer = file->cache.buffer;
size = file->ctz.size;
} else {
// update the ctz reference
type = LFS_TYPE_CTZSTRUCT;
// copy ctz so alloc will work during a relocate
ctz = file->ctz;
lfs_ctz_tole32(&ctz);
buffer = &ctz;
size = sizeof(ctz);
}
// commit file data and attributes
err = lfs_dir_commit(lfs, &file->m, LFS_MKATTRS(
{LFS_MKTAG(type, file->id, size), buffer},
{LFS_MKTAG(LFS_FROM_USERATTRS, file->id,
file->cfg->attr_count), file->cfg->attrs}));
if (err) {
if (err == LFS_ERR_NOSPC && (file->flags & LFS_F_INLINE)) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
file->flags &= ~LFS_F_DIRTY;
}
return 0;
relocate:
// inline file doesn't fit anymore
file->off = file->pos;
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_WRONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_WRITING) {
// flush out any writes
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if (file->pos >= file->ctz.size) {
// eof if past end
return 0;
}
size = lfs_min(size, file->ctz.size - file->pos);
nsize = size;
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_READING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
int err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos, &file->block, &file->off);
if (err) {
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_READING;
}
// read as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
if (file->flags & LFS_F_INLINE) {
int err = lfs_dir_getread(lfs, &file->m,
NULL, &file->cache, lfs->cfg->block_size,
LFS_MKTAG(0xfff, 0x1ff, 0),
LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0),
file->off, data, diff);
if (err) {
return err;
}
} else {
int err = lfs_bd_read(lfs,
NULL, &file->cache, lfs->cfg->block_size,
file->block, file->off, data, diff);
if (err) {
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_READING) {
// drop any reads
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if ((file->flags & LFS_O_APPEND) && file->pos < file->ctz.size) {
file->pos = file->ctz.size;
}
if (file->pos + size > lfs->file_max) {
// Larger than file limit?
return LFS_ERR_FBIG;
}
if (!(file->flags & LFS_F_WRITING) && file->pos > file->ctz.size) {
// fill with zeros
lfs_off_t pos = file->pos;
file->pos = file->ctz.size;
while (file->pos < pos) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
}
if ((file->flags & LFS_F_INLINE) &&
lfs_max(file->pos+nsize, file->ctz.size) >
lfs_min(LFS_ATTR_MAX, lfs_min(
lfs->cfg->cache_size, lfs->cfg->block_size/8))) {
// inline file doesn't fit anymore
file->off = file->pos;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_WRITING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
// find out which block we're extending from
int err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos-1, &file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
// mark cache as dirty since we may have read data into it
lfs_cache_zero(lfs, &file->cache);
}
// extend file with new blocks
lfs_alloc_ack(lfs);
int err = lfs_ctz_extend(lfs, &file->cache, &lfs->rcache,
file->block, file->pos,
&file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_WRITING;
}
// program as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
while (true) {
int err = lfs_bd_prog(lfs, &file->cache, &lfs->rcache, true,
file->block, file->off, data, diff);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
break;
relocate:
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
lfs_alloc_ack(lfs);
}
file->flags &= ~LFS_F_ERRED;
return size;
}
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence) {
// write out everything beforehand, may be noop if rdonly
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// find new pos
lfs_off_t npos = file->pos;
if (whence == LFS_SEEK_SET) {
npos = off;
} else if (whence == LFS_SEEK_CUR) {
npos = file->pos + off;
} else if (whence == LFS_SEEK_END) {
npos = file->ctz.size + off;
}
if (npos > lfs->file_max) {
// file position out of range
return LFS_ERR_INVAL;
}
// update pos
file->pos = npos;
return npos;
}
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (size > LFS_FILE_MAX) {
return LFS_ERR_INVAL;
}
lfs_off_t oldsize = lfs_file_size(lfs, file);
if (size < oldsize) {
// need to flush since directly changing metadata
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// lookup new head in ctz skip list
err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
size, &file->block, &file->off);
if (err) {
return err;
}
file->ctz.head = file->block;
file->ctz.size = size;
file->flags |= LFS_F_DIRTY | LFS_F_READING;
} else if (size > oldsize) {
lfs_off_t pos = file->pos;
// flush+seek if not already at end
if (file->pos != oldsize) {
int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END);
if (err < 0) {
return err;
}
}
// fill with zeros
while (file->pos < size) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
// restore pos
int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET);
if (err < 0) {
return err;
}
}
return 0;
}
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
return file->pos;
}
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET);
if (res < 0) {
return res;
}
return 0;
}
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
if (file->flags & LFS_F_WRITING) {
return lfs_max(file->pos, file->ctz.size);
} else {
return file->ctz.size;
}
}
/// General fs operations ///
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
return lfs_dir_getinfo(lfs, &cwd, lfs_tag_id(tag), info);
}
int lfs_remove(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0 || lfs_tag_id(tag) == 0x3ff) {
return (tag < 0) ? tag : LFS_ERR_INVAL;
}
lfs_mdir_t dir;
if (lfs_tag_type3(tag) == LFS_TYPE_DIR) {
// must be empty before removal
lfs_block_t pair[2];
lfs_stag_t res = lfs_dir_get(lfs, &cwd, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
err = lfs_dir_fetch(lfs, &dir, pair);
if (err) {
return err;
}
if (dir.count > 0 || dir.split) {
return LFS_ERR_NOTEMPTY;
}
// mark fs as orphaned
lfs_fs_preporphans(lfs, +1);
}
// delete the entry
err = lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_DELETE, lfs_tag_id(tag), 0), NULL}));
if (err) {
return err;
}
if (lfs_tag_type3(tag) == LFS_TYPE_DIR) {
// fix orphan
lfs_fs_preporphans(lfs, -1);
err = lfs_fs_pred(lfs, dir.pair, &cwd);
if (err) {
return err;
}
err = lfs_dir_drop(lfs, &cwd, &dir);
if (err) {
return err;
}
}
return 0;
}
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
// find old entry
lfs_mdir_t oldcwd;
lfs_stag_t oldtag = lfs_dir_find(lfs, &oldcwd, &oldpath, NULL);
if (oldtag < 0 || lfs_tag_id(oldtag) == 0x3ff) {
return (oldtag < 0) ? oldtag : LFS_ERR_INVAL;
}
// find new entry
lfs_mdir_t newcwd;
uint16_t newid;
lfs_stag_t prevtag = lfs_dir_find(lfs, &newcwd, &newpath, &newid);
if ((prevtag < 0 || lfs_tag_id(prevtag) == 0x3ff) &&
!(prevtag == LFS_ERR_NOENT && newid != 0x3ff)) {
return (prevtag < 0) ? prevtag : LFS_ERR_INVAL;
}
lfs_mdir_t prevdir;
if (prevtag == LFS_ERR_NOENT) {
// check that name fits
lfs_size_t nlen = strlen(newpath);
if (nlen > lfs->name_max) {
return LFS_ERR_NAMETOOLONG;
}
} else if (lfs_tag_type3(prevtag) != lfs_tag_type3(oldtag)) {
return LFS_ERR_ISDIR;
} else if (lfs_tag_type3(prevtag) == LFS_TYPE_DIR) {
// must be empty before removal
lfs_block_t prevpair[2];
lfs_stag_t res = lfs_dir_get(lfs, &newcwd, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, newid, 8), prevpair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(prevpair);
// must be empty before removal
err = lfs_dir_fetch(lfs, &prevdir, prevpair);
if (err) {
return err;
}
if (prevdir.count > 0 || prevdir.split) {
return LFS_ERR_NOTEMPTY;
}
// mark fs as orphaned
lfs_fs_preporphans(lfs, +1);
}
// create move to fix later
uint16_t newoldtagid = lfs_tag_id(oldtag);
if (lfs_pair_cmp(oldcwd.pair, newcwd.pair) == 0 &&
prevtag == LFS_ERR_NOENT && newid <= newoldtagid) {
// there is a small chance we are being renamed in the same directory
// to an id less than our old id, the global update to handle this
// is a bit messy
newoldtagid += 1;
}
lfs_fs_prepmove(lfs, newoldtagid, oldcwd.pair);
// move over all attributes
err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTRS(
{prevtag != LFS_ERR_NOENT
? LFS_MKTAG(LFS_TYPE_DELETE, newid, 0)
: LFS_MKTAG(LFS_FROM_NOOP, 0, 0), NULL},
{LFS_MKTAG(LFS_TYPE_CREATE, newid, 0), NULL},
{LFS_MKTAG(lfs_tag_type3(oldtag), newid, strlen(newpath)),
newpath},
{LFS_MKTAG(LFS_FROM_MOVE, newid, lfs_tag_id(oldtag)), &oldcwd}));
if (err) {
return err;
}
// let commit clean up after move (if we're different! otherwise move
// logic already fixed it for us)
if (lfs_pair_cmp(oldcwd.pair, newcwd.pair) != 0) {
err = lfs_dir_commit(lfs, &oldcwd, NULL, 0);
if (err) {
return err;
}
}
if (prevtag != LFS_ERR_NOENT && lfs_tag_type3(prevtag) == LFS_TYPE_DIR) {
// fix orphan
lfs_fs_preporphans(lfs, -1);
err = lfs_fs_pred(lfs, prevdir.pair, &newcwd);
if (err) {
return err;
}
err = lfs_dir_drop(lfs, &newcwd, &prevdir);
if (err) {
return err;
}
}
return 0;
}
lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
uint8_t type, void *buffer, lfs_size_t size) {
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
uint16_t id = lfs_tag_id(tag);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
}
tag = lfs_dir_get(lfs, &cwd, LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_USERATTR + type,
id, lfs_min(size, lfs->attr_max)),
buffer);
if (tag < 0) {
if (tag == LFS_ERR_NOENT) {
return LFS_ERR_NOATTR;
}
return tag;
}
return lfs_tag_size(tag);
}
static int lfs_commitattr(lfs_t *lfs, const char *path,
uint8_t type, const void *buffer, lfs_size_t size) {
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
uint16_t id = lfs_tag_id(tag);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
}
return lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_USERATTR + type, id, size), buffer}));
}
int lfs_setattr(lfs_t *lfs, const char *path,
uint8_t type, const void *buffer, lfs_size_t size) {
if (size > lfs->attr_max) {
return LFS_ERR_NOSPC;
}
return lfs_commitattr(lfs, path, type, buffer, size);
}
int lfs_removeattr(lfs_t *lfs, const char *path, uint8_t type) {
return lfs_commitattr(lfs, path, type, NULL, 0x3ff);
}
/// Filesystem operations ///
static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
lfs->cfg = cfg;
int err = 0;
// check that block size is a multiple of cache size is a multiple
// of prog and read sizes
LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->prog_size == 0);
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->cache_size == 0);
// check that the block size is large enough to fit ctz pointers
LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
<= lfs->cfg->block_size);
// we don't support some corner cases
LFS_ASSERT(lfs->cfg->block_cycles < 0xffffffff);
// setup read cache
if (lfs->cfg->read_buffer) {
lfs->rcache.buffer = lfs->cfg->read_buffer;
} else {
lfs->rcache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!lfs->rcache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// setup program cache
if (lfs->cfg->prog_buffer) {
lfs->pcache.buffer = lfs->cfg->prog_buffer;
} else {
lfs->pcache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!lfs->pcache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leaks
lfs_cache_zero(lfs, &lfs->rcache);
lfs_cache_zero(lfs, &lfs->pcache);
// setup lookahead, must be multiple of 64-bits
LFS_ASSERT(lfs->cfg->lookahead_size > 0);
LFS_ASSERT(lfs->cfg->lookahead_size % 8 == 0 &&
(uintptr_t)lfs->cfg->lookahead_buffer % 8 == 0);
if (lfs->cfg->lookahead_buffer) {
lfs->free.buffer = lfs->cfg->lookahead_buffer;
} else {
lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead_size);
if (!lfs->free.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// check that the size limits are sane
LFS_ASSERT(lfs->cfg->name_max <= LFS_NAME_MAX);
lfs->name_max = lfs->cfg->name_max;
if (!lfs->name_max) {
lfs->name_max = LFS_NAME_MAX;
}
LFS_ASSERT(lfs->cfg->file_max <= LFS_FILE_MAX);
lfs->file_max = lfs->cfg->file_max;
if (!lfs->file_max) {
lfs->file_max = LFS_FILE_MAX;
}
LFS_ASSERT(lfs->cfg->attr_max <= LFS_ATTR_MAX);
lfs->attr_max = lfs->cfg->attr_max;
if (!lfs->attr_max) {
lfs->attr_max = LFS_ATTR_MAX;
}
// setup default state
lfs->root[0] = 0xffffffff;
lfs->root[1] = 0xffffffff;
lfs->mlist = NULL;
lfs->seed = 0;
lfs->gstate = (struct lfs_gstate){0};
lfs->gpending = (struct lfs_gstate){0};
lfs->gdelta = (struct lfs_gstate){0};
#ifdef LFS_MIGRATE
lfs->lfs1 = NULL;
#endif
return 0;
cleanup:
lfs_deinit(lfs);
return err;
}
static int lfs_deinit(lfs_t *lfs) {
// free allocated memory
if (!lfs->cfg->read_buffer) {
lfs_free(lfs->rcache.buffer);
}
if (!lfs->cfg->prog_buffer) {
lfs_free(lfs->pcache.buffer);
}
if (!lfs->cfg->lookahead_buffer) {
lfs_free(lfs->free.buffer);
}
return 0;
}
int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
int err = 0;
{
err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// create free lookahead
memset(lfs->free.buffer, 0, lfs->cfg->lookahead_size);
lfs->free.off = 0;
lfs->free.size = lfs_min(8*lfs->cfg->lookahead_size,
lfs->cfg->block_count);
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// create root dir
lfs_mdir_t root;
err = lfs_dir_alloc(lfs, &root);
if (err) {
goto cleanup;
}
// write one superblock
lfs_superblock_t superblock = {
.version = LFS_DISK_VERSION,
.block_size = lfs->cfg->block_size,
.block_count = lfs->cfg->block_count,
.name_max = lfs->name_max,
.file_max = lfs->file_max,
.attr_max = lfs->attr_max,
};
lfs_superblock_tole32(&superblock);
err = lfs_dir_commit(lfs, &root, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, 0, 0), NULL},
{LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
{LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock}));
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &root, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
}
cleanup:
lfs_deinit(lfs);
return err;
}
int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// scan directory blocks for superblock and any global updates
lfs_mdir_t dir = {.tail = {0, 1}};
while (!lfs_pair_isnull(dir.tail)) {
// fetch next block in tail list
lfs_stag_t tag = lfs_dir_fetchmatch(lfs, &dir, dir.tail,
LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8),
NULL,
lfs_dir_find_match, &(struct lfs_dir_find_match){
lfs, "littlefs", 8});
if (tag < 0) {
err = tag;
goto cleanup;
}
// has superblock?
if (tag && !lfs_tag_isdelete(tag)) {
// update root
lfs->root[0] = dir.pair[0];
lfs->root[1] = dir.pair[1];
// grab superblock
lfs_superblock_t superblock;
tag = lfs_dir_get(lfs, &dir, LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs_superblock_fromle32(&superblock);
// check version
uint16_t major_version = (0xffff & (superblock.version >> 16));
uint16_t minor_version = (0xffff & (superblock.version >> 0));
if ((major_version != LFS_DISK_VERSION_MAJOR ||
minor_version > LFS_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %"PRIu16".%"PRIu16,
major_version, minor_version);
err = LFS_ERR_INVAL;
goto cleanup;
}
// check superblock configuration
if (superblock.name_max) {
if (superblock.name_max > lfs->name_max) {
LFS_ERROR("Unsupported name_max (%"PRIu32" > %"PRIu32")",
superblock.name_max, lfs->name_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->name_max = superblock.name_max;
}
if (superblock.file_max) {
if (superblock.file_max > lfs->file_max) {
LFS_ERROR("Unsupported file_max (%"PRIu32" > %"PRIu32")",
superblock.file_max, lfs->file_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->file_max = superblock.file_max;
}
if (superblock.attr_max) {
if (superblock.attr_max > lfs->attr_max) {
LFS_ERROR("Unsupported attr_max (%"PRIu32" > %"PRIu32")",
superblock.attr_max, lfs->attr_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->attr_max = superblock.attr_max;
}
}
// has gstate?
err = lfs_dir_getgstate(lfs, &dir, &lfs->gpending);
if (err) {
return err;
}
}
// found superblock?
if (lfs_pair_isnull(lfs->root)) {
err = LFS_ERR_INVAL;
goto cleanup;
}
// update littlefs with gstate
lfs->gpending.tag += !lfs_tag_isvalid(lfs->gpending.tag);
lfs->gstate = lfs->gpending;
if (lfs_gstate_hasmove(&lfs->gstate)) {
LFS_DEBUG("Found move %"PRIu32" %"PRIu32" %"PRIu16,
lfs->gstate.pair[0],
lfs->gstate.pair[1],
lfs_tag_id(lfs->gstate.tag));
}
// setup free lookahead
lfs->free.off = lfs->seed % lfs->cfg->block_size;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
return 0;
cleanup:
lfs_unmount(lfs);
return err;
}
int lfs_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// Filesystem filesystem operations ///
int lfs_fs_traverse(lfs_t *lfs,
int (*cb)(void *data, lfs_block_t block), void *data) {
// iterate over metadata pairs
lfs_mdir_t dir = {.tail = {0, 1}};
#ifdef LFS_MIGRATE
// also consider v1 blocks during migration
if (lfs->lfs1) {
int err = lfs1_traverse(lfs, cb, data);
if (err) {
return err;
}
dir.tail[0] = lfs->root[0];
dir.tail[1] = lfs->root[1];
}
#endif
while (!lfs_pair_isnull(dir.tail)) {
for (int i = 0; i < 2; i++) {
int err = cb(data, dir.tail[i]);
if (err) {
return err;
}
}
// iterate through ids in directory
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
for (uint16_t id = 0; id < dir.count; id++) {
struct lfs_ctz ctz;
lfs_stag_t tag = lfs_dir_get(lfs, &dir, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
if (tag == LFS_ERR_NOENT) {
continue;
}
return tag;
}
lfs_ctz_fromle32(&ctz);
if (lfs_tag_type3(tag) == LFS_TYPE_CTZSTRUCT) {
err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
ctz.head, ctz.size, cb, data);
if (err) {
return err;
}
}
}
}
// iterate over any open files
for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
if (f->type != LFS_TYPE_REG) {
continue;
}
if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
f->ctz.head, f->ctz.size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
return 0;
}
static int lfs_fs_pred(lfs_t *lfs,
const lfs_block_t pair[2], lfs_mdir_t *pdir) {
// iterate over all directory directory entries
pdir->tail[0] = 0;
pdir->tail[1] = 1;
while (!lfs_pair_isnull(pdir->tail)) {
if (lfs_pair_cmp(pdir->tail, pair) == 0) {
return 0;
}
int err = lfs_dir_fetch(lfs, pdir, pdir->tail);
if (err) {
return err;
}
}
return LFS_ERR_NOENT;
}
struct lfs_fs_parent_match {
lfs_t *lfs;
const lfs_block_t pair[2];
};
static int lfs_fs_parent_match(void *data,
lfs_tag_t tag, const void *buffer) {
struct lfs_fs_parent_match *find = data;
lfs_t *lfs = find->lfs;
const struct lfs_diskoff *disk = buffer;
(void)tag;
lfs_block_t child[2];
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
disk->block, disk->off, &child, sizeof(child));
if (err) {
return err;
}
lfs_pair_fromle32(child);
return (lfs_pair_cmp(child, find->pair) == 0) ? LFS_CMP_EQ : LFS_CMP_LT;
}
static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t pair[2],
lfs_mdir_t *parent) {
// use fetchmatch with callback to find pairs
parent->tail[0] = 0;
parent->tail[1] = 1;
while (!lfs_pair_isnull(parent->tail)) {
lfs_stag_t tag = lfs_dir_fetchmatch(lfs, parent, parent->tail,
LFS_MKTAG(0x7ff, 0, 0x3ff),
LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, 8),
NULL,
lfs_fs_parent_match, &(struct lfs_fs_parent_match){
lfs, {pair[0], pair[1]}});
if (tag && tag != LFS_ERR_NOENT) {
return tag;
}
}
return LFS_ERR_NOENT;
}
static int lfs_fs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], lfs_block_t newpair[2]) {
// update internal root
if (lfs_pair_cmp(oldpair, lfs->root) == 0) {
LFS_DEBUG("Relocating root %"PRIu32" %"PRIu32,
newpair[0], newpair[1]);
lfs->root[0] = newpair[0];
lfs->root[1] = newpair[1];
}
// update internally tracked dirs
for (struct lfs_mlist *d = lfs->mlist; d; d = d->next) {
if (lfs_pair_cmp(oldpair, d->m.pair) == 0) {
d->m.pair[0] = newpair[0];
d->m.pair[1] = newpair[1];
}
}
// find parent
lfs_mdir_t parent;
lfs_stag_t tag = lfs_fs_parent(lfs, oldpair, &parent);
if (tag < 0 && tag != LFS_ERR_NOENT) {
return tag;
}
if (tag != LFS_ERR_NOENT) {
// update disk, this creates a desync
lfs_fs_preporphans(lfs, +1);
lfs_pair_tole32(newpair);
int err = lfs_dir_commit(lfs, &parent, LFS_MKATTRS({tag, newpair}));
lfs_pair_fromle32(newpair);
if (err) {
return err;
}
// next step, clean up orphans
lfs_fs_preporphans(lfs, -1);
}
// find pred
int err = lfs_fs_pred(lfs, oldpair, &parent);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// if we can't find dir, it must be new
if (err != LFS_ERR_NOENT) {
// replace bad pair, either we clean up desync, or no desync occured
lfs_pair_tole32(newpair);
err = lfs_dir_commit(lfs, &parent, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_TAIL + parent.split, 0x3ff, 8), newpair}));
lfs_pair_fromle32(newpair);
if (err) {
return err;
}
}
return 0;
}
static void lfs_fs_preporphans(lfs_t *lfs, int8_t orphans) {
lfs->gpending.tag += orphans;
lfs_gstate_xororphans(&lfs->gdelta, &lfs->gpending,
lfs_gstate_hasorphans(&lfs->gpending));
lfs_gstate_xororphans(&lfs->gpending, &lfs->gpending,
lfs_gstate_hasorphans(&lfs->gpending));
}
static void lfs_fs_prepmove(lfs_t *lfs,
uint16_t id, const lfs_block_t pair[2]) {
lfs_gstate_xormove(&lfs->gdelta, &lfs->gpending, id, pair);
lfs_gstate_xormove(&lfs->gpending, &lfs->gpending, id, pair);
}
static int lfs_fs_demove(lfs_t *lfs) {
if (!lfs_gstate_hasmove(&lfs->gstate)) {
return 0;
}
// Fix bad moves
LFS_DEBUG("Fixing move %"PRIu32" %"PRIu32" %"PRIu16,
lfs->gstate.pair[0],
lfs->gstate.pair[1],
lfs_tag_id(lfs->gstate.tag));
// fetch and delete the moved entry
lfs_mdir_t movedir;
int err = lfs_dir_fetch(lfs, &movedir, lfs->gstate.pair);
if (err) {
return err;
}
// rely on cancel logic inside commit
err = lfs_dir_commit(lfs, &movedir, NULL, 0);
if (err) {
return err;
}
return 0;
}
static int lfs_fs_deorphan(lfs_t *lfs) {
if (!lfs_gstate_hasorphans(&lfs->gstate)) {
return 0;
}
// Fix any orphans
lfs_mdir_t pdir = {.split = true};
lfs_mdir_t dir = {.tail = {0, 1}};
// iterate over all directory directory entries
while (!lfs_pair_isnull(dir.tail)) {
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!pdir.split) {
// check if we have a parent
lfs_mdir_t parent;
lfs_stag_t tag = lfs_fs_parent(lfs, pdir.tail, &parent);
if (tag < 0 && tag != LFS_ERR_NOENT) {
return tag;
}
if (tag == LFS_ERR_NOENT) {
// we are an orphan
LFS_DEBUG("Fixing orphan %"PRIu32" %"PRIu32,
pdir.tail[0], pdir.tail[1]);
err = lfs_dir_drop(lfs, &pdir, &dir);
if (err) {
return err;
}
break;
}
lfs_block_t pair[2];
lfs_stag_t res = lfs_dir_get(lfs, &parent,
LFS_MKTAG(0x7ff, 0x3ff, 0), tag, pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
if (!lfs_pair_sync(pair, pdir.tail)) {
// we have desynced
LFS_DEBUG("Fixing half-orphan %"PRIu32" %"PRIu32,
pair[0], pair[1]);
lfs_pair_tole32(pair);
err = lfs_dir_commit(lfs, &pdir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), pair}));
lfs_pair_fromle32(pair);
if (err) {
return err;
}
break;
}
}
memcpy(&pdir, &dir, sizeof(pdir));
}
// mark orphans as fixed
lfs_fs_preporphans(lfs, -lfs_gstate_getorphans(&lfs->gstate));
lfs->gstate = lfs->gpending;
return 0;
}
static int lfs_fs_forceconsistency(lfs_t *lfs) {
int err = lfs_fs_demove(lfs);
if (err) {
return err;
}
err = lfs_fs_deorphan(lfs);
if (err) {
return err;
}
return 0;
}
static int lfs_fs_size_count(void *p, lfs_block_t block) {
(void)block;
lfs_size_t *size = p;
*size += 1;
return 0;
}
lfs_ssize_t lfs_fs_size(lfs_t *lfs) {
lfs_size_t size = 0;
int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size);
if (err) {
return err;
}
return size;
}
#ifdef LFS_MIGRATE
////// Migration from littelfs v1 below this //////
/// Version info ///
// Software library version
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS1_VERSION 0x00010007
#define LFS1_VERSION_MAJOR (0xffff & (LFS1_VERSION >> 16))
#define LFS1_VERSION_MINOR (0xffff & (LFS1_VERSION >> 0))
// Version of On-disk data structures
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS1_DISK_VERSION 0x00010001
#define LFS1_DISK_VERSION_MAJOR (0xffff & (LFS1_DISK_VERSION >> 16))
#define LFS1_DISK_VERSION_MINOR (0xffff & (LFS1_DISK_VERSION >> 0))
/// v1 Definitions ///
// File types
enum lfs1_type {
LFS1_TYPE_REG = 0x11,
LFS1_TYPE_DIR = 0x22,
LFS1_TYPE_SUPERBLOCK = 0x2e,
};
typedef struct lfs1 {
lfs_block_t root[2];
} lfs1_t;
typedef struct lfs1_entry {
lfs_off_t off;
struct lfs1_disk_entry {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
union {
struct {
lfs_block_t head;
lfs_size_t size;
} file;
lfs_block_t dir[2];
} u;
} d;
} lfs1_entry_t;
typedef struct lfs1_dir {
struct lfs1_dir *next;
lfs_block_t pair[2];
lfs_off_t off;
lfs_block_t head[2];
lfs_off_t pos;
struct lfs1_disk_dir {
uint32_t rev;
lfs_size_t size;
lfs_block_t tail[2];
} d;
} lfs1_dir_t;
typedef struct lfs1_superblock {
lfs_off_t off;
struct lfs1_disk_superblock {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
lfs_block_t root[2];
uint32_t block_size;
uint32_t block_count;
uint32_t version;
char magic[8];
} d;
} lfs1_superblock_t;
/// Low-level wrappers v1->v2 ///
static void lfs1_crc(uint32_t *crc, const void *buffer, size_t size) {
*crc = lfs_crc(*crc, buffer, size);
}
static int lfs1_bd_read(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
// if we ever do more than writes to alternating pairs,
// this may need to consider pcache
return lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, size,
block, off, buffer, size);
}
static int lfs1_bd_crc(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, uint32_t *crc) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs1_bd_read(lfs, block, off+i, &c, 1);
if (err) {
return err;
}
lfs1_crc(crc, &c, 1);
}
return 0;
}
/// Endian swapping functions ///
static void lfs1_dir_fromle32(struct lfs1_disk_dir *d) {
d->rev = lfs_fromle32(d->rev);
d->size = lfs_fromle32(d->size);
d->tail[0] = lfs_fromle32(d->tail[0]);
d->tail[1] = lfs_fromle32(d->tail[1]);
}
static void lfs1_dir_tole32(struct lfs1_disk_dir *d) {
d->rev = lfs_tole32(d->rev);
d->size = lfs_tole32(d->size);
d->tail[0] = lfs_tole32(d->tail[0]);
d->tail[1] = lfs_tole32(d->tail[1]);
}
static void lfs1_entry_fromle32(struct lfs1_disk_entry *d) {
d->u.dir[0] = lfs_fromle32(d->u.dir[0]);
d->u.dir[1] = lfs_fromle32(d->u.dir[1]);
}
static void lfs1_entry_tole32(struct lfs1_disk_entry *d) {
d->u.dir[0] = lfs_tole32(d->u.dir[0]);
d->u.dir[1] = lfs_tole32(d->u.dir[1]);
}
static void lfs1_superblock_fromle32(struct lfs1_disk_superblock *d) {
d->root[0] = lfs_fromle32(d->root[0]);
d->root[1] = lfs_fromle32(d->root[1]);
d->block_size = lfs_fromle32(d->block_size);
d->block_count = lfs_fromle32(d->block_count);
d->version = lfs_fromle32(d->version);
}
///// Metadata pair and directory operations ///
static inline lfs_size_t lfs1_entry_size(const lfs1_entry_t *entry) {
return 4 + entry->d.elen + entry->d.alen + entry->d.nlen;
}
static int lfs1_dir_fetch(lfs_t *lfs,
lfs1_dir_t *dir, const lfs_block_t pair[2]) {
// copy out pair, otherwise may be aliasing dir
const lfs_block_t tpair[2] = {pair[0], pair[1]};
bool valid = false;
// check both blocks for the most recent revision
for (int i = 0; i < 2; i++) {
struct lfs1_disk_dir test;
int err = lfs1_bd_read(lfs, tpair[i], 0, &test, sizeof(test));
lfs1_dir_fromle32(&test);
if (err) {
if (err == LFS_ERR_CORRUPT) {
continue;
}
return err;
}
if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
continue;
}
if ((0x7fffffff & test.size) < sizeof(test)+4 ||
(0x7fffffff & test.size) > lfs->cfg->block_size) {
continue;
}
uint32_t crc = 0xffffffff;
lfs1_dir_tole32(&test);
lfs1_crc(&crc, &test, sizeof(test));
lfs1_dir_fromle32(&test);
err = lfs1_bd_crc(lfs, tpair[i], sizeof(test),
(0x7fffffff & test.size) - sizeof(test), &crc);
if (err) {
if (err == LFS_ERR_CORRUPT) {
continue;
}
return err;
}
if (crc != 0) {
continue;
}
valid = true;
// setup dir in case it's valid
dir->pair[0] = tpair[(i+0) % 2];
dir->pair[1] = tpair[(i+1) % 2];
dir->off = sizeof(dir->d);
dir->d = test;
}
if (!valid) {
LFS_ERROR("Corrupted dir pair at %" PRIu32 " %" PRIu32 ,
tpair[0], tpair[1]);
return LFS_ERR_CORRUPT;
}
return 0;
}
static int lfs1_dir_next(lfs_t *lfs, lfs1_dir_t *dir, lfs1_entry_t *entry) {
while (dir->off + sizeof(entry->d) > (0x7fffffff & dir->d.size)-4) {
if (!(0x80000000 & dir->d.size)) {
entry->off = dir->off;
return LFS_ERR_NOENT;
}
int err = lfs1_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
dir->off = sizeof(dir->d);
dir->pos += sizeof(dir->d) + 4;
}
int err = lfs1_bd_read(lfs, dir->pair[0], dir->off,
&entry->d, sizeof(entry->d));
lfs1_entry_fromle32(&entry->d);
if (err) {
return err;
}
entry->off = dir->off;
dir->off += lfs1_entry_size(entry);
dir->pos += lfs1_entry_size(entry);
return 0;
}
/// littlefs v1 specific operations ///
int lfs1_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
if (lfs_pair_isnull(lfs->lfs1->root)) {
return 0;
}
// iterate over metadata pairs
lfs1_dir_t dir;
lfs1_entry_t entry;
lfs_block_t cwd[2] = {0, 1};
while (true) {
for (int i = 0; i < 2; i++) {
int err = cb(data, cwd[i]);
if (err) {
return err;
}
}
int err = lfs1_dir_fetch(lfs, &dir, cwd);
if (err) {
return err;
}
// iterate over contents
while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
err = lfs1_bd_read(lfs, dir.pair[0], dir.off,
&entry.d, sizeof(entry.d));
lfs1_entry_fromle32(&entry.d);
if (err) {
return err;
}
dir.off += lfs1_entry_size(&entry);
if ((0x70 & entry.d.type) == (0x70 & LFS1_TYPE_REG)) {
err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
entry.d.u.file.head, entry.d.u.file.size, cb, data);
if (err) {
return err;
}
}
}
// we also need to check if we contain a threaded v2 directory
lfs_mdir_t dir2 = {.split=true, .tail={cwd[0], cwd[1]}};
while (dir2.split) {
err = lfs_dir_fetch(lfs, &dir2, dir2.tail);
if (err) {
break;
}
for (int i = 0; i < 2; i++) {
err = cb(data, dir2.pair[i]);
if (err) {
return err;
}
}
}
cwd[0] = dir.d.tail[0];
cwd[1] = dir.d.tail[1];
if (lfs_pair_isnull(cwd)) {
break;
}
}
return 0;
}
static int lfs1_moved(lfs_t *lfs, const void *e) {
if (lfs_pair_isnull(lfs->lfs1->root)) {
return 0;
}
// skip superblock
lfs1_dir_t cwd;
int err = lfs1_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
// iterate over all directory directory entries
lfs1_entry_t entry;
while (!lfs_pair_isnull(cwd.d.tail)) {
err = lfs1_dir_fetch(lfs, &cwd, cwd.d.tail);
if (err) {
return err;
}
while (true) {
err = lfs1_dir_next(lfs, &cwd, &entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
if (!(0x80 & entry.d.type) &&
memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
return true;
}
}
}
return false;
}
/// Filesystem operations ///
static int lfs1_mount(lfs_t *lfs, struct lfs1 *lfs1,
const struct lfs_config *cfg) {
int err = 0;
{
err = lfs_init(lfs, cfg);
if (err) {
return err;
}
lfs->lfs1 = lfs1;
lfs->lfs1->root[0] = 0xffffffff;
lfs->lfs1->root[1] = 0xffffffff;
// setup free lookahead
lfs->free.off = 0;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// load superblock
lfs1_dir_t dir;
lfs1_superblock_t superblock;
err = lfs1_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err && err != LFS_ERR_CORRUPT) {
goto cleanup;
}
if (!err) {
err = lfs1_bd_read(lfs, dir.pair[0], sizeof(dir.d),
&superblock.d, sizeof(superblock.d));
lfs1_superblock_fromle32(&superblock.d);
if (err) {
goto cleanup;
}
lfs->lfs1->root[0] = superblock.d.root[0];
lfs->lfs1->root[1] = superblock.d.root[1];
}
if (err || memcmp(superblock.d.magic, "littlefs", 8) != 0) {
LFS_ERROR("Invalid superblock at %d %d", 0, 1);
err = LFS_ERR_CORRUPT;
goto cleanup;
}
uint16_t major_version = (0xffff & (superblock.d.version >> 16));
uint16_t minor_version = (0xffff & (superblock.d.version >> 0));
if ((major_version != LFS1_DISK_VERSION_MAJOR ||
minor_version > LFS1_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %d.%d", major_version, minor_version);
err = LFS_ERR_INVAL;
goto cleanup;
}
return 0;
}
cleanup:
lfs_deinit(lfs);
return err;
}
static int lfs1_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// v1 migration ///
int lfs_migrate(lfs_t *lfs, const struct lfs_config *cfg) {
struct lfs1 lfs1;
int err = lfs1_mount(lfs, &lfs1, cfg);
if (err) {
return err;
}
{
// iterate through each directory, copying over entries
// into new directory
lfs1_dir_t dir1;
lfs_mdir_t dir2;
dir1.d.tail[0] = lfs->lfs1->root[0];
dir1.d.tail[1] = lfs->lfs1->root[1];
while (!lfs_pair_isnull(dir1.d.tail)) {
// iterate old dir
err = lfs1_dir_fetch(lfs, &dir1, dir1.d.tail);
if (err) {
goto cleanup;
}
// create new dir and bind as temporary pretend root
err = lfs_dir_alloc(lfs, &dir2);
if (err) {
goto cleanup;
}
dir2.rev = dir1.d.rev;
dir1.head[0] = dir1.pair[0];
dir1.head[1] = dir1.pair[1];
lfs->root[0] = dir2.pair[0];
lfs->root[1] = dir2.pair[1];
err = lfs_dir_commit(lfs, &dir2, NULL, 0);
if (err) {
goto cleanup;
}
while (true) {
lfs1_entry_t entry1;
err = lfs1_dir_next(lfs, &dir1, &entry1);
if (err && err != LFS_ERR_NOENT) {
goto cleanup;
}
if (err == LFS_ERR_NOENT) {
break;
}
// check that entry has not been moved
if (entry1.d.type & 0x80) {
int moved = lfs1_moved(lfs, &entry1.d.u);
if (moved < 0) {
err = moved;
goto cleanup;
}
if (moved) {
continue;
}
entry1.d.type &= ~0x80;
}
// also fetch name
char name[LFS_NAME_MAX+1];
memset(name, 0, sizeof(name));
err = lfs1_bd_read(lfs, dir1.pair[0],
entry1.off + 4+entry1.d.elen+entry1.d.alen,
name, entry1.d.nlen);
if (err) {
goto cleanup;
}
bool isdir = (entry1.d.type == LFS1_TYPE_DIR);
// create entry in new dir
err = lfs_dir_fetch(lfs, &dir2, lfs->root);
if (err) {
goto cleanup;
}
uint16_t id;
err = lfs_dir_find(lfs, &dir2, &(const char*){name}, &id);
if (!(err == LFS_ERR_NOENT && id != 0x3ff)) {
err = (err < 0) ? err : LFS_ERR_EXIST;
goto cleanup;
}
lfs1_entry_tole32(&entry1.d);
err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, id, 0), NULL},
{LFS_MKTAG(
isdir ? LFS_TYPE_DIR : LFS_TYPE_REG,
id, entry1.d.nlen), name},
{LFS_MKTAG(
isdir ? LFS_TYPE_DIRSTRUCT : LFS_TYPE_CTZSTRUCT,
id, sizeof(&entry1.d.u)), &entry1.d.u}));
lfs1_entry_fromle32(&entry1.d);
if (err) {
goto cleanup;
}
}
if (!lfs_pair_isnull(dir1.d.tail)) {
// find last block and update tail to thread into fs
err = lfs_dir_fetch(lfs, &dir2, lfs->root);
if (err) {
goto cleanup;
}
while (dir2.split) {
err = lfs_dir_fetch(lfs, &dir2, dir2.tail);
if (err) {
goto cleanup;
}
}
lfs_pair_tole32(dir2.pair);
err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 0),
dir1.d.tail}));
lfs_pair_fromle32(dir2.pair);
if (err) {
goto cleanup;
}
}
// Copy over first block to thread into fs. Unfortunately
// if this fails there is not much we can do.
LFS_DEBUG("Migrating %"PRIu32" %"PRIu32" -> %"PRIu32" %"PRIu32,
lfs->root[0], lfs->root[1], dir1.head[0], dir1.head[1]);
err = lfs_bd_erase(lfs, dir1.head[1]);
if (err) {
goto cleanup;
}
err = lfs_dir_fetch(lfs, &dir2, lfs->root);
if (err) {
goto cleanup;
}
for (lfs_off_t i = 0; i < dir2.off; i++) {
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, dir2.off,
dir2.pair[0], i, &dat, 1);
if (err) {
goto cleanup;
}
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, true,
dir1.head[1], i, &dat, 1);
if (err) {
goto cleanup;
}
}
}
// Create new superblock. This marks a successful migration!
err = lfs1_dir_fetch(lfs, &dir1, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
dir2.pair[0] = dir1.pair[0];
dir2.pair[1] = dir1.pair[1];
dir2.rev = dir1.d.rev;
dir2.off = sizeof(dir2.rev);
dir2.etag = 0xffffffff;
dir2.count = 0;
dir2.tail[0] = lfs->lfs1->root[0];
dir2.tail[1] = lfs->lfs1->root[1];
dir2.erased = false;
dir2.split = true;
lfs_superblock_t superblock = {
.version = LFS_DISK_VERSION,
.block_size = lfs->cfg->block_size,
.block_count = lfs->cfg->block_count,
.name_max = lfs->name_max,
.file_max = lfs->file_max,
.attr_max = lfs->attr_max,
};
lfs_superblock_tole32(&superblock);
err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, 0, 0), NULL},
{LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
{LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock}));
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &dir2, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
}
cleanup:
lfs1_unmount(lfs);
return err;
}
#endif