Christopher Haster 7050922623 Added optional block-level caching
This adds caching of the most recent read/program blocks, allowing
support of devices that don't have byte-level read+writes, along
with reduced device access on devices that do support byte-level
read+writes.

Note: The current implementation is a bit eager to drop caches where
it simplifies the cache layer. This layer is already complex enough.

Note: It may be worthwhile to add a compile switch for caching to
reduce code size, note sure.

Note: This does add a dependency on malloc, which could have a porting
layer, but I'm just using the functions from stdlib for now. These can be
overwritten with noops if the user controls the system, and keeps things
simple for now.
2017-04-22 16:00:40 -05:00

1566 lines
40 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2017 Christopher Haster
* Distributed under the MIT license
*/
#include "lfs.h"
#include "lfs_util.h"
#include <string.h>
#include <stdbool.h>
#include <stdlib.h>
/// Block device operations ///
static int lfs_bd_flush(lfs_t *lfs) {
if (lfs->pcache.off != -1) {
int err = lfs->cfg->prog(lfs->cfg, lfs->pcache.block,
lfs->pcache.off, lfs->cfg->prog_size,
lfs->pcache.buffer);
if (err) {
return err;
}
lfs->pcache.off = -1;
}
return 0;
}
static int lfs_bd_read(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, void *buffer) {
uint8_t *data = buffer;
// flush overlapping programs
while (size > 0) {
if (block == lfs->pcache.block && off >= lfs->pcache.off &&
off < lfs->pcache.off + lfs->cfg->prog_size) {
// is already in cache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->prog_size - (off-lfs->pcache.off));
memcpy(data, &lfs->pcache.buffer[off-lfs->pcache.off], diff);
data += diff;
off += diff;
size -= diff;
continue;
} else if (block == lfs->rcache.block && off >= lfs->rcache.off &&
off < lfs->rcache.off + lfs->cfg->read_size) {
// is already in cache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->read_size - (off-lfs->rcache.off));
memcpy(data, &lfs->rcache.buffer[off-lfs->rcache.off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// write out pending programs
int err = lfs_bd_flush(lfs);
if (err) {
return err;
}
if (off % lfs->cfg->read_size == 0 &&
size >= lfs->cfg->read_size) {
// bypass cache?
lfs_size_t diff = size - (size % lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, block, off, diff, data);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// load to cache, first condition can no longer fail
lfs->rcache.block = block;
lfs->rcache.off = off - (off % lfs->cfg->read_size);
// TODO remove reading, should be unnecessary
err = lfs->cfg->read(lfs->cfg, lfs->rcache.block,
lfs->rcache.off, lfs->cfg->read_size,
lfs->rcache.buffer);
if (err) {
return err;
}
}
return 0;
}
static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, const void *buffer) {
const uint8_t *data = buffer;
if (block == lfs->rcache.block) {
// invalidate read cache
lfs->rcache.off = -1;
}
while (size > 0) {
if (block == lfs->pcache.block && off >= lfs->pcache.off &&
off < lfs->pcache.off + lfs->cfg->prog_size) {
// is already in cache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->prog_size - (off-lfs->pcache.off));
memcpy(&lfs->pcache.buffer[off-lfs->pcache.off], data, diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// write out pending programs
int err = lfs_bd_flush(lfs);
if (err) {
return err;
}
if (off % lfs->cfg->prog_size == 0 &&
size >= lfs->cfg->prog_size) {
// bypass cache?
lfs_size_t diff = size - (size % lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, block, off, diff, data);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// prepare cache, first condition can no longer fail
lfs->pcache.block = block;
lfs->pcache.off = off - (off % lfs->cfg->prog_size);
err = lfs->cfg->read(lfs->cfg, lfs->pcache.block,
lfs->pcache.off, lfs->cfg->prog_size,
lfs->pcache.buffer);
if (err) {
return err;
}
}
return 0;
}
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
return lfs->cfg->erase(lfs->cfg, block);
}
static int lfs_bd_sync(lfs_t *lfs) {
int err = lfs_bd_flush(lfs);
if (err) {
return err;
}
return lfs->cfg->sync(lfs->cfg);
}
static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, const void *buffer) {
const uint8_t *data = buffer;
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs_bd_read(lfs, block, off+i, 1, &c);
if (err) {
return err;
}
if (c != data[i]) {
return false;
}
}
return true;
}
/// Block allocator ///
static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
lfs_t *lfs = p;
lfs_block_t off = block - lfs->free.begin;
if (off < LFS_CFG_LOOKAHEAD) {
lfs->lookahead[off / 32] |= 1U << (off % 32);
}
return 0;
}
static int lfs_alloc_stride(void *p, lfs_block_t block) {
lfs_t *lfs = p;
lfs_block_t noff = block - lfs->free.begin;
lfs_block_t off = lfs->free.end - lfs->free.begin;
if (noff < off) {
lfs->free.end = noff + lfs->free.begin;
}
return 0;
}
static int lfs_alloc_scan(lfs_t *lfs) {
lfs_block_t start = lfs->free.begin;
while (true) {
// mask out blocks in lookahead region
memset(lfs->lookahead, 0, sizeof(lfs->lookahead));
int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs);
if (err) {
return err;
}
// check if we've found a free block
for (uint32_t off = 0; off < LFS_CFG_LOOKAHEAD; off++) {
if (lfs->lookahead[off / 32] & (1U << (off % 32))) {
continue;
}
// found free block, now find stride of free blocks
// since this is relatively cheap (stress on relatively)
lfs->free.begin += off;
lfs->free.end = lfs->cfg->block_count; // before superblock
// find maximum stride in tree
return lfs_traverse(lfs, lfs_alloc_stride, lfs);
}
// continue to next lookahead unless we've searched the whole device
if (start-1 - lfs->free.begin < LFS_CFG_LOOKAHEAD) {
return 0;
}
// continue to next lookahead region
lfs->free.begin += LFS_CFG_LOOKAHEAD;
}
}
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
// If we don't remember any free blocks we will need to start searching
if (lfs->free.begin == lfs->free.end) {
int err = lfs_alloc_scan(lfs);
if (err) {
return err;
}
if (lfs->free.begin == lfs->free.end) {
// Still can't allocate a block? check for orphans
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
err = lfs_alloc_scan(lfs);
if (err) {
return err;
}
if (lfs->free.begin == lfs->free.end) {
// Ok, it's true, we're out of space
return LFS_ERROR_NO_SPACE;
}
}
}
// Take first available block
*block = lfs->free.begin;
lfs->free.begin += 1;
return 0;
}
static int lfs_alloc_erased(lfs_t *lfs, lfs_block_t *block) {
// TODO rm me?
int err = lfs_alloc(lfs, block);
if (err) {
return err;
}
return lfs_bd_erase(lfs, *block);
}
/// Index list operations ///
// Next index offset
static lfs_off_t lfs_indexnext(lfs_t *lfs, lfs_off_t ioff) {
ioff += 1;
while (ioff % lfs->words == 0) {
ioff += lfs_min(lfs_ctz(ioff/lfs->words + 1), lfs->words-1) + 1;
}
return ioff;
}
static lfs_off_t lfs_indexfrom(lfs_t *lfs, lfs_off_t off) {
lfs_off_t i = 0;
while (off > lfs->cfg->block_size) {
i = lfs_indexnext(lfs, i);
off -= lfs->cfg->block_size;
}
return i;
}
// Find index in index chain given its index offset
static int lfs_index_find(lfs_t *lfs, lfs_block_t head,
lfs_size_t icount, lfs_off_t ioff, lfs_block_t *block) {
lfs_off_t iitarget = ioff / lfs->words;
lfs_off_t iicurrent = (icount-1) / lfs->words;
while (iitarget != iicurrent) {
lfs_size_t skip = lfs_min(
lfs_min(lfs_ctz(iicurrent+1), lfs->words-1),
lfs_npw2((iitarget ^ iicurrent)+1)-1);
int err = lfs_bd_read(lfs, head, 4*skip, 4, &head);
if (err) {
return err;
}
iicurrent -= 1 << skip;
}
return lfs_bd_read(lfs, head, 4*(ioff % lfs->words), 4, block);
}
// Append index to index chain, updates head and icount
static int lfs_index_append(lfs_t *lfs, lfs_block_t *headp,
lfs_size_t *icountp, lfs_block_t block) {
lfs_block_t head = *headp;
lfs_size_t ioff = *icountp - 1;
ioff += 1;
while (ioff % lfs->words == 0) {
lfs_block_t nhead;
int err = lfs_alloc_erased(lfs, &nhead);
if (err) {
return err;
}
lfs_off_t skips = lfs_min(
lfs_ctz(ioff/lfs->words + 1), lfs->words-2) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
err = lfs_bd_prog(lfs, nhead, 4*i, 4, &head);
if (err) {
return err;
}
if (head && i != skips-1) {
err = lfs_bd_read(lfs, head, 4*i, 4, &head);
if (err) {
return err;
}
}
}
ioff += skips;
head = nhead;
}
int err = lfs_bd_prog(lfs, head, 4*(ioff % lfs->words), 4, &block);
if (err) {
return err;
}
*headp = head;
*icountp = ioff + 1;
return 0;
}
static int lfs_index_traverse(lfs_t *lfs, lfs_block_t head,
lfs_size_t icount, int (*cb)(void*, lfs_block_t), void *data) {
lfs_off_t iicurrent = (icount-1) / lfs->words;
while (iicurrent > 0) {
int err = cb(data, head);
if (err) {
return err;
}
lfs_size_t skip = lfs_min(lfs_ctz(iicurrent+1), lfs->words-1);
for (lfs_off_t i = skip; i < lfs->words; i++) {
lfs_block_t block;
int err = lfs_bd_read(lfs, head, 4*i, 4, &block);
if (err) {
return err;
}
err = cb(data, block);
if (err) {
return err;
}
}
err = lfs_bd_read(lfs, head, 0, 4, &head);
if (err) {
return err;
}
iicurrent -= 1;
}
int err = cb(data, head);
if (err) {
return err;
}
for (lfs_off_t i = 0; i < lfs->words; i++) {
lfs_block_t block;
int err = lfs_bd_read(lfs, head, 4*i, 4, &block);
if (err) {
return err;
}
err = cb(data, block);
if (err) {
return err;
}
}
return 0;
}
/// Metadata pair and directory operations ///
static inline void lfs_pairswap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pairisnull(const lfs_block_t pair[2]) {
return !pair[0] || !pair[1];
}
static inline int lfs_paircmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !((paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]));
}
static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) {
// Allocate pair of dir blocks
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[i]);
if (err) {
return err;
}
}
// Rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs_bd_read(lfs, dir->pair[0], 0, 4, &dir->d.rev);
if (err) {
return err;
}
// Set defaults
dir->d.rev += 1;
dir->d.size = sizeof(dir->d);
dir->d.tail[0] = 0;
dir->d.tail[1] = 0;
dir->off = sizeof(dir->d);
// Don't write out yet, let caller take care of that
return 0;
}
static int lfs_dir_fetch(lfs_t *lfs,
lfs_dir_t *dir, const lfs_block_t pair[2]) {
// copy out pair, otherwise may be aliasing dir
const lfs_block_t tpair[2] = {pair[0], pair[1]};
bool valid = false;
// check both blocks for the most recent revision
for (int i = 0; i < 2; i++) {
struct lfs_disk_dir test;
int err = lfs_bd_read(lfs, tpair[i], 0, sizeof(test), &test);
if (err) {
return err;
}
if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
continue;
}
uint32_t crc = 0xffffffff;
crc = lfs_crc(crc, sizeof(test), &test);
for (lfs_off_t j = sizeof(test); j < lfs->cfg->block_size; j += 4) {
uint32_t word;
int err = lfs_bd_read(lfs, tpair[i], j, 4, &word);
if (err) {
return err;
}
crc = lfs_crc(crc, 4, &word);
}
if (crc != 0) {
continue;
}
valid = true;
// setup dir in case it's valid
dir->pair[0] = tpair[(i+0) % 2];
dir->pair[1] = tpair[(i+1) % 2];
dir->off = sizeof(dir->d);
dir->d = test;
}
if (!valid) {
LFS_ERROR("Corrupted dir pair at %d %d", tpair[0], tpair[1]);
return LFS_ERROR_CORRUPT;
}
return 0;
}
static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir,
const lfs_entry_t *entry, const void *data) {
dir->d.rev += 1;
lfs_pairswap(dir->pair);
int err = lfs_bd_erase(lfs, dir->pair[0]);
if (err) {
return err;
}
uint32_t crc = 0xffffffff;
crc = lfs_crc(crc, sizeof(dir->d), &dir->d);
err = lfs_bd_prog(lfs, dir->pair[0], 0, sizeof(dir->d), &dir->d);
if (err) {
return err;
}
lfs_off_t off = sizeof(dir->d);
lfs_size_t size = 0x7fffffff & dir->d.size;
while (off < size) {
if (entry && off == entry->off) {
crc = lfs_crc(crc, sizeof(entry->d), &entry->d);
int err = lfs_bd_prog(lfs, dir->pair[0],
off, sizeof(entry->d), &entry->d);
if (err) {
return err;
}
off += sizeof(entry->d);
if (data) {
crc = lfs_crc(crc, entry->d.len - sizeof(entry->d), data);
int err = lfs_bd_prog(lfs, dir->pair[0],
off, entry->d.len - sizeof(entry->d), data);
if (err) {
return err;
}
off += entry->d.len - sizeof(entry->d);
}
} else {
uint8_t data;
int err = lfs_bd_read(lfs, dir->pair[1], off, 1, &data);
if (err) {
return err;
}
crc = lfs_crc(crc, 1, &data);
err = lfs_bd_prog(lfs, dir->pair[0], off, 1, &data);
if (err) {
return err;
}
off += 1;
}
}
while (off < lfs->cfg->block_size-4) {
uint8_t data = 0xff;
crc = lfs_crc(crc, 1, &data);
err = lfs_bd_prog(lfs, dir->pair[0], off, 1, &data);
if (err) {
return err;
}
off += 1;
}
err = lfs_bd_prog(lfs, dir->pair[0], lfs->cfg->block_size-4, 4, &crc);
if (err) {
return err;
}
return lfs_bd_sync(lfs);
}
static int lfs_dir_shift(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
dir->d.rev += 1;
dir->d.size -= entry->d.len;
lfs_pairswap(dir->pair);
int err = lfs_bd_erase(lfs, dir->pair[0]);
if (err) {
return err;
}
uint32_t crc = 0xffffffff;
crc = lfs_crc(crc, sizeof(dir->d), &dir->d);
err = lfs_bd_prog(lfs, dir->pair[0], 0, sizeof(dir->d), &dir->d);
if (err) {
return err;
}
lfs_off_t woff = sizeof(dir->d);
lfs_off_t roff = sizeof(dir->d);
lfs_size_t size = 0x7fffffff & dir->d.size;
while (woff < size) {
if (roff == entry->off) {
roff += entry->d.len;
} else {
uint8_t data;
int err = lfs_bd_read(lfs, dir->pair[1], roff, 1, &data);
if (err) {
return err;
}
crc = lfs_crc(crc, 1, (void*)&data);
err = lfs_bd_prog(lfs, dir->pair[0], woff, 1, &data);
if (err) {
return err;
}
woff += 1;
roff += 1;
}
}
while (woff < lfs->cfg->block_size-4) {
uint8_t data = 0xff;
crc = lfs_crc(crc, 1, &data);
err = lfs_bd_prog(lfs, dir->pair[0], woff, 1, &data);
if (err) {
return err;
}
woff += 1;
}
err = lfs_bd_prog(lfs, dir->pair[0], lfs->cfg->block_size-4, 4, &crc);
if (err) {
return err;
}
return lfs_bd_sync(lfs);
}
static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir,
lfs_entry_t *entry, const void *data) {
// check if we fit, if top bit is set we do not and move on
while (true) {
if (dir->d.size + entry->d.len <= lfs->cfg->block_size - 4) {
entry->pair[0] = dir->pair[0];
entry->pair[1] = dir->pair[1];
entry->off = dir->d.size;
dir->d.size += entry->d.len;
return lfs_dir_commit(lfs, dir, entry, data);
}
if (!(0x80000000 & dir->d.size)) {
lfs_dir_t newdir;
int err = lfs_dir_alloc(lfs, &newdir);
if (err) {
return err;
}
newdir.d.tail[0] = dir->d.tail[0];
newdir.d.tail[1] = dir->d.tail[1];
entry->pair[0] = newdir.pair[0];
entry->pair[1] = newdir.pair[1];
entry->off = newdir.d.size;
newdir.d.size += entry->d.len;
err = lfs_dir_commit(lfs, &newdir, entry, data);
if (err) {
return err;
}
dir->d.size |= 0x80000000;
dir->d.tail[0] = newdir.pair[0];
dir->d.tail[1] = newdir.pair[1];
return lfs_dir_commit(lfs, dir, NULL, NULL);
}
int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
}
}
static int lfs_dir_remove(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
// either shift out the one entry or remove the whole dir block
if (dir->d.size == sizeof(dir->d)) {
lfs_dir_t pdir;
int err = lfs_dir_fetch(lfs, &pdir, lfs->root);
if (err) {
return err;
}
while (lfs_paircmp(pdir.d.tail, dir->pair) != 0) {
int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail);
if (err) {
return err;
}
}
// TODO easier check for head block? (common case)
if (!(pdir.d.size & 0x80000000)) {
return lfs_dir_shift(lfs, dir, entry);
} else {
pdir.d.tail[0] = dir->d.tail[0];
pdir.d.tail[1] = dir->d.tail[1];
return lfs_dir_commit(lfs, &pdir, NULL, NULL);
}
} else {
return lfs_dir_shift(lfs, dir, entry);
}
}
static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
while (true) {
if ((0x7fffffff & dir->d.size) - dir->off < sizeof(entry->d)) {
if (!(dir->d.size >> 31)) {
entry->pair[0] = dir->pair[0];
entry->pair[1] = dir->pair[1];
entry->off = dir->off;
return LFS_ERROR_NO_ENTRY;
}
int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
dir->off = sizeof(dir->d);
continue;
}
int err = lfs_bd_read(lfs, dir->pair[0], dir->off,
sizeof(entry->d), &entry->d);
if (err) {
return err;
}
dir->off += entry->d.len;
if ((0xff & entry->d.type) == LFS_TYPE_REG ||
(0xff & entry->d.type) == LFS_TYPE_DIR) {
entry->pair[0] = dir->pair[0];
entry->pair[1] = dir->pair[1];
entry->off = dir->off - entry->d.len;
return 0;
}
}
}
static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
lfs_entry_t *entry, const char **path) {
const char *pathname = *path;
size_t pathlen;
while (true) {
nextname:
// skip slashes
pathname += strspn(pathname, "/");
pathlen = strcspn(pathname, "/");
// skip '.' and root '..'
if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) ||
(pathlen == 2 && memcmp(pathname, "..", 2) == 0)) {
pathname += pathlen;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = pathname + pathlen;
size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
pathname = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// find path
while (true) {
int err = lfs_dir_next(lfs, dir, entry);
if (err) {
return err;
}
if (entry->d.len - sizeof(entry->d) != pathlen) {
continue;
}
int ret = lfs_bd_cmp(lfs, dir->pair[0],
entry->off + sizeof(entry->d), pathlen, pathname);
if (ret < 0) {
return ret;
}
// Found match
if (ret == true) {
break;
}
}
pathname += pathlen;
pathname += strspn(pathname, "/");
if (pathname[0] == '\0') {
return 0;
}
// continue on if we hit a directory
if (entry->d.type != LFS_TYPE_DIR) {
return LFS_ERROR_NOT_DIR;
}
int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir);
if (err) {
return err;
}
*path = pathname;
}
return 0;
}
/// Top level directory operations ///
int lfs_mkdir(lfs_t *lfs, const char *path) {
// fetch parent directory
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err != LFS_ERROR_NO_ENTRY) {
return err ? err : LFS_ERROR_EXISTS;
}
// Build up new directory
lfs_dir_t dir;
err = lfs_dir_alloc(lfs, &dir);
if (err) {
return err;
}
dir.d.tail[0] = cwd.d.tail[0];
dir.d.tail[1] = cwd.d.tail[1];
err = lfs_dir_commit(lfs, &dir, NULL, NULL);
if (err) {
return err;
}
entry.d.type = LFS_TYPE_DIR;
entry.d.len = sizeof(entry.d) + strlen(path);
entry.d.u.dir[0] = dir.pair[0];
entry.d.u.dir[1] = dir.pair[1];
cwd.d.tail[0] = dir.pair[0];
cwd.d.tail[1] = dir.pair[1];
return lfs_dir_append(lfs, &cwd, &entry, path);
}
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
dir->pair[0] = lfs->root[0];
dir->pair[1] = lfs->root[1];
int err = lfs_dir_fetch(lfs, dir, dir->pair);
if (err) {
return err;
} else if (strcmp(path, "/") == 0) {
// special offset for '.' and '..'
dir->off = sizeof(dir->d) - 2;
return 0;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, dir, &entry, &path);
if (err) {
return err;
} else if (entry.d.type != LFS_TYPE_DIR) {
return LFS_ERROR_NOT_DIR;
}
err = lfs_dir_fetch(lfs, dir, entry.d.u.dir);
if (err) {
return err;
}
// special offset for '.' and '..'
dir->off = sizeof(dir->d) - 2;
return 0;
}
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// Do nothing, dir is always synchronized
return 0;
}
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
if (dir->off == sizeof(dir->d) - 2) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, ".");
dir->off += 1;
return 1;
} else if (dir->off == sizeof(dir->d) - 1) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, "..");
dir->off += 1;
return 1;
}
lfs_entry_t entry;
int err = lfs_dir_next(lfs, dir, &entry);
if (err) {
return (err == LFS_ERROR_NO_ENTRY) ? 0 : err;
}
info->type = entry.d.type & 0xff;
if (info->type == LFS_TYPE_REG) {
info->size = entry.d.u.file.size;
}
err = lfs_bd_read(lfs, dir->pair[0], entry.off + sizeof(entry.d),
entry.d.len - sizeof(entry.d), info->name);
if (err) {
return err;
}
return 1;
}
/// Top level file operations ///
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
// Allocate entry for file if it doesn't exist
// TODO check open files
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
err = lfs_dir_find(lfs, &cwd, &file->entry, &path);
if (err && !((flags & LFS_O_CREAT) && err == LFS_ERROR_NO_ENTRY)) {
return err;
} else if (err != LFS_ERROR_NO_ENTRY &&
file->entry.d.type == LFS_TYPE_DIR) {
return LFS_ERROR_IS_DIR;
}
if ((flags & LFS_O_CREAT) && err == LFS_ERROR_NO_ENTRY) {
// create entry to remember name
file->entry.d.type = 1;
file->entry.d.len = sizeof(file->entry.d) + strlen(path);
file->entry.d.u.file.head = 0;
file->entry.d.u.file.size = 0;
int err = lfs_dir_append(lfs, &cwd, &file->entry, path);
if (err) {
return err;
}
}
file->head = file->entry.d.u.file.head;
file->size = file->entry.d.u.file.size;
file->windex = lfs_indexfrom(lfs, file->size);
file->rblock = 0;
file->rindex = 0;
file->roff = 0;
// TODO do this lazily in write?
// TODO cow the head i/d block
if (file->size < lfs->cfg->block_size) {
file->wblock = file->head;
} else {
int err = lfs_index_find(lfs, file->head, file->windex,
file->windex, &file->wblock);
if (err) {
return err;
}
}
return 0;
}
int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
// Store file
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, file->entry.pair);
if (err) {
return err;
}
file->entry.d.u.file.head = file->head;
file->entry.d.u.file.size = file->size;
return lfs_dir_commit(lfs, &cwd, &file->entry, NULL);
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
while (nsize > 0) {
lfs_off_t woff = file->size % lfs->cfg->block_size;
if (file->size == 0) {
int err = lfs_alloc_erased(lfs, &file->wblock);
if (err) {
return err;
}
file->head = file->wblock;
file->windex = 0;
} else if (woff == 0) {
int err = lfs_alloc_erased(lfs, &file->wblock);
if (err) {
return err;
}
err = lfs_index_append(lfs, &file->head,
&file->windex, file->wblock);
if (err) {
return err;
}
}
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - woff);
int err = lfs_bd_prog(lfs, file->wblock, woff, diff, data);
if (err) {
return err;
}
file->size += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
while (nsize > 0 && file->roff < file->size) {
lfs_off_t roff = file->roff % lfs->cfg->block_size;
// TODO cache index blocks
if (file->size < lfs->cfg->block_size) {
file->rblock = file->head;
} else if (roff == 0) {
int err = lfs_index_find(lfs, file->head, file->windex,
file->rindex, &file->rblock);
if (err) {
return err;
}
file->rindex = lfs_indexnext(lfs, file->rindex);
}
lfs_size_t diff = lfs_min(
lfs_min(nsize, file->size-file->roff),
lfs->cfg->block_size - roff);
int err = lfs_bd_read(lfs, file->rblock, roff, diff, data);
if (err) {
return err;
}
file->roff += diff;
data += diff;
nsize -= diff;
}
return size - nsize;
}
/// Generic filesystem operations ///
static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
lfs->cfg = cfg;
lfs->words = lfs->cfg->block_size / sizeof(uint32_t);
lfs->rcache.off = -1;
lfs->pcache.off = -1;
if (lfs->cfg->read_buffer) {
lfs->rcache.buffer = lfs->cfg->read_buffer;
} else {
lfs->rcache.buffer = malloc(lfs->cfg->read_size);
if (!lfs->rcache.buffer) {
return LFS_ERROR_NO_MEM;
}
}
if (lfs->cfg->prog_buffer) {
lfs->pcache.buffer = lfs->cfg->prog_buffer;
} else {
lfs->pcache.buffer = malloc(lfs->cfg->prog_size);
if (!lfs->pcache.buffer) {
return LFS_ERROR_NO_MEM;
}
}
return 0;
}
static int lfs_deinit(lfs_t *lfs) {
// Free allocated memory
if (!lfs->cfg->read_buffer) {
free(lfs->rcache.buffer);
}
if (!lfs->cfg->prog_buffer) {
free(lfs->pcache.buffer);
}
return 0;
}
int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// Create free list
lfs->free.begin = 0;
lfs->free.end = lfs->cfg->block_count-1;
// Create superblock dir
lfs_dir_t superdir;
err = lfs_dir_alloc(lfs, &superdir);
if (err) {
return err;
}
// Write root directory
lfs_dir_t root;
err = lfs_dir_alloc(lfs, &root);
if (err) {
return err;
}
err = lfs_dir_commit(lfs, &root, NULL, NULL);
if (err) {
return err;
}
lfs->root[0] = root.pair[0];
lfs->root[1] = root.pair[1];
// Write superblocks
lfs_superblock_t superblock = {
.off = sizeof(superdir.d),
.d.type = LFS_TYPE_SUPERBLOCK,
.d.len = sizeof(superblock.d),
.d.version = 0x00000001,
.d.magic = {"littlefs"},
.d.block_size = lfs->cfg->block_size,
.d.block_count = lfs->cfg->block_count,
.d.root = {lfs->root[0], lfs->root[1]},
};
superdir.d.tail[0] = root.pair[0];
superdir.d.tail[1] = root.pair[1];
superdir.d.size += sizeof(superdir.d);
for (int i = 0; i < 2; i++) {
// Write both pairs for extra safety, do some finagling to pretend
// the superblock is an entry
int err = lfs_dir_commit(lfs, &superdir,
(const lfs_entry_t*)&superblock,
(const struct lfs_disk_entry*)&superblock.d + 1);
if (err) {
LFS_ERROR("Failed to write superblock at %d", superdir.pair[0]);
return err;
}
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
return lfs_deinit(lfs);
}
int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
lfs_dir_t dir;
lfs_superblock_t superblock;
err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (!err) {
err = lfs_bd_read(lfs, dir.pair[0],
sizeof(dir.d), sizeof(superblock.d), &superblock.d);
}
if (err == LFS_ERROR_CORRUPT ||
memcmp(superblock.d.magic, "littlefs", 8) != 0) {
LFS_ERROR("Invalid superblock at %d %d", dir.pair[0], dir.pair[1]);
return LFS_ERROR_CORRUPT;
}
if (superblock.d.version > 0x0000ffff) {
LFS_ERROR("Invalid version %d.%d\n",
0xffff & (superblock.d.version >> 16),
0xffff & (superblock.d.version >> 0));
}
lfs->root[0] = superblock.d.root[0];
lfs->root[1] = superblock.d.root[1];
return err;
}
int lfs_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
// iterate over metadata pairs
lfs_dir_t dir;
lfs_file_t file;
lfs_block_t cwd[2] = {0, 1};
while (true) {
for (int i = 0; i < 2; i++) {
int err = cb(data, cwd[i]);
if (err) {
return err;
}
}
int err = lfs_dir_fetch(lfs, &dir, cwd);
if (err) {
return err;
}
// iterate over contents
while ((0x7fffffff & dir.d.size) >= dir.off + sizeof(file.entry.d)) {
int err = lfs_bd_read(lfs, dir.pair[0], dir.off,
sizeof(file.entry.d), &file.entry.d);
if (err) {
return err;
}
dir.off += file.entry.d.len;
if ((0xf & file.entry.d.type) == LFS_TYPE_REG) {
if (file.entry.d.u.file.size < lfs->cfg->block_size) {
int err = cb(data, file.entry.d.u.file.head);
if (err) {
return err;
}
} else {
int err = lfs_index_traverse(lfs,
file.entry.d.u.file.head,
lfs_indexfrom(lfs, file.entry.d.u.file.size),
cb, data);
if (err) {
return err;
}
}
}
}
cwd[0] = dir.d.tail[0];
cwd[1] = dir.d.tail[1];
if (!cwd[0]) {
return 0;
}
}
}
static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2]) {
// iterate over all directory directory entries
lfs_dir_t parent = {
.d.tail[0] = lfs->root[0],
.d.tail[1] = lfs->root[1],
};
while (parent.d.tail[0]) {
lfs_entry_t entry;
int err = lfs_dir_fetch(lfs, &parent, parent.d.tail);
if (err) {
return err;
}
while (true) {
int err = lfs_dir_next(lfs, &parent, &entry);
if (err && err != LFS_ERROR_NO_ENTRY) {
return err;
}
if (err == LFS_ERROR_NO_ENTRY) {
break;
}
if ((0xf & entry.d.type) == LFS_TYPE_DIR &&
lfs_paircmp(entry.d.u.dir, dir) == 0) {
return true;
}
}
}
return false;
}
int lfs_deorphan(lfs_t *lfs) {
// iterate over all directories
lfs_dir_t pdir;
lfs_dir_t cdir;
// skip root
int err = lfs_dir_fetch(lfs, &pdir, lfs->root);
if (err) {
return err;
}
while (pdir.d.tail[0]) {
int err = lfs_dir_fetch(lfs, &cdir, pdir.d.tail);
if (err) {
return err;
}
// check if we have a parent
int parent = lfs_parent(lfs, pdir.d.tail);
if (parent < 0) {
return parent;
}
if (!parent) {
// we are an orphan
LFS_INFO("Orphan %d %d", pdir.d.tail[0], pdir.d.tail[1]);
pdir.d.tail[0] = cdir.d.tail[0];
pdir.d.tail[1] = cdir.d.tail[1];
err = lfs_dir_commit(lfs, &pdir, NULL, NULL);
if (err) {
return err;
}
break;
}
memcpy(&pdir, &cdir, sizeof(pdir));
}
return 0;
}
int lfs_remove(lfs_t *lfs, const char *path) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err) {
return err;
}
lfs_dir_t dir;
if (entry.d.type == LFS_TYPE_DIR) {
// must be empty before removal, checking size
// without masking top bit checks for any case where
// dir is not empty
int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
if (err) {
return err;
} else if (dir.d.size != sizeof(dir.d)) {
return LFS_ERROR_INVALID;
}
}
// remove the entry
err = lfs_dir_remove(lfs, &cwd, &entry);
if (err) {
return err;
}
// if we were a directory, just run a deorphan step, this should
// collect us, although is expensive
if (entry.d.type == LFS_TYPE_DIR) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
return 0;
}
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// find old entry
lfs_dir_t oldcwd;
int err = lfs_dir_fetch(lfs, &oldcwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t oldentry;
err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath);
if (err) {
return err;
}
// allocate new entry
lfs_dir_t newcwd;
err = lfs_dir_fetch(lfs, &newcwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t preventry;
err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath);
if (err && err != LFS_ERROR_NO_ENTRY) {
return err;
}
bool prevexists = (err != LFS_ERROR_NO_ENTRY);
// must have same type
if (prevexists && preventry.d.type != oldentry.d.type) {
return LFS_ERROR_INVALID;
}
lfs_dir_t dir;
if (prevexists && preventry.d.type == LFS_TYPE_DIR) {
// must be empty before removal, checking size
// without masking top bit checks for any case where
// dir is not empty
int err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir);
if (err) {
return err;
} else if (dir.d.size != sizeof(dir.d)) {
return LFS_ERROR_INVALID;
}
}
// move to new location
lfs_entry_t newentry = preventry;
newentry.d = oldentry.d;
newentry.d.len = sizeof(newentry.d) + strlen(newpath);
if (prevexists) {
int err = lfs_dir_commit(lfs, &newcwd, &newentry, newpath);
if (err) {
return err;
}
} else {
int err = lfs_dir_append(lfs, &newcwd, &newentry, newpath);
if (err) {
return err;
}
}
// fetch again in case newcwd == oldcwd
// TODO handle this better?
err = lfs_dir_fetch(lfs, &oldcwd, oldcwd.pair);
if (err) {
return err;
}
err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath);
if (err) {
return err;
}
// remove from old location
err = lfs_dir_remove(lfs, &oldcwd, &oldentry);
if (err) {
return err;
}
// if we were a directory, just run a deorphan step, this should
// collect us, although is expensive
if (prevexists && preventry.d.type == LFS_TYPE_DIR) {
int err = lfs_deorphan(lfs);
if (err) {
return err;
}
}
return 0;
}
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
lfs_dir_t cwd;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
lfs_entry_t entry;
err = lfs_dir_find(lfs, &cwd, &entry, &path);
if (err) {
return err;
}
// TODO abstract out info assignment
memset(info, 0, sizeof(*info));
info->type = entry.d.type & 0xff;
if (info->type == LFS_TYPE_REG) {
info->size = entry.d.u.file.size;
}
err = lfs_bd_read(lfs, cwd.pair[0], entry.off + sizeof(entry.d),
entry.d.len - sizeof(entry.d), info->name);
if (err) {
return err;
}
return 0;
}