third_party_littlefs/lfs.c
Christopher Haster 0a1f706ca2
Merge pull request #160 from FreddieChopin/no-cache-bypass
Don't bypass cache in `lfs_cache_prog()` and `lfs_cache_read()`
2019-04-16 17:59:28 -05:00

4449 lines
129 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lfs.h"
#include "lfs_util.h"
/// Caching block device operations ///
static inline void lfs_cache_drop(lfs_t *lfs, lfs_cache_t *rcache) {
// do not zero, cheaper if cache is readonly or only going to be
// written with identical data (during relocates)
(void)lfs;
rcache->block = 0xffffffff;
}
static inline void lfs_cache_zero(lfs_t *lfs, lfs_cache_t *pcache) {
// zero to avoid information leak
memset(pcache->buffer, 0xff, lfs->cfg->cache_size);
pcache->block = 0xffffffff;
}
static int lfs_bd_read(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
if (off+size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
lfs_size_t diff = size;
if (pcache && block == pcache->block &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs_min(diff, pcache->off-off);
}
if (block == rcache->block &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs_min(diff, rcache->off-off);
}
// load to cache, first condition can no longer fail
LFS_ASSERT(block < lfs->cfg->block_count);
rcache->block = block;
rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
rcache->size = lfs_min(lfs_alignup(off+hint, lfs->cfg->read_size),
lfs_min(lfs->cfg->block_size - rcache->off,
lfs->cfg->cache_size));
int err = lfs->cfg->read(lfs->cfg, rcache->block,
rcache->off, rcache->buffer, rcache->size);
if (err) {
return err;
}
}
return 0;
}
enum {
LFS_CMP_EQ = 0,
LFS_CMP_LT = 1,
LFS_CMP_GT = 2,
};
static int lfs_bd_cmp(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
for (lfs_off_t i = 0; i < size; i++) {
uint8_t dat;
int err = lfs_bd_read(lfs,
pcache, rcache, hint-i,
block, off+i, &dat, 1);
if (err) {
return err;
}
if (dat != data[i]) {
return (dat < data[i]) ? LFS_CMP_LT : LFS_CMP_GT;
}
}
return LFS_CMP_EQ;
}
static int lfs_bd_flush(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
if (pcache->block != 0xffffffff && pcache->block != 0xfffffffe) {
LFS_ASSERT(pcache->block < lfs->cfg->block_count);
lfs_size_t diff = lfs_alignup(pcache->size, lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, pcache->block,
pcache->off, pcache->buffer, diff);
if (err) {
return err;
}
if (validate) {
// check data on disk
lfs_cache_drop(lfs, rcache);
int res = lfs_bd_cmp(lfs,
NULL, rcache, diff,
pcache->block, pcache->off, pcache->buffer, diff);
if (res < 0) {
return res;
}
if (res != LFS_CMP_EQ) {
return LFS_ERR_CORRUPT;
}
}
lfs_cache_zero(lfs, pcache);
}
return 0;
}
static int lfs_bd_sync(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
lfs_cache_drop(lfs, rcache);
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
return lfs->cfg->sync(lfs->cfg);
}
static int lfs_bd_prog(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
LFS_ASSERT(block != 0xffffffff);
LFS_ASSERT(off + size <= lfs->cfg->block_size);
while (size > 0) {
if (block == pcache->block &&
off >= pcache->off &&
off < pcache->off + lfs->cfg->cache_size) {
// already fits in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->cache_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
pcache->size = off - pcache->off;
if (pcache->size == lfs->cfg->cache_size) {
// eagerly flush out pcache if we fill up
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS_ASSERT(pcache->block == 0xffffffff);
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = lfs_aligndown(off, lfs->cfg->prog_size);
pcache->size = 0;
}
return 0;
}
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
LFS_ASSERT(block < lfs->cfg->block_count);
return lfs->cfg->erase(lfs->cfg, block);
}
/// Small type-level utilities ///
// operations on block pairs
static inline void lfs_pair_swap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pair_isnull(const lfs_block_t pair[2]) {
return pair[0] == 0xffffffff || pair[1] == 0xffffffff;
}
static inline int lfs_pair_cmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
static inline bool lfs_pair_sync(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
static inline void lfs_pair_fromle32(lfs_block_t pair[2]) {
pair[0] = lfs_fromle32(pair[0]);
pair[1] = lfs_fromle32(pair[1]);
}
static inline void lfs_pair_tole32(lfs_block_t pair[2]) {
pair[0] = lfs_tole32(pair[0]);
pair[1] = lfs_tole32(pair[1]);
}
// operations on 32-bit entry tags
typedef uint32_t lfs_tag_t;
typedef int32_t lfs_stag_t;
#define LFS_MKTAG(type, id, size) \
(((lfs_tag_t)(type) << 20) | ((lfs_tag_t)(id) << 10) | (lfs_tag_t)(size))
static inline bool lfs_tag_isvalid(lfs_tag_t tag) {
return !(tag & 0x80000000);
}
static inline bool lfs_tag_isdelete(lfs_tag_t tag) {
return ((int32_t)(tag << 22) >> 22) == -1;
}
static inline uint16_t lfs_tag_type1(lfs_tag_t tag) {
return (tag & 0x70000000) >> 20;
}
static inline uint16_t lfs_tag_type3(lfs_tag_t tag) {
return (tag & 0x7ff00000) >> 20;
}
static inline uint8_t lfs_tag_chunk(lfs_tag_t tag) {
return (tag & 0x0ff00000) >> 20;
}
static inline int8_t lfs_tag_splice(lfs_tag_t tag) {
return (int8_t)lfs_tag_chunk(tag);
}
static inline uint16_t lfs_tag_id(lfs_tag_t tag) {
return (tag & 0x000ffc00) >> 10;
}
static inline lfs_size_t lfs_tag_size(lfs_tag_t tag) {
return tag & 0x000003ff;
}
static inline lfs_size_t lfs_tag_dsize(lfs_tag_t tag) {
return sizeof(tag) + lfs_tag_size(tag + lfs_tag_isdelete(tag));
}
// operations on attributes in attribute lists
struct lfs_mattr {
lfs_tag_t tag;
const void *buffer;
};
struct lfs_diskoff {
lfs_block_t block;
lfs_off_t off;
};
#define LFS_MKATTRS(...) \
(struct lfs_mattr[]){__VA_ARGS__}, \
sizeof((struct lfs_mattr[]){__VA_ARGS__}) / sizeof(struct lfs_mattr)
// operations on global state
static inline void lfs_gstate_xor(struct lfs_gstate *a,
const struct lfs_gstate *b) {
for (int i = 0; i < 3; i++) {
((uint32_t*)a)[i] ^= ((const uint32_t*)b)[i];
}
}
static inline bool lfs_gstate_iszero(const struct lfs_gstate *a) {
for (int i = 0; i < 3; i++) {
if (((uint32_t*)a)[i] != 0) {
return false;
}
}
return true;
}
static inline bool lfs_gstate_hasorphans(const struct lfs_gstate *a) {
return lfs_tag_size(a->tag);
}
static inline uint8_t lfs_gstate_getorphans(const struct lfs_gstate *a) {
return lfs_tag_size(a->tag);
}
static inline bool lfs_gstate_hasmove(const struct lfs_gstate *a) {
return lfs_tag_type1(a->tag);
}
static inline bool lfs_gstate_hasmovehere(const struct lfs_gstate *a,
const lfs_block_t *pair) {
return lfs_tag_type1(a->tag) && lfs_pair_cmp(a->pair, pair) == 0;
}
static inline void lfs_gstate_xororphans(struct lfs_gstate *a,
const struct lfs_gstate *b, bool orphans) {
a->tag ^= LFS_MKTAG(0x800, 0, 0) & (b->tag ^ (orphans << 31));
}
static inline void lfs_gstate_xormove(struct lfs_gstate *a,
const struct lfs_gstate *b, uint16_t id, const lfs_block_t pair[2]) {
a->tag ^= LFS_MKTAG(0x7ff, 0x3ff, 0) & (b->tag ^ (
(id != 0x3ff) ? LFS_MKTAG(LFS_TYPE_DELETE, id, 0) : 0));
a->pair[0] ^= b->pair[0] ^ ((id != 0x3ff) ? pair[0] : 0);
a->pair[1] ^= b->pair[1] ^ ((id != 0x3ff) ? pair[1] : 0);
}
static inline void lfs_gstate_fromle32(struct lfs_gstate *a) {
a->tag = lfs_fromle32(a->tag);
a->pair[0] = lfs_fromle32(a->pair[0]);
a->pair[1] = lfs_fromle32(a->pair[1]);
}
static inline void lfs_gstate_tole32(struct lfs_gstate *a) {
a->tag = lfs_tole32(a->tag);
a->pair[0] = lfs_tole32(a->pair[0]);
a->pair[1] = lfs_tole32(a->pair[1]);
}
// other endianness operations
static void lfs_ctz_fromle32(struct lfs_ctz *ctz) {
ctz->head = lfs_fromle32(ctz->head);
ctz->size = lfs_fromle32(ctz->size);
}
static void lfs_ctz_tole32(struct lfs_ctz *ctz) {
ctz->head = lfs_tole32(ctz->head);
ctz->size = lfs_tole32(ctz->size);
}
static inline void lfs_superblock_fromle32(lfs_superblock_t *superblock) {
superblock->version = lfs_fromle32(superblock->version);
superblock->block_size = lfs_fromle32(superblock->block_size);
superblock->block_count = lfs_fromle32(superblock->block_count);
superblock->name_max = lfs_fromle32(superblock->name_max);
superblock->file_max = lfs_fromle32(superblock->file_max);
superblock->attr_max = lfs_fromle32(superblock->attr_max);
}
static inline void lfs_superblock_tole32(lfs_superblock_t *superblock) {
superblock->version = lfs_tole32(superblock->version);
superblock->block_size = lfs_tole32(superblock->block_size);
superblock->block_count = lfs_tole32(superblock->block_count);
superblock->name_max = lfs_tole32(superblock->name_max);
superblock->file_max = lfs_tole32(superblock->file_max);
superblock->attr_max = lfs_tole32(superblock->attr_max);
}
/// Internal operations predeclared here ///
static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
const struct lfs_mattr *attrs, int attrcount);
static int lfs_dir_compact(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t begin, uint16_t end);
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file);
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file);
static void lfs_fs_preporphans(lfs_t *lfs, int8_t orphans);
static void lfs_fs_prepmove(lfs_t *lfs,
uint16_t id, const lfs_block_t pair[2]);
static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *pdir);
static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *parent);
static int lfs_fs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], lfs_block_t newpair[2]);
static int lfs_fs_forceconsistency(lfs_t *lfs);
static int lfs_deinit(lfs_t *lfs);
#ifdef LFS_MIGRATE
static int lfs1_traverse(lfs_t *lfs,
int (*cb)(void*, lfs_block_t), void *data);
#endif
/// Block allocator ///
static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
lfs_t *lfs = (lfs_t*)p;
lfs_block_t off = ((block - lfs->free.off)
+ lfs->cfg->block_count) % lfs->cfg->block_count;
if (off < lfs->free.size) {
lfs->free.buffer[off / 32] |= 1U << (off % 32);
}
return 0;
}
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
while (true) {
while (lfs->free.i != lfs->free.size) {
lfs_block_t off = lfs->free.i;
lfs->free.i += 1;
lfs->free.ack -= 1;
if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) {
// found a free block
*block = (lfs->free.off + off) % lfs->cfg->block_count;
// eagerly find next off so an alloc ack can
// discredit old lookahead blocks
while (lfs->free.i != lfs->free.size &&
(lfs->free.buffer[lfs->free.i / 32]
& (1U << (lfs->free.i % 32)))) {
lfs->free.i += 1;
lfs->free.ack -= 1;
}
return 0;
}
}
// check if we have looked at all blocks since last ack
if (lfs->free.ack == 0) {
LFS_WARN("No more free space %"PRIu32,
lfs->free.i + lfs->free.off);
return LFS_ERR_NOSPC;
}
lfs->free.off = (lfs->free.off + lfs->free.size)
% lfs->cfg->block_count;
lfs->free.size = lfs_min(8*lfs->cfg->lookahead_size, lfs->free.ack);
lfs->free.i = 0;
// find mask of free blocks from tree
memset(lfs->free.buffer, 0, lfs->cfg->lookahead_size);
int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, lfs);
if (err) {
return err;
}
}
}
static void lfs_alloc_ack(lfs_t *lfs) {
lfs->free.ack = lfs->cfg->block_count;
}
/// Metadata pair and directory operations ///
static lfs_stag_t lfs_dir_getslice(lfs_t *lfs, const lfs_mdir_t *dir,
lfs_tag_t gmask, lfs_tag_t gtag,
lfs_off_t goff, void *gbuffer, lfs_size_t gsize) {
lfs_off_t off = dir->off;
lfs_tag_t ntag = dir->etag;
lfs_stag_t gdiff = 0;
if (lfs_gstate_hasmovehere(&lfs->gstate, dir->pair) &&
lfs_tag_id(gtag) <= lfs_tag_id(lfs->gstate.tag)) {
// synthetic moves
gdiff -= LFS_MKTAG(0, 1, 0);
}
// iterate over dir block backwards (for faster lookups)
while (off >= sizeof(lfs_tag_t) + lfs_tag_dsize(ntag)) {
off -= lfs_tag_dsize(ntag);
lfs_tag_t tag = ntag;
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(ntag),
dir->pair[0], off, &ntag, sizeof(ntag));
if (err) {
return err;
}
ntag = (lfs_frombe32(ntag) ^ tag) & 0x7fffffff;
if (lfs_tag_id(gmask) != 0 &&
lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
lfs_tag_id(tag) <= lfs_tag_id(gtag - gdiff)) {
if (tag == (LFS_MKTAG(LFS_TYPE_CREATE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & (gtag - gdiff)))) {
// found where we were created
return LFS_ERR_NOENT;
}
// move around splices
gdiff += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
if ((gmask & tag) == (gmask & (gtag - gdiff))) {
if (lfs_tag_isdelete(tag)) {
return LFS_ERR_NOENT;
}
lfs_size_t diff = lfs_min(lfs_tag_size(tag), gsize);
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, diff,
dir->pair[0], off+sizeof(tag)+goff, gbuffer, diff);
if (err) {
return err;
}
memset((uint8_t*)gbuffer + diff, 0, gsize - diff);
return tag + gdiff;
}
}
return LFS_ERR_NOENT;
}
static lfs_stag_t lfs_dir_get(lfs_t *lfs, const lfs_mdir_t *dir,
lfs_tag_t gmask, lfs_tag_t gtag, void *buffer) {
return lfs_dir_getslice(lfs, dir,
gmask, gtag,
0, buffer, lfs_tag_size(gtag));
}
static int lfs_dir_getread(lfs_t *lfs, const lfs_mdir_t *dir,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_tag_t gmask, lfs_tag_t gtag,
lfs_off_t off, void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
if (off+size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
lfs_size_t diff = size;
if (pcache && pcache->block == 0xfffffffe &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs_min(diff, pcache->off-off);
}
if (rcache->block == 0xfffffffe &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs_min(diff, rcache->off-off);
}
// load to cache, first condition can no longer fail
rcache->block = 0xfffffffe;
rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
rcache->size = lfs_min(lfs_alignup(off+hint, lfs->cfg->read_size),
lfs->cfg->cache_size);
int err = lfs_dir_getslice(lfs, dir, gmask, gtag,
rcache->off, rcache->buffer, rcache->size);
if (err) {
return err;
}
}
return 0;
}
static int lfs_dir_traverse_filter(void *p,
lfs_tag_t tag, const void *buffer) {
lfs_tag_t *filtertag = p;
(void)buffer;
// check for redundancy
uint32_t mask = LFS_MKTAG(0x7ff, 0x3ff, 0);
if ((mask & tag) == (mask & *filtertag) ||
(mask & tag) == (LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & *filtertag))) {
return true;
}
// check if we need to adjust for created/deleted tags
if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
lfs_tag_id(tag) <= lfs_tag_id(*filtertag)) {
*filtertag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
return false;
}
static int lfs_dir_traverse(lfs_t *lfs,
const lfs_mdir_t *dir, lfs_off_t off, lfs_tag_t ptag,
const struct lfs_mattr *attrs, int attrcount, bool hasseenmove,
lfs_tag_t tmask, lfs_tag_t ttag,
uint16_t begin, uint16_t end, int16_t diff,
int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// iterate over directory and attrs
while (true) {
lfs_tag_t tag;
const void *buffer;
struct lfs_diskoff disk;
if (off+lfs_tag_dsize(ptag) < dir->off) {
off += lfs_tag_dsize(ptag);
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(tag),
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
return err;
}
tag = (lfs_frombe32(tag) ^ ptag) | 0x80000000;
disk.block = dir->pair[0];
disk.off = off+sizeof(lfs_tag_t);
buffer = &disk;
ptag = tag;
} else if (attrcount > 0) {
tag = attrs[0].tag;
buffer = attrs[0].buffer;
attrs += 1;
attrcount -= 1;
} else if (!hasseenmove &&
lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
// Wait, we have pending move? Handle this here (we need to
// or else we risk letting moves fall out of date)
tag = lfs->gpending.tag & LFS_MKTAG(0x7ff, 0x3ff, 0);
buffer = NULL;
hasseenmove = true;
} else {
return 0;
}
lfs_tag_t mask = LFS_MKTAG(0x7ff, 0, 0);
if ((mask & tmask & tag) != (mask & tmask & ttag)) {
continue;
}
// do we need to filter? inlining the filtering logic here allows
// for some minor optimizations
if (lfs_tag_id(tmask) != 0) {
// scan for duplicates and update tag based on creates/deletes
int filter = lfs_dir_traverse(lfs,
dir, off, ptag, attrs, attrcount, hasseenmove,
0, 0, 0, 0, 0,
lfs_dir_traverse_filter, &tag);
if (filter < 0) {
return filter;
}
if (filter) {
continue;
}
// in filter range?
if (!(lfs_tag_id(tag) >= begin && lfs_tag_id(tag) < end)) {
continue;
}
}
// handle special cases for mcu-side operations
if (lfs_tag_type3(tag) == LFS_FROM_NOOP) {
// do nothing
} else if (lfs_tag_type3(tag) == LFS_FROM_MOVE) {
uint16_t fromid = lfs_tag_size(tag);
uint16_t toid = lfs_tag_id(tag);
int err = lfs_dir_traverse(lfs,
buffer, 0, 0xffffffff, NULL, 0, true,
LFS_MKTAG(0x600, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, 0, 0),
fromid, fromid+1, toid-fromid+diff,
cb, data);
if (err) {
return err;
}
} else if (lfs_tag_type3(tag) == LFS_FROM_USERATTRS) {
for (unsigned i = 0; i < lfs_tag_size(tag); i++) {
const struct lfs_attr *a = buffer;
int err = cb(data, LFS_MKTAG(LFS_TYPE_USERATTR + a[i].type,
lfs_tag_id(tag) + diff, a[i].size), a[i].buffer);
if (err) {
return err;
}
}
} else {
int err = cb(data, tag + LFS_MKTAG(0, diff, 0), buffer);
if (err) {
return err;
}
}
}
}
static lfs_stag_t lfs_dir_fetchmatch(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2],
lfs_tag_t fmask, lfs_tag_t ftag, uint16_t *id,
int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// we can find tag very efficiently during a fetch, since we're already
// scanning the entire directory
lfs_stag_t besttag = -1;
// find the block with the most recent revision
uint32_t revs[2] = {0, 0};
int r = 0;
for (int i = 0; i < 2; i++) {
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(revs[i]),
pair[i], 0, &revs[i], sizeof(revs[i]));
revs[i] = lfs_fromle32(revs[i]);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err != LFS_ERR_CORRUPT &&
lfs_scmp(revs[i], revs[(i+1)%2]) > 0) {
r = i;
}
}
dir->pair[0] = pair[(r+0)%2];
dir->pair[1] = pair[(r+1)%2];
dir->rev = revs[(r+0)%2];
dir->off = 0; // nonzero = found some commits
// now scan tags to fetch the actual dir and find possible match
for (int i = 0; i < 2; i++) {
lfs_off_t off = 0;
lfs_tag_t ptag = 0xffffffff;
uint16_t tempcount = 0;
lfs_block_t temptail[2] = {0xffffffff, 0xffffffff};
bool tempsplit = false;
lfs_stag_t tempbesttag = besttag;
dir->rev = lfs_tole32(dir->rev);
uint32_t crc = lfs_crc(0xffffffff, &dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
while (true) {
// extract next tag
lfs_tag_t tag;
off += lfs_tag_dsize(ptag);
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
if (err == LFS_ERR_CORRUPT) {
// can't continue?
dir->erased = false;
break;
}
return err;
}
crc = lfs_crc(crc, &tag, sizeof(tag));
tag = lfs_frombe32(tag) ^ ptag;
// next commit not yet programmed or we're not in valid range
if (!lfs_tag_isvalid(tag) ||
off + lfs_tag_dsize(tag) > lfs->cfg->block_size) {
dir->erased = (lfs_tag_type1(ptag) == LFS_TYPE_CRC &&
dir->off % lfs->cfg->prog_size == 0);
break;
}
ptag = tag;
if (lfs_tag_type1(tag) == LFS_TYPE_CRC) {
// check the crc attr
uint32_t dcrc;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc));
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
dcrc = lfs_fromle32(dcrc);
if (crc != dcrc) {
dir->erased = false;
break;
}
// reset the next bit if we need to
ptag ^= (lfs_tag_chunk(tag) & 1U) << 31;
// toss our crc into the filesystem seed for
// pseudorandom numbers
lfs->seed ^= crc;
// update with what's found so far
besttag = tempbesttag;
dir->off = off + lfs_tag_dsize(tag);
dir->etag = ptag;
dir->count = tempcount;
dir->tail[0] = temptail[0];
dir->tail[1] = temptail[1];
dir->split = tempsplit;
// reset crc
crc = 0xffffffff;
continue;
}
// crc the entry first, hopefully leaving it in the cache
for (lfs_off_t j = sizeof(tag); j < lfs_tag_dsize(tag); j++) {
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+j, &dat, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
crc = lfs_crc(crc, &dat, 1);
}
// directory modification tags?
if (lfs_tag_type1(tag) == LFS_TYPE_NAME) {
// increase count of files if necessary
if (lfs_tag_id(tag) >= tempcount) {
tempcount = lfs_tag_id(tag) + 1;
}
} else if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE) {
tempcount += lfs_tag_splice(tag);
if (tag == (LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & tempbesttag))) {
tempbesttag |= 0x80000000;
} else if (tempbesttag != -1 &&
lfs_tag_id(tag) <= lfs_tag_id(tempbesttag)) {
tempbesttag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
} else if (lfs_tag_type1(tag) == LFS_TYPE_TAIL) {
tempsplit = (lfs_tag_chunk(tag) & 1);
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, lfs->cfg->block_size,
dir->pair[0], off+sizeof(tag), &temptail, 8);
if (err) {
if (err == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
}
lfs_pair_fromle32(temptail);
}
// found a match for our fetcher?
if ((fmask & tag) == (fmask & ftag)) {
int res = cb(data, tag, &(struct lfs_diskoff){
dir->pair[0], off+sizeof(tag)});
if (res < 0) {
if (res == LFS_ERR_CORRUPT) {
dir->erased = false;
break;
}
return res;
}
if (res == LFS_CMP_EQ) {
// found a match
tempbesttag = tag;
} else if (res == LFS_CMP_GT &&
lfs_tag_id(tag) <= lfs_tag_id(tempbesttag)) {
// found a greater match, keep track to keep things sorted
tempbesttag = tag | 0x80000000;
}
}
}
// consider what we have good enough
if (dir->off > 0) {
// synthetic move
if (lfs_gstate_hasmovehere(&lfs->gstate, dir->pair)) {
if (lfs_tag_id(lfs->gstate.tag) == lfs_tag_id(besttag)) {
besttag |= 0x80000000;
} else if (besttag != -1 &&
lfs_tag_id(lfs->gstate.tag) < lfs_tag_id(besttag)) {
besttag -= LFS_MKTAG(0, 1, 0);
}
}
// found tag? or found best id?
if (id) {
*id = lfs_min(lfs_tag_id(besttag), dir->count);
}
if (lfs_tag_isvalid(besttag)) {
return besttag;
} else if (lfs_tag_id(besttag) < dir->count) {
return LFS_ERR_NOENT;
} else {
return 0;
}
}
// failed, try the other block?
lfs_pair_swap(dir->pair);
dir->rev = revs[(r+1)%2];
}
LFS_ERROR("Corrupted dir pair at %"PRIu32" %"PRIu32,
dir->pair[0], dir->pair[1]);
return LFS_ERR_CORRUPT;
}
static int lfs_dir_fetch(lfs_t *lfs,
lfs_mdir_t *dir, const lfs_block_t pair[2]) {
// note, mask=-1, tag=0 can never match a tag since this
// pattern has the invalid bit set
return lfs_dir_fetchmatch(lfs, dir, pair, -1, 0, NULL, NULL, NULL);
}
static int lfs_dir_getgstate(lfs_t *lfs, const lfs_mdir_t *dir,
struct lfs_gstate *gstate) {
struct lfs_gstate temp;
lfs_stag_t res = lfs_dir_get(lfs, dir, LFS_MKTAG(0x7ff, 0, 0),
LFS_MKTAG(LFS_TYPE_MOVESTATE, 0, sizeof(temp)), &temp);
if (res < 0 && res != LFS_ERR_NOENT) {
return res;
}
if (res != LFS_ERR_NOENT) {
// xor together to find resulting gstate
lfs_gstate_fromle32(&temp);
lfs_gstate_xor(gstate, &temp);
}
return 0;
}
static int lfs_dir_getinfo(lfs_t *lfs, lfs_mdir_t *dir,
uint16_t id, struct lfs_info *info) {
if (id == 0x3ff) {
// special case for root
strcpy(info->name, "/");
info->type = LFS_TYPE_DIR;
return 0;
}
lfs_stag_t tag = lfs_dir_get(lfs, dir, LFS_MKTAG(0x780, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_NAME, id, lfs->name_max+1), info->name);
if (tag < 0) {
return tag;
}
info->type = lfs_tag_type3(tag);
struct lfs_ctz ctz;
tag = lfs_dir_get(lfs, dir, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
return tag;
}
lfs_ctz_fromle32(&ctz);
if (lfs_tag_type3(tag) == LFS_TYPE_CTZSTRUCT) {
info->size = ctz.size;
} else if (lfs_tag_type3(tag) == LFS_TYPE_INLINESTRUCT) {
info->size = lfs_tag_size(tag);
}
return 0;
}
struct lfs_dir_find_match {
lfs_t *lfs;
const void *name;
lfs_size_t size;
};
static int lfs_dir_find_match(void *data,
lfs_tag_t tag, const void *buffer) {
struct lfs_dir_find_match *name = data;
lfs_t *lfs = name->lfs;
const struct lfs_diskoff *disk = buffer;
// compare with disk
lfs_size_t diff = lfs_min(name->size, lfs_tag_size(tag));
int res = lfs_bd_cmp(lfs,
NULL, &lfs->rcache, diff,
disk->block, disk->off, name->name, diff);
if (res != LFS_CMP_EQ) {
return res;
}
// only equal if our size is still the same
if (name->size != lfs_tag_size(tag)) {
return (name->size < lfs_tag_size(tag)) ? LFS_CMP_LT : LFS_CMP_GT;
}
// found a match!
return LFS_CMP_EQ;
}
static int lfs_dir_find(lfs_t *lfs, lfs_mdir_t *dir,
const char **path, uint16_t *id) {
// we reduce path to a single name if we can find it
const char *name = *path;
if (id) {
*id = 0x3ff;
}
// default to root dir
lfs_stag_t tag = LFS_MKTAG(LFS_TYPE_DIR, 0x3ff, 0);
dir->tail[0] = lfs->root[0];
dir->tail[1] = lfs->root[1];
while (true) {
nextname:
// skip slashes
name += strspn(name, "/");
lfs_size_t namelen = strcspn(name, "/");
// skip '.' and root '..'
if ((namelen == 1 && memcmp(name, ".", 1) == 0) ||
(namelen == 2 && memcmp(name, "..", 2) == 0)) {
name += namelen;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = name + namelen;
lfs_size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
name = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// found path
if (name[0] == '\0') {
return tag;
}
// update what we've found so far
*path = name;
// only continue if we hit a directory
if (lfs_tag_type3(tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
// grab the entry data
if (lfs_tag_id(tag) != 0x3ff) {
lfs_stag_t res = lfs_dir_get(lfs, dir, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), dir->tail);
if (res < 0) {
return res;
}
lfs_pair_fromle32(dir->tail);
}
// find entry matching name
while (true) {
tag = lfs_dir_fetchmatch(lfs, dir, dir->tail,
LFS_MKTAG(0x780, 0, 0),
LFS_MKTAG(LFS_TYPE_NAME, 0, namelen),
// are we last name?
(strchr(name, '/') == NULL) ? id : NULL,
lfs_dir_find_match, &(struct lfs_dir_find_match){
lfs, name, namelen});
if (tag < 0) {
return tag;
}
if (tag) {
break;
}
if (!dir->split) {
return LFS_ERR_NOENT;
}
}
// to next name
name += namelen;
}
}
// commit logic
struct lfs_commit {
lfs_block_t block;
lfs_off_t off;
lfs_tag_t ptag;
uint32_t crc;
lfs_off_t begin;
lfs_off_t end;
};
static int lfs_dir_commitprog(lfs_t *lfs, struct lfs_commit *commit,
const void *buffer, lfs_size_t size) {
int err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, false,
commit->block, commit->off ,
(const uint8_t*)buffer, size);
if (err) {
return err;
}
commit->crc = lfs_crc(commit->crc, buffer, size);
commit->off += size;
return 0;
}
static int lfs_dir_commitattr(lfs_t *lfs, struct lfs_commit *commit,
lfs_tag_t tag, const void *buffer) {
// check if we fit
lfs_size_t dsize = lfs_tag_dsize(tag);
if (commit->off + dsize > commit->end) {
return LFS_ERR_NOSPC;
}
// write out tag
lfs_tag_t ntag = lfs_tobe32((tag & 0x7fffffff) ^ commit->ptag);
int err = lfs_dir_commitprog(lfs, commit, &ntag, sizeof(ntag));
if (err) {
return err;
}
if (!(tag & 0x80000000)) {
// from memory
err = lfs_dir_commitprog(lfs, commit, buffer, dsize-sizeof(tag));
if (err) {
return err;
}
} else {
// from disk
const struct lfs_diskoff *disk = buffer;
for (lfs_off_t i = 0; i < dsize-sizeof(tag); i++) {
// rely on caching to make this efficient
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, dsize-sizeof(tag)-i,
disk->block, disk->off+i, &dat, 1);
if (err) {
return err;
}
err = lfs_dir_commitprog(lfs, commit, &dat, 1);
if (err) {
return err;
}
}
}
commit->ptag = tag & 0x7fffffff;
return 0;
}
static int lfs_dir_commitcrc(lfs_t *lfs, struct lfs_commit *commit) {
// align to program units
lfs_off_t off = lfs_alignup(commit->off + 2*sizeof(uint32_t),
lfs->cfg->prog_size);
// read erased state from next program unit
lfs_tag_t tag;
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(tag),
commit->block, off, &tag, sizeof(tag));
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// build crc tag
bool reset = ~lfs_frombe32(tag) >> 31;
tag = LFS_MKTAG(LFS_TYPE_CRC + reset, 0x3ff,
off - (commit->off+sizeof(lfs_tag_t)));
// write out crc
uint32_t footer[2];
footer[0] = lfs_tobe32(tag ^ commit->ptag);
commit->crc = lfs_crc(commit->crc, &footer[0], sizeof(footer[0]));
footer[1] = lfs_tole32(commit->crc);
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, false,
commit->block, commit->off, &footer, sizeof(footer));
if (err) {
return err;
}
commit->off += sizeof(tag)+lfs_tag_size(tag);
commit->ptag = tag ^ (reset << 31);
// flush buffers
err = lfs_bd_sync(lfs, &lfs->pcache, &lfs->rcache, false);
if (err) {
return err;
}
// successful commit, check checksum to make sure
uint32_t crc = 0xffffffff;
lfs_size_t size = commit->off - lfs_tag_size(tag) - commit->begin;
for (lfs_off_t i = 0; i < size; i++) {
// leave it up to caching to make this efficient
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, size-i,
commit->block, commit->begin+i, &dat, 1);
if (err) {
return err;
}
crc = lfs_crc(crc, &dat, 1);
}
if (err) {
return err;
}
if (crc != commit->crc) {
return LFS_ERR_CORRUPT;
}
return 0;
}
static int lfs_dir_alloc(lfs_t *lfs, lfs_mdir_t *dir) {
// allocate pair of dir blocks (backwards, so we write block 1 first)
for (int i = 0; i < 2; i++) {
int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]);
if (err) {
return err;
}
}
// rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(dir->rev),
dir->pair[0], 0, &dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// make sure we don't immediately evict
dir->rev += dir->rev & 1;
// set defaults
dir->off = sizeof(dir->rev);
dir->etag = 0xffffffff;
dir->count = 0;
dir->tail[0] = 0xffffffff;
dir->tail[1] = 0xffffffff;
dir->erased = false;
dir->split = false;
// don't write out yet, let caller take care of that
return 0;
}
static int lfs_dir_drop(lfs_t *lfs, lfs_mdir_t *dir, lfs_mdir_t *tail) {
// steal state
int err = lfs_dir_getgstate(lfs, tail, &lfs->gdelta);
if (err) {
return err;
}
// steal tail
lfs_pair_tole32(tail->tail);
err = lfs_dir_commit(lfs, dir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_TAIL + tail->split, 0x3ff, 8), tail->tail}));
lfs_pair_fromle32(tail->tail);
if (err) {
return err;
}
return 0;
}
static int lfs_dir_split(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t split, uint16_t end) {
// create tail directory
lfs_mdir_t tail;
int err = lfs_dir_alloc(lfs, &tail);
if (err) {
return err;
}
tail.split = dir->split;
tail.tail[0] = dir->tail[0];
tail.tail[1] = dir->tail[1];
err = lfs_dir_compact(lfs, &tail, attrs, attrcount, source, split, end);
if (err) {
return err;
}
dir->tail[0] = tail.pair[0];
dir->tail[1] = tail.pair[1];
dir->split = true;
// update root if needed
if (lfs_pair_cmp(dir->pair, lfs->root) == 0 && split == 0) {
lfs->root[0] = tail.pair[0];
lfs->root[1] = tail.pair[1];
}
return 0;
}
static int lfs_dir_commit_size(void *p, lfs_tag_t tag, const void *buffer) {
lfs_size_t *size = p;
(void)buffer;
*size += lfs_tag_dsize(tag);
return 0;
}
struct lfs_dir_commit_commit {
lfs_t *lfs;
struct lfs_commit *commit;
};
static int lfs_dir_commit_commit(void *p, lfs_tag_t tag, const void *buffer) {
struct lfs_dir_commit_commit *commit = p;
return lfs_dir_commitattr(commit->lfs, commit->commit, tag, buffer);
}
static int lfs_dir_compact(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t begin, uint16_t end) {
// save some state in case block is bad
const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]};
bool relocated = false;
bool exhausted = false;
// should we split?
while (end - begin > 1) {
// find size
lfs_size_t size = 0;
int err = lfs_dir_traverse(lfs,
source, 0, 0xffffffff, attrs, attrcount, false,
LFS_MKTAG(0x400, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_NAME, 0, 0),
begin, end, -begin,
lfs_dir_commit_size, &size);
if (err) {
return err;
}
// space is complicated, we need room for tail, crc, gstate,
// cleanup delete, and we cap at half a block to give room
// for metadata updates.
if (end - begin < 0xff &&
size <= lfs_min(lfs->cfg->block_size - 36,
lfs_alignup(lfs->cfg->block_size/2,
lfs->cfg->prog_size))) {
break;
}
// can't fit, need to split, we should really be finding the
// largest size that fits with a small binary search, but right now
// it's not worth the code size
uint16_t split = (end - begin) / 2;
err = lfs_dir_split(lfs, dir, attrs, attrcount,
source, begin+split, end);
if (err) {
// if we fail to split, we may be able to overcompact, unless
// we're too big for even the full block, in which case our
// only option is to error
if (err == LFS_ERR_NOSPC && size <= lfs->cfg->block_size - 36) {
break;
}
return err;
}
end = begin + split;
}
// increment revision count
dir->rev += 1;
if (lfs->cfg->block_cycles &&
(dir->rev % (lfs->cfg->block_cycles+1) == 0)) {
if (lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) {
// oh no! we're writing too much to the superblock,
// should we expand?
lfs_ssize_t res = lfs_fs_size(lfs);
if (res < 0) {
return res;
}
// do we have extra space? littlefs can't reclaim this space
// by itself, so expand cautiously
if ((lfs_size_t)res < lfs->cfg->block_count/2) {
LFS_DEBUG("Expanding superblock at rev %"PRIu32, dir->rev);
int err = lfs_dir_split(lfs, dir, attrs, attrcount,
source, begin, end);
if (err && err != LFS_ERR_NOSPC) {
return err;
}
// welp, we tried, if we ran out of space there's not much
// we can do, we'll error later if we've become frozen
if (!err) {
end = begin;
}
}
} else {
// we're writing too much, time to relocate
exhausted = true;
goto relocate;
}
}
// begin loop to commit compaction to blocks until a compact sticks
while (true) {
{
// There's nothing special about our global delta, so feed it into
// our local global delta
int err = lfs_dir_getgstate(lfs, dir, &lfs->gdelta);
if (err) {
return err;
}
// setup commit state
struct lfs_commit commit = {
.block = dir->pair[1],
.off = 0,
.ptag = 0xffffffff,
.crc = 0xffffffff,
.begin = 0,
.end = lfs->cfg->block_size - 8,
};
// erase block to write to
err = lfs_bd_erase(lfs, dir->pair[1]);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// write out header
dir->rev = lfs_tole32(dir->rev);
err = lfs_dir_commitprog(lfs, &commit,
&dir->rev, sizeof(dir->rev));
dir->rev = lfs_fromle32(dir->rev);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// traverse the directory, this time writing out all unique tags
err = lfs_dir_traverse(lfs,
source, 0, 0xffffffff, attrs, attrcount, false,
LFS_MKTAG(0x400, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_NAME, 0, 0),
begin, end, -begin,
lfs_dir_commit_commit, &(struct lfs_dir_commit_commit){
lfs, &commit});
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit tail, which may be new after last size check
if (!lfs_pair_isnull(dir->tail)) {
lfs_pair_tole32(dir->tail);
err = lfs_dir_commitattr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_TAIL + dir->split, 0x3ff, 8),
dir->tail);
lfs_pair_fromle32(dir->tail);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
if (!relocated && !lfs_gstate_iszero(&lfs->gdelta)) {
// commit any globals, unless we're relocating,
// in which case our parent will steal our globals
lfs_gstate_tole32(&lfs->gdelta);
err = lfs_dir_commitattr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_MOVESTATE, 0x3ff,
sizeof(lfs->gdelta)), &lfs->gdelta);
lfs_gstate_fromle32(&lfs->gdelta);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
err = lfs_dir_commitcrc(lfs, &commit);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// successful compaction, swap dir pair to indicate most recent
lfs_pair_swap(dir->pair);
dir->count = end - begin;
dir->off = commit.off;
dir->etag = commit.ptag;
dir->erased = (dir->off % lfs->cfg->prog_size == 0);
// note we able to have already handled move here
if (lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
lfs_gstate_xormove(&lfs->gpending,
&lfs->gpending, 0x3ff, NULL);
}
}
break;
relocate:
// commit was corrupted, drop caches and prepare to relocate block
relocated = true;
lfs_cache_drop(lfs, &lfs->pcache);
if (!exhausted) {
LFS_DEBUG("Bad block at %"PRIu32, dir->pair[1]);
}
// can't relocate superblock, filesystem is now frozen
if (lfs_pair_cmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
LFS_WARN("Superblock %"PRIu32" has become unwritable", oldpair[1]);
return LFS_ERR_NOSPC;
}
// relocate half of pair
int err = lfs_alloc(lfs, &dir->pair[1]);
if (err && (err != LFS_ERR_NOSPC && !exhausted)) {
return err;
}
continue;
}
if (!relocated) {
lfs->gstate = lfs->gpending;
lfs->gdelta = (struct lfs_gstate){0};
} else {
// update references if we relocated
LFS_DEBUG("Relocating %"PRIu32" %"PRIu32" to %"PRIu32" %"PRIu32,
oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
int err = lfs_fs_relocate(lfs, oldpair, dir->pair);
if (err) {
return err;
}
}
return 0;
}
static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
const struct lfs_mattr *attrs, int attrcount) {
// check for any inline files that aren't RAM backed and
// forcefully evict them, needed for filesystem consistency
for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
if (dir != &f->m && lfs_pair_cmp(f->m.pair, dir->pair) == 0 &&
f->type == LFS_TYPE_REG && (f->flags & LFS_F_INLINE) &&
f->ctz.size > lfs->cfg->cache_size) {
f->flags &= ~LFS_F_READING;
f->off = 0;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, f);
if (err) {
return err;
}
err = lfs_file_flush(lfs, f);
if (err) {
return err;
}
}
}
// calculate changes to the directory
lfs_tag_t deletetag = 0xffffffff;
lfs_tag_t createtag = 0xffffffff;
for (int i = 0; i < attrcount; i++) {
if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_CREATE) {
createtag = attrs[i].tag;
dir->count += 1;
} else if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_DELETE) {
deletetag = attrs[i].tag;
LFS_ASSERT(dir->count > 0);
dir->count -= 1;
} else if (lfs_tag_type1(attrs[i].tag) == LFS_TYPE_TAIL) {
dir->tail[0] = ((lfs_block_t*)attrs[i].buffer)[0];
dir->tail[1] = ((lfs_block_t*)attrs[i].buffer)[1];
dir->split = (lfs_tag_chunk(attrs[i].tag) & 1);
lfs_pair_fromle32(dir->tail);
}
}
// do we have a pending move?
if (lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
deletetag = lfs->gpending.tag & LFS_MKTAG(0x7ff, 0x3ff, 0);
LFS_ASSERT(dir->count > 0);
dir->count -= 1;
// mark gdelta so we reflect the move we will fix
lfs_gstate_xormove(&lfs->gdelta, &lfs->gpending, 0x3ff, NULL);
}
// should we actually drop the directory block?
if (lfs_tag_isvalid(deletetag) && dir->count == 0) {
lfs_mdir_t pdir;
int err = lfs_fs_pred(lfs, dir->pair, &pdir);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT && pdir.split) {
return lfs_dir_drop(lfs, &pdir, dir);
}
}
if (dir->erased || dir->count >= 0xff) {
// try to commit
struct lfs_commit commit = {
.block = dir->pair[0],
.off = dir->off,
.ptag = dir->etag,
.crc = 0xffffffff,
.begin = dir->off,
.end = lfs->cfg->block_size - 8,
};
// traverse attrs that need to be written out
lfs_pair_tole32(dir->tail);
int err = lfs_dir_traverse(lfs,
dir, dir->off, dir->etag, attrs, attrcount, false,
0, 0, 0, 0, 0,
lfs_dir_commit_commit, &(struct lfs_dir_commit_commit){
lfs, &commit});
lfs_pair_fromle32(dir->tail);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
// commit any global diffs if we have any
if (!lfs_gstate_iszero(&lfs->gdelta)) {
err = lfs_dir_getgstate(lfs, dir, &lfs->gdelta);
if (err) {
return err;
}
lfs_gstate_tole32(&lfs->gdelta);
err = lfs_dir_commitattr(lfs, &commit,
LFS_MKTAG(LFS_TYPE_MOVESTATE, 0x3ff,
sizeof(lfs->gdelta)), &lfs->gdelta);
lfs_gstate_fromle32(&lfs->gdelta);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
}
// finalize commit with the crc
err = lfs_dir_commitcrc(lfs, &commit);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
// successful commit, update dir
dir->off = commit.off;
dir->etag = commit.ptag;
// note we able to have already handled move here
if (lfs_gstate_hasmovehere(&lfs->gpending, dir->pair)) {
lfs_gstate_xormove(&lfs->gpending, &lfs->gpending, 0x3ff, NULL);
}
// update gstate
lfs->gstate = lfs->gpending;
lfs->gdelta = (struct lfs_gstate){0};
} else {
compact:
// fall back to compaction
lfs_cache_drop(lfs, &lfs->pcache);
int err = lfs_dir_compact(lfs, dir, attrs, attrcount,
dir, 0, dir->count);
if (err) {
return err;
}
}
// update any directories that are affected
lfs_mdir_t copy = *dir;
// two passes, once for things that aren't us, and one
// for things that are
for (struct lfs_mlist *d = lfs->mlist; d; d = d->next) {
if (lfs_pair_cmp(d->m.pair, copy.pair) == 0) {
d->m = *dir;
if (d->id == lfs_tag_id(deletetag)) {
d->m.pair[0] = 0xffffffff;
d->m.pair[1] = 0xffffffff;
} else if (d->id > lfs_tag_id(deletetag)) {
d->id -= 1;
if (d->type == LFS_TYPE_DIR) {
((lfs_dir_t*)d)->pos -= 1;
}
} else if (&d->m != dir && d->id >= lfs_tag_id(createtag)) {
d->id += 1;
if (d->type == LFS_TYPE_DIR) {
((lfs_dir_t*)d)->pos += 1;
}
}
while (d->id >= d->m.count && d->m.split) {
// we split and id is on tail now
d->id -= d->m.count;
int err = lfs_dir_fetch(lfs, &d->m, d->m.tail);
if (err) {
return err;
}
}
}
}
return 0;
}
/// Top level directory operations ///
int lfs_mkdir(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
lfs_mdir_t cwd;
uint16_t id;
err = lfs_dir_find(lfs, &cwd, &path, &id);
if (!(err == LFS_ERR_NOENT && id != 0x3ff)) {
return (err < 0) ? err : LFS_ERR_EXIST;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_max) {
return LFS_ERR_NAMETOOLONG;
}
// build up new directory
lfs_alloc_ack(lfs);
lfs_mdir_t dir;
err = lfs_dir_alloc(lfs, &dir);
if (err) {
return err;
}
// find end of list
lfs_mdir_t pred = cwd;
while (pred.split) {
err = lfs_dir_fetch(lfs, &pred, pred.tail);
if (err) {
return err;
}
}
// setup dir
lfs_pair_tole32(pred.tail);
err = lfs_dir_commit(lfs, &dir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), pred.tail}));
lfs_pair_fromle32(pred.tail);
if (err) {
return err;
}
// current block end of list?
if (cwd.split) {
// update tails, this creates a desync
lfs_fs_preporphans(lfs, +1);
lfs_pair_tole32(dir.pair);
err = lfs_dir_commit(lfs, &pred, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), dir.pair}));
lfs_pair_fromle32(dir.pair);
if (err) {
return err;
}
lfs_fs_preporphans(lfs, -1);
}
// now insert into our parent block
lfs_pair_tole32(dir.pair);
err = lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, id, 0), NULL},
{LFS_MKTAG(LFS_TYPE_DIR, id, nlen), path},
{LFS_MKTAG(LFS_TYPE_DIRSTRUCT, id, 8), dir.pair},
{!cwd.split
? LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8)
: LFS_MKTAG(LFS_FROM_NOOP, 0, 0), dir.pair}));
lfs_pair_fromle32(dir.pair);
if (err) {
return err;
}
return 0;
}
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
lfs_stag_t tag = lfs_dir_find(lfs, &dir->m, &path, NULL);
if (tag < 0) {
return tag;
}
if (lfs_tag_type3(tag) != LFS_TYPE_DIR) {
return LFS_ERR_NOTDIR;
}
lfs_block_t pair[2];
if (lfs_tag_id(tag) == 0x3ff) {
// handle root dir separately
pair[0] = lfs->root[0];
pair[1] = lfs->root[1];
} else {
// get dir pair from parent
lfs_stag_t res = lfs_dir_get(lfs, &dir->m, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
}
// fetch first pair
int err = lfs_dir_fetch(lfs, &dir->m, pair);
if (err) {
return err;
}
// setup entry
dir->head[0] = dir->m.pair[0];
dir->head[1] = dir->m.pair[1];
dir->id = 0;
dir->pos = 0;
// add to list of mdirs
dir->type = LFS_TYPE_DIR;
dir->next = (lfs_dir_t*)lfs->mlist;
lfs->mlist = (struct lfs_mlist*)dir;
return 0;
}
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// remove from list of mdirs
for (struct lfs_mlist **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == (struct lfs_mlist*)dir) {
*p = (*p)->next;
break;
}
}
return 0;
}
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
memset(info, 0, sizeof(*info));
// special offset for '.' and '..'
if (dir->pos == 0) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, ".");
dir->pos += 1;
return 1;
} else if (dir->pos == 1) {
info->type = LFS_TYPE_DIR;
strcpy(info->name, "..");
dir->pos += 1;
return 1;
}
while (true) {
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return false;
}
int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
if (err) {
return err;
}
dir->id = 0;
}
int err = lfs_dir_getinfo(lfs, &dir->m, dir->id, info);
if (err && err != LFS_ERR_NOENT) {
return err;
}
dir->id += 1;
if (err != LFS_ERR_NOENT) {
break;
}
}
dir->pos += 1;
return true;
}
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// simply walk from head dir
int err = lfs_dir_rewind(lfs, dir);
if (err) {
return err;
}
// first two for ./..
dir->pos = lfs_min(2, off);
off -= dir->pos;
while (off != 0) {
dir->id = lfs_min(dir->m.count, off);
dir->pos += dir->id;
off -= dir->id;
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return LFS_ERR_INVAL;
}
err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
if (err) {
return err;
}
}
}
return 0;
}
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
(void)lfs;
return dir->pos;
}
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// reload the head dir
int err = lfs_dir_fetch(lfs, &dir->m, dir->head);
if (err) {
return err;
}
dir->m.pair[0] = dir->head[0];
dir->m.pair[1] = dir->head[1];
dir->id = 0;
dir->pos = 0;
return 0;
}
/// File index list operations ///
static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
lfs_off_t size = *off;
lfs_off_t b = lfs->cfg->block_size - 2*4;
lfs_off_t i = size / b;
if (i == 0) {
return 0;
}
i = (size - 4*(lfs_popc(i-1)+2)) / b;
*off = size - b*i - 4*lfs_popc(i);
return i;
}
static int lfs_ctz_find(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
if (size == 0) {
*block = 0xffffffff;
*off = 0;
return 0;
}
lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
lfs_off_t target = lfs_ctz_index(lfs, &pos);
while (current > target) {
lfs_size_t skip = lfs_min(
lfs_npw2(current-target+1) - 1,
lfs_ctz(current));
int err = lfs_bd_read(lfs,
pcache, rcache, sizeof(head),
head, 4*skip, &head, sizeof(head));
head = lfs_fromle32(head);
if (err) {
return err;
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
current -= 1 << skip;
}
*block = head;
*off = pos;
return 0;
}
static int lfs_ctz_extend(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
lfs_block_t *block, lfs_off_t *off) {
while (true) {
// go ahead and grab a block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count);
{
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (size == 0) {
*block = nblock;
*off = 0;
return 0;
}
size -= 1;
lfs_off_t index = lfs_ctz_index(lfs, &size);
size += 1;
// just copy out the last block if it is incomplete
if (size != lfs->cfg->block_size) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t data;
err = lfs_bd_read(lfs,
NULL, rcache, size-i,
head, i, &data, 1);
if (err) {
return err;
}
err = lfs_bd_prog(lfs,
pcache, rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
*block = nblock;
*off = size;
return 0;
}
// append block
index += 1;
lfs_size_t skips = lfs_ctz(index) + 1;
for (lfs_off_t i = 0; i < skips; i++) {
head = lfs_tole32(head);
err = lfs_bd_prog(lfs, pcache, rcache, true,
nblock, 4*i, &head, 4);
head = lfs_fromle32(head);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (i != skips-1) {
err = lfs_bd_read(lfs,
NULL, rcache, sizeof(head),
head, 4*i, &head, sizeof(head));
head = lfs_fromle32(head);
if (err) {
return err;
}
}
LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
}
*block = nblock;
*off = 4*skips;
return 0;
}
relocate:
LFS_DEBUG("Bad block at %"PRIu32, nblock);
// just clear cache and try a new block
lfs_cache_drop(lfs, pcache);
}
}
static int lfs_ctz_traverse(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache,
lfs_block_t head, lfs_size_t size,
int (*cb)(void*, lfs_block_t), void *data) {
if (size == 0) {
return 0;
}
lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
while (true) {
int err = cb(data, head);
if (err) {
return err;
}
if (index == 0) {
return 0;
}
lfs_block_t heads[2];
int count = 2 - (index & 1);
err = lfs_bd_read(lfs,
pcache, rcache, count*sizeof(head),
head, 0, &heads, count*sizeof(head));
heads[0] = lfs_fromle32(heads[0]);
heads[1] = lfs_fromle32(heads[1]);
if (err) {
return err;
}
for (int i = 0; i < count-1; i++) {
err = cb(data, heads[i]);
if (err) {
return err;
}
}
head = heads[count-1];
index -= count;
}
}
/// Top level file operations ///
int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags,
const struct lfs_file_config *cfg) {
// deorphan if we haven't yet, needed at most once after poweron
if ((flags & 3) != LFS_O_RDONLY) {
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
}
// setup simple file details
int err;
file->cfg = cfg;
file->flags = flags;
file->pos = 0;
file->cache.buffer = NULL;
// allocate entry for file if it doesn't exist
lfs_stag_t tag = lfs_dir_find(lfs, &file->m, &path, &file->id);
if (tag < 0 && !(tag == LFS_ERR_NOENT && file->id != 0x3ff)) {
err = tag;
goto cleanup;
}
// get id, add to list of mdirs to catch update changes
file->type = LFS_TYPE_REG;
file->next = (lfs_file_t*)lfs->mlist;
lfs->mlist = (struct lfs_mlist*)file;
if (tag == LFS_ERR_NOENT) {
if (!(flags & LFS_O_CREAT)) {
err = LFS_ERR_NOENT;
goto cleanup;
}
// check that name fits
lfs_size_t nlen = strlen(path);
if (nlen > lfs->name_max) {
err = LFS_ERR_NAMETOOLONG;
goto cleanup;
}
// get next slot and create entry to remember name
err = lfs_dir_commit(lfs, &file->m, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, file->id, 0), NULL},
{LFS_MKTAG(LFS_TYPE_REG, file->id, nlen), path},
{LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0), NULL}));
if (err) {
err = LFS_ERR_NAMETOOLONG;
goto cleanup;
}
tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, 0);
} else if (flags & LFS_O_EXCL) {
err = LFS_ERR_EXIST;
goto cleanup;
} else if (lfs_tag_type3(tag) != LFS_TYPE_REG) {
err = LFS_ERR_ISDIR;
goto cleanup;
} else if (flags & LFS_O_TRUNC) {
// truncate if requested
tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0);
file->flags |= LFS_F_DIRTY;
} else {
// try to load what's on disk, if it's inlined we'll fix it later
tag = lfs_dir_get(lfs, &file->m, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, file->id, 8), &file->ctz);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs_ctz_fromle32(&file->ctz);
}
// fetch attrs
for (unsigned i = 0; i < file->cfg->attr_count; i++) {
if ((file->flags & 3) != LFS_O_WRONLY) {
lfs_stag_t res = lfs_dir_get(lfs, &file->m,
LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_USERATTR + file->cfg->attrs[i].type,
file->id, file->cfg->attrs[i].size),
file->cfg->attrs[i].buffer);
if (res < 0 && res != LFS_ERR_NOENT) {
err = res;
goto cleanup;
}
}
if ((file->flags & 3) != LFS_O_RDONLY) {
if (file->cfg->attrs[i].size > lfs->attr_max) {
err = LFS_ERR_NOSPC;
goto cleanup;
}
file->flags |= LFS_F_DIRTY;
}
}
// allocate buffer if needed
if (file->cfg->buffer) {
file->cache.buffer = file->cfg->buffer;
} else {
file->cache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!file->cache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leak
lfs_cache_zero(lfs, &file->cache);
if (lfs_tag_type3(tag) == LFS_TYPE_INLINESTRUCT) {
// load inline files
file->ctz.head = 0xfffffffe;
file->ctz.size = lfs_tag_size(tag);
file->flags |= LFS_F_INLINE;
file->cache.block = file->ctz.head;
file->cache.off = 0;
file->cache.size = lfs->cfg->cache_size;
// don't always read (may be new/trunc file)
if (file->ctz.size > 0) {
lfs_stag_t res = lfs_dir_get(lfs, &file->m,
LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, file->id,
lfs_min(file->cache.size, 0x3fe)),
file->cache.buffer);
if (res < 0) {
err = res;
goto cleanup;
}
}
}
return 0;
cleanup:
// clean up lingering resources
file->flags |= LFS_F_ERRED;
lfs_file_close(lfs, file);
return err;
}
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
const char *path, int flags) {
static const struct lfs_file_config defaults = {0};
return lfs_file_opencfg(lfs, file, path, flags, &defaults);
}
int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
int err = lfs_file_sync(lfs, file);
// remove from list of mdirs
for (struct lfs_mlist **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == (struct lfs_mlist*)file) {
*p = (*p)->next;
break;
}
}
// clean up memory
if (!file->cfg->buffer) {
lfs_free(file->cache.buffer);
}
return err;
}
static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
while (true) {
// just relocate what exists into new block
lfs_block_t nblock;
int err = lfs_alloc(lfs, &nblock);
if (err) {
return err;
}
err = lfs_bd_erase(lfs, nblock);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// either read from dirty cache or disk
for (lfs_off_t i = 0; i < file->off; i++) {
uint8_t data;
if (file->flags & LFS_F_INLINE) {
err = lfs_dir_getread(lfs, &file->m,
// note we evict inline files before they can be dirty
NULL, &file->cache, file->off-i,
LFS_MKTAG(0xfff, 0x1ff, 0),
LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0),
i, &data, 1);
if (err) {
return err;
}
} else {
err = lfs_bd_read(lfs,
&file->cache, &lfs->rcache, file->off-i,
file->block, i, &data, 1);
if (err) {
return err;
}
}
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// copy over new state of file
memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->cache_size);
file->cache.block = lfs->pcache.block;
file->cache.off = lfs->pcache.off;
file->cache.size = lfs->pcache.size;
lfs_cache_zero(lfs, &lfs->pcache);
file->block = nblock;
file->flags &= ~LFS_F_INLINE;
file->flags |= LFS_F_WRITING;
return 0;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, nblock);
// just clear cache and try a new block
lfs_cache_drop(lfs, &lfs->pcache);
}
}
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
if (file->flags & LFS_F_READING) {
if (!(file->flags & LFS_F_INLINE)) {
lfs_cache_drop(lfs, &file->cache);
}
file->flags &= ~LFS_F_READING;
}
if (file->flags & LFS_F_WRITING) {
lfs_off_t pos = file->pos;
if (!(file->flags & LFS_F_INLINE)) {
// copy over anything after current branch
lfs_file_t orig = {
.ctz.head = file->ctz.head,
.ctz.size = file->ctz.size,
.flags = LFS_O_RDONLY,
.pos = file->pos,
.cache = lfs->rcache,
};
lfs_cache_drop(lfs, &lfs->rcache);
while (file->pos < file->ctz.size) {
// copy over a byte at a time, leave it up to caching
// to make this efficient
uint8_t data;
lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1);
if (res < 0) {
return res;
}
res = lfs_file_write(lfs, file, &data, 1);
if (res < 0) {
return res;
}
// keep our reference to the rcache in sync
if (lfs->rcache.block != 0xffffffff) {
lfs_cache_drop(lfs, &orig.cache);
lfs_cache_drop(lfs, &lfs->rcache);
}
}
// write out what we have
while (true) {
int err = lfs_bd_flush(lfs, &file->cache, &lfs->rcache, true);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
break;
relocate:
LFS_DEBUG("Bad block at %"PRIu32, file->block);
err = lfs_file_relocate(lfs, file);
if (err) {
return err;
}
}
} else {
file->ctz.size = lfs_max(file->pos, file->ctz.size);
}
// actual file updates
file->ctz.head = file->block;
file->ctz.size = file->pos;
file->flags &= ~LFS_F_WRITING;
file->flags |= LFS_F_DIRTY;
file->pos = pos;
}
return 0;
}
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
while (true) {
int err = lfs_file_flush(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
if ((file->flags & LFS_F_DIRTY) &&
!(file->flags & LFS_F_ERRED) &&
!lfs_pair_isnull(file->m.pair)) {
// update dir entry
uint16_t type;
const void *buffer;
lfs_size_t size;
struct lfs_ctz ctz;
if (file->flags & LFS_F_INLINE) {
// inline the whole file
type = LFS_TYPE_INLINESTRUCT;
buffer = file->cache.buffer;
size = file->ctz.size;
} else {
// update the ctz reference
type = LFS_TYPE_CTZSTRUCT;
// copy ctz so alloc will work during a relocate
ctz = file->ctz;
lfs_ctz_tole32(&ctz);
buffer = &ctz;
size = sizeof(ctz);
}
// commit file data and attributes
err = lfs_dir_commit(lfs, &file->m, LFS_MKATTRS(
{LFS_MKTAG(type, file->id, size), buffer},
{LFS_MKTAG(LFS_FROM_USERATTRS, file->id,
file->cfg->attr_count), file->cfg->attrs}));
if (err) {
if (err == LFS_ERR_NOSPC && (file->flags & LFS_F_INLINE)) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
file->flags &= ~LFS_F_DIRTY;
}
return 0;
relocate:
// inline file doesn't fit anymore
file->off = file->pos;
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
}
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_WRONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_WRITING) {
// flush out any writes
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if (file->pos >= file->ctz.size) {
// eof if past end
return 0;
}
size = lfs_min(size, file->ctz.size - file->pos);
nsize = size;
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_READING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
int err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos, &file->block, &file->off);
if (err) {
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_READING;
}
// read as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
if (file->flags & LFS_F_INLINE) {
int err = lfs_dir_getread(lfs, &file->m,
NULL, &file->cache, lfs->cfg->block_size,
LFS_MKTAG(0xfff, 0x1ff, 0),
LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0),
file->off, data, diff);
if (err) {
return err;
}
} else {
int err = lfs_bd_read(lfs,
NULL, &file->cache, lfs->cfg->block_size,
file->block, file->off, data, diff);
if (err) {
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
}
return size;
}
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t nsize = size;
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (file->flags & LFS_F_READING) {
// drop any reads
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
}
if ((file->flags & LFS_O_APPEND) && file->pos < file->ctz.size) {
file->pos = file->ctz.size;
}
if (file->pos + size > lfs->file_max) {
// Larger than file limit?
return LFS_ERR_FBIG;
}
if (!(file->flags & LFS_F_WRITING) && file->pos > file->ctz.size) {
// fill with zeros
lfs_off_t pos = file->pos;
file->pos = file->ctz.size;
while (file->pos < pos) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
}
if ((file->flags & LFS_F_INLINE) &&
lfs_max(file->pos+nsize, file->ctz.size) >
lfs_min(LFS_ATTR_MAX, lfs_min(
lfs->cfg->cache_size, lfs->cfg->block_size/8))) {
// inline file doesn't fit anymore
file->off = file->pos;
lfs_alloc_ack(lfs);
int err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS_F_WRITING) ||
file->off == lfs->cfg->block_size) {
if (!(file->flags & LFS_F_INLINE)) {
if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
// find out which block we're extending from
int err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos-1, &file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
// mark cache as dirty since we may have read data into it
lfs_cache_zero(lfs, &file->cache);
}
// extend file with new blocks
lfs_alloc_ack(lfs);
int err = lfs_ctz_extend(lfs, &file->cache, &lfs->rcache,
file->block, file->pos,
&file->block, &file->off);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
} else {
file->block = 0xfffffffe;
file->off = file->pos;
}
file->flags |= LFS_F_WRITING;
}
// program as much as we can in current block
lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
while (true) {
int err = lfs_bd_prog(lfs, &file->cache, &lfs->rcache, true,
file->block, file->off, data, diff);
if (err) {
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
file->flags |= LFS_F_ERRED;
return err;
}
break;
relocate:
err = lfs_file_relocate(lfs, file);
if (err) {
file->flags |= LFS_F_ERRED;
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
lfs_alloc_ack(lfs);
}
file->flags &= ~LFS_F_ERRED;
return size;
}
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
lfs_soff_t off, int whence) {
// write out everything beforehand, may be noop if rdonly
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// find new pos
lfs_off_t npos = file->pos;
if (whence == LFS_SEEK_SET) {
npos = off;
} else if (whence == LFS_SEEK_CUR) {
npos = file->pos + off;
} else if (whence == LFS_SEEK_END) {
npos = file->ctz.size + off;
}
if (npos > lfs->file_max) {
// file position out of range
return LFS_ERR_INVAL;
}
// update pos
file->pos = npos;
return npos;
}
int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
if ((file->flags & 3) == LFS_O_RDONLY) {
return LFS_ERR_BADF;
}
if (size > LFS_FILE_MAX) {
return LFS_ERR_INVAL;
}
lfs_off_t oldsize = lfs_file_size(lfs, file);
if (size < oldsize) {
// need to flush since directly changing metadata
int err = lfs_file_flush(lfs, file);
if (err) {
return err;
}
// lookup new head in ctz skip list
err = lfs_ctz_find(lfs, NULL, &file->cache,
file->ctz.head, file->ctz.size,
size, &file->ctz.head, &(lfs_off_t){0});
if (err) {
return err;
}
file->ctz.size = size;
file->flags |= LFS_F_DIRTY;
} else if (size > oldsize) {
lfs_off_t pos = file->pos;
// flush+seek if not already at end
if (file->pos != oldsize) {
int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END);
if (err < 0) {
return err;
}
}
// fill with zeros
while (file->pos < size) {
lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
// restore pos
int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET);
if (err < 0) {
return err;
}
}
return 0;
}
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
return file->pos;
}
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET);
if (res < 0) {
return res;
}
return 0;
}
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
(void)lfs;
if (file->flags & LFS_F_WRITING) {
return lfs_max(file->pos, file->ctz.size);
} else {
return file->ctz.size;
}
}
/// General fs operations ///
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
return lfs_dir_getinfo(lfs, &cwd, lfs_tag_id(tag), info);
}
int lfs_remove(lfs_t *lfs, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0 || lfs_tag_id(tag) == 0x3ff) {
return (tag < 0) ? tag : LFS_ERR_INVAL;
}
lfs_mdir_t dir;
if (lfs_tag_type3(tag) == LFS_TYPE_DIR) {
// must be empty before removal
lfs_block_t pair[2];
lfs_stag_t res = lfs_dir_get(lfs, &cwd, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
err = lfs_dir_fetch(lfs, &dir, pair);
if (err) {
return err;
}
if (dir.count > 0 || dir.split) {
return LFS_ERR_NOTEMPTY;
}
// mark fs as orphaned
lfs_fs_preporphans(lfs, +1);
}
// delete the entry
err = lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_DELETE, lfs_tag_id(tag), 0), NULL}));
if (err) {
return err;
}
if (lfs_tag_type3(tag) == LFS_TYPE_DIR) {
// fix orphan
lfs_fs_preporphans(lfs, -1);
err = lfs_fs_pred(lfs, dir.pair, &cwd);
if (err) {
return err;
}
err = lfs_dir_drop(lfs, &cwd, &dir);
if (err) {
return err;
}
}
return 0;
}
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs_fs_forceconsistency(lfs);
if (err) {
return err;
}
// find old entry
lfs_mdir_t oldcwd;
lfs_stag_t oldtag = lfs_dir_find(lfs, &oldcwd, &oldpath, NULL);
if (oldtag < 0 || lfs_tag_id(oldtag) == 0x3ff) {
return (oldtag < 0) ? oldtag : LFS_ERR_INVAL;
}
// find new entry
lfs_mdir_t newcwd;
uint16_t newid;
lfs_stag_t prevtag = lfs_dir_find(lfs, &newcwd, &newpath, &newid);
if ((prevtag < 0 || lfs_tag_id(prevtag) == 0x3ff) &&
!(prevtag == LFS_ERR_NOENT && newid != 0x3ff)) {
return (prevtag < 0) ? prevtag : LFS_ERR_INVAL;
}
lfs_mdir_t prevdir;
if (prevtag == LFS_ERR_NOENT) {
// check that name fits
lfs_size_t nlen = strlen(newpath);
if (nlen > lfs->name_max) {
return LFS_ERR_NAMETOOLONG;
}
} else if (lfs_tag_type3(prevtag) != lfs_tag_type3(oldtag)) {
return LFS_ERR_ISDIR;
} else if (lfs_tag_type3(prevtag) == LFS_TYPE_DIR) {
// must be empty before removal
lfs_block_t prevpair[2];
lfs_stag_t res = lfs_dir_get(lfs, &newcwd, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, newid, 8), prevpair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(prevpair);
// must be empty before removal
err = lfs_dir_fetch(lfs, &prevdir, prevpair);
if (err) {
return err;
}
if (prevdir.count > 0 || prevdir.split) {
return LFS_ERR_NOTEMPTY;
}
// mark fs as orphaned
lfs_fs_preporphans(lfs, +1);
}
// create move to fix later
uint16_t newoldtagid = lfs_tag_id(oldtag);
if (lfs_pair_cmp(oldcwd.pair, newcwd.pair) == 0 &&
prevtag == LFS_ERR_NOENT && newid <= newoldtagid) {
// there is a small chance we are being renamed in the same directory
// to an id less than our old id, the global update to handle this
// is a bit messy
newoldtagid += 1;
}
lfs_fs_prepmove(lfs, newoldtagid, oldcwd.pair);
// move over all attributes
err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTRS(
{prevtag != LFS_ERR_NOENT
? LFS_MKTAG(LFS_TYPE_DELETE, newid, 0)
: LFS_MKTAG(LFS_FROM_NOOP, 0, 0), NULL},
{LFS_MKTAG(LFS_TYPE_CREATE, newid, 0), NULL},
{LFS_MKTAG(lfs_tag_type3(oldtag), newid, strlen(newpath)),
newpath},
{LFS_MKTAG(LFS_FROM_MOVE, newid, lfs_tag_id(oldtag)), &oldcwd}));
if (err) {
return err;
}
// let commit clean up after move (if we're different! otherwise move
// logic already fixed it for us)
if (lfs_pair_cmp(oldcwd.pair, newcwd.pair) != 0) {
err = lfs_dir_commit(lfs, &oldcwd, NULL, 0);
if (err) {
return err;
}
}
if (prevtag != LFS_ERR_NOENT && lfs_tag_type3(prevtag) == LFS_TYPE_DIR) {
// fix orphan
lfs_fs_preporphans(lfs, -1);
err = lfs_fs_pred(lfs, prevdir.pair, &newcwd);
if (err) {
return err;
}
err = lfs_dir_drop(lfs, &newcwd, &prevdir);
if (err) {
return err;
}
}
return 0;
}
lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
uint8_t type, void *buffer, lfs_size_t size) {
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
uint16_t id = lfs_tag_id(tag);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
}
tag = lfs_dir_get(lfs, &cwd, LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_USERATTR + type,
id, lfs_min(size, lfs->attr_max)),
buffer);
if (tag < 0) {
if (tag == LFS_ERR_NOENT) {
return LFS_ERR_NOATTR;
}
return tag;
}
return lfs_tag_size(tag);
}
static int lfs_commitattr(lfs_t *lfs, const char *path,
uint8_t type, const void *buffer, lfs_size_t size) {
lfs_mdir_t cwd;
lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
uint16_t id = lfs_tag_id(tag);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
if (err) {
return err;
}
}
return lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_USERATTR + type, id, size), buffer}));
}
int lfs_setattr(lfs_t *lfs, const char *path,
uint8_t type, const void *buffer, lfs_size_t size) {
if (size > lfs->attr_max) {
return LFS_ERR_NOSPC;
}
return lfs_commitattr(lfs, path, type, buffer, size);
}
int lfs_removeattr(lfs_t *lfs, const char *path, uint8_t type) {
return lfs_commitattr(lfs, path, type, NULL, 0x3ff);
}
/// Filesystem operations ///
static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
lfs->cfg = cfg;
int err = 0;
// check that block size is a multiple of cache size is a multiple
// of prog and read sizes
LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->prog_size == 0);
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->cache_size == 0);
// check that the block size is large enough to fit ctz pointers
LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
<= lfs->cfg->block_size);
// we don't support some corner cases
LFS_ASSERT(lfs->cfg->block_cycles < 0xffffffff);
// setup read cache
if (lfs->cfg->read_buffer) {
lfs->rcache.buffer = lfs->cfg->read_buffer;
} else {
lfs->rcache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!lfs->rcache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// setup program cache
if (lfs->cfg->prog_buffer) {
lfs->pcache.buffer = lfs->cfg->prog_buffer;
} else {
lfs->pcache.buffer = lfs_malloc(lfs->cfg->cache_size);
if (!lfs->pcache.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leaks
lfs_cache_zero(lfs, &lfs->rcache);
lfs_cache_zero(lfs, &lfs->pcache);
// setup lookahead, must be multiple of 64-bits
LFS_ASSERT(lfs->cfg->lookahead_size > 0);
LFS_ASSERT(lfs->cfg->lookahead_size % 8 == 0 &&
(uintptr_t)lfs->cfg->lookahead_buffer % 8 == 0);
if (lfs->cfg->lookahead_buffer) {
lfs->free.buffer = lfs->cfg->lookahead_buffer;
} else {
lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead_size);
if (!lfs->free.buffer) {
err = LFS_ERR_NOMEM;
goto cleanup;
}
}
// check that the size limits are sane
LFS_ASSERT(lfs->cfg->name_max <= LFS_NAME_MAX);
lfs->name_max = lfs->cfg->name_max;
if (!lfs->name_max) {
lfs->name_max = LFS_NAME_MAX;
}
LFS_ASSERT(lfs->cfg->file_max <= LFS_FILE_MAX);
lfs->file_max = lfs->cfg->file_max;
if (!lfs->file_max) {
lfs->file_max = LFS_FILE_MAX;
}
LFS_ASSERT(lfs->cfg->attr_max <= LFS_ATTR_MAX);
lfs->attr_max = lfs->cfg->attr_max;
if (!lfs->attr_max) {
lfs->attr_max = LFS_ATTR_MAX;
}
// setup default state
lfs->root[0] = 0xffffffff;
lfs->root[1] = 0xffffffff;
lfs->mlist = NULL;
lfs->seed = 0;
lfs->gstate = (struct lfs_gstate){0};
lfs->gpending = (struct lfs_gstate){0};
lfs->gdelta = (struct lfs_gstate){0};
#ifdef LFS_MIGRATE
lfs->lfs1 = NULL;
#endif
return 0;
cleanup:
lfs_deinit(lfs);
return err;
}
static int lfs_deinit(lfs_t *lfs) {
// free allocated memory
if (!lfs->cfg->read_buffer) {
lfs_free(lfs->rcache.buffer);
}
if (!lfs->cfg->prog_buffer) {
lfs_free(lfs->pcache.buffer);
}
if (!lfs->cfg->lookahead_buffer) {
lfs_free(lfs->free.buffer);
}
return 0;
}
int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
int err = 0;
{
err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// create free lookahead
memset(lfs->free.buffer, 0, lfs->cfg->lookahead_size);
lfs->free.off = 0;
lfs->free.size = lfs_min(8*lfs->cfg->lookahead_size,
lfs->cfg->block_count);
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// create root dir
lfs_mdir_t root;
err = lfs_dir_alloc(lfs, &root);
if (err) {
goto cleanup;
}
// write one superblock
lfs_superblock_t superblock = {
.version = LFS_DISK_VERSION,
.block_size = lfs->cfg->block_size,
.block_count = lfs->cfg->block_count,
.name_max = lfs->name_max,
.file_max = lfs->file_max,
.attr_max = lfs->attr_max,
};
lfs_superblock_tole32(&superblock);
err = lfs_dir_commit(lfs, &root, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, 0, 0), NULL},
{LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
{LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock}));
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &root, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
}
cleanup:
lfs_deinit(lfs);
return err;
}
int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
int err = lfs_init(lfs, cfg);
if (err) {
return err;
}
// scan directory blocks for superblock and any global updates
lfs_mdir_t dir = {.tail = {0, 1}};
while (!lfs_pair_isnull(dir.tail)) {
// fetch next block in tail list
lfs_stag_t tag = lfs_dir_fetchmatch(lfs, &dir, dir.tail,
LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8),
NULL,
lfs_dir_find_match, &(struct lfs_dir_find_match){
lfs, "littlefs", 8});
if (tag < 0) {
err = tag;
goto cleanup;
}
// has superblock?
if (tag && !lfs_tag_isdelete(tag)) {
// update root
lfs->root[0] = dir.pair[0];
lfs->root[1] = dir.pair[1];
// grab superblock
lfs_superblock_t superblock;
tag = lfs_dir_get(lfs, &dir, LFS_MKTAG(0x7ff, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs_superblock_fromle32(&superblock);
// check version
uint16_t major_version = (0xffff & (superblock.version >> 16));
uint16_t minor_version = (0xffff & (superblock.version >> 0));
if ((major_version != LFS_DISK_VERSION_MAJOR ||
minor_version > LFS_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %"PRIu16".%"PRIu16,
major_version, minor_version);
err = LFS_ERR_INVAL;
goto cleanup;
}
// check superblock configuration
if (superblock.name_max) {
if (superblock.name_max > lfs->name_max) {
LFS_ERROR("Unsupported name_max (%"PRIu32" > %"PRIu32")",
superblock.name_max, lfs->name_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->name_max = superblock.name_max;
}
if (superblock.file_max) {
if (superblock.file_max > lfs->file_max) {
LFS_ERROR("Unsupported file_max (%"PRIu32" > %"PRIu32")",
superblock.file_max, lfs->file_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->file_max = superblock.file_max;
}
if (superblock.attr_max) {
if (superblock.attr_max > lfs->attr_max) {
LFS_ERROR("Unsupported attr_max (%"PRIu32" > %"PRIu32")",
superblock.attr_max, lfs->attr_max);
err = LFS_ERR_INVAL;
goto cleanup;
}
lfs->attr_max = superblock.attr_max;
}
}
// has gstate?
err = lfs_dir_getgstate(lfs, &dir, &lfs->gpending);
if (err) {
return err;
}
}
// found superblock?
if (lfs_pair_isnull(lfs->root)) {
err = LFS_ERR_INVAL;
goto cleanup;
}
// update littlefs with gstate
lfs->gpending.tag += !lfs_tag_isvalid(lfs->gpending.tag);
lfs->gstate = lfs->gpending;
if (lfs_gstate_hasmove(&lfs->gstate)) {
LFS_DEBUG("Found move %"PRIu32" %"PRIu32" %"PRIu16,
lfs->gstate.pair[0],
lfs->gstate.pair[1],
lfs_tag_id(lfs->gstate.tag));
}
// setup free lookahead
lfs->free.off = lfs->seed % lfs->cfg->block_size;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
return 0;
cleanup:
lfs_unmount(lfs);
return err;
}
int lfs_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// Filesystem filesystem operations ///
int lfs_fs_traverse(lfs_t *lfs,
int (*cb)(void *data, lfs_block_t block), void *data) {
// iterate over metadata pairs
lfs_mdir_t dir = {.tail = {0, 1}};
#ifdef LFS_MIGRATE
// also consider v1 blocks during migration
if (lfs->lfs1) {
int err = lfs1_traverse(lfs, cb, data);
if (err) {
return err;
}
dir.tail[0] = lfs->root[0];
dir.tail[1] = lfs->root[1];
}
#endif
while (!lfs_pair_isnull(dir.tail)) {
for (int i = 0; i < 2; i++) {
int err = cb(data, dir.tail[i]);
if (err) {
return err;
}
}
// iterate through ids in directory
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
for (uint16_t id = 0; id < dir.count; id++) {
struct lfs_ctz ctz;
lfs_stag_t tag = lfs_dir_get(lfs, &dir, LFS_MKTAG(0x700, 0x3ff, 0),
LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
if (tag == LFS_ERR_NOENT) {
continue;
}
return tag;
}
lfs_ctz_fromle32(&ctz);
if (lfs_tag_type3(tag) == LFS_TYPE_CTZSTRUCT) {
err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
ctz.head, ctz.size, cb, data);
if (err) {
return err;
}
}
}
}
// iterate over any open files
for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
if (f->type != LFS_TYPE_REG) {
continue;
}
if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
f->ctz.head, f->ctz.size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
return 0;
}
static int lfs_fs_pred(lfs_t *lfs,
const lfs_block_t pair[2], lfs_mdir_t *pdir) {
// iterate over all directory directory entries
pdir->tail[0] = 0;
pdir->tail[1] = 1;
while (!lfs_pair_isnull(pdir->tail)) {
if (lfs_pair_cmp(pdir->tail, pair) == 0) {
return 0;
}
int err = lfs_dir_fetch(lfs, pdir, pdir->tail);
if (err) {
return err;
}
}
return LFS_ERR_NOENT;
}
struct lfs_fs_parent_match {
lfs_t *lfs;
const lfs_block_t pair[2];
};
static int lfs_fs_parent_match(void *data,
lfs_tag_t tag, const void *buffer) {
struct lfs_fs_parent_match *find = data;
lfs_t *lfs = find->lfs;
const struct lfs_diskoff *disk = buffer;
(void)tag;
lfs_block_t child[2];
int err = lfs_bd_read(lfs,
&lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
disk->block, disk->off, &child, sizeof(child));
if (err) {
return err;
}
lfs_pair_fromle32(child);
return (lfs_pair_cmp(child, find->pair) == 0) ? LFS_CMP_EQ : LFS_CMP_LT;
}
static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t pair[2],
lfs_mdir_t *parent) {
// use fetchmatch with callback to find pairs
parent->tail[0] = 0;
parent->tail[1] = 1;
while (!lfs_pair_isnull(parent->tail)) {
lfs_stag_t tag = lfs_dir_fetchmatch(lfs, parent, parent->tail,
LFS_MKTAG(0x7ff, 0, 0x3ff),
LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, 8),
NULL,
lfs_fs_parent_match, &(struct lfs_fs_parent_match){
lfs, {pair[0], pair[1]}});
if (tag && tag != LFS_ERR_NOENT) {
return tag;
}
}
return LFS_ERR_NOENT;
}
static int lfs_fs_relocate(lfs_t *lfs,
const lfs_block_t oldpair[2], lfs_block_t newpair[2]) {
// update internal root
if (lfs_pair_cmp(oldpair, lfs->root) == 0) {
LFS_DEBUG("Relocating root %"PRIu32" %"PRIu32,
newpair[0], newpair[1]);
lfs->root[0] = newpair[0];
lfs->root[1] = newpair[1];
}
// update internally tracked dirs
for (struct lfs_mlist *d = lfs->mlist; d; d = d->next) {
if (lfs_pair_cmp(oldpair, d->m.pair) == 0) {
d->m.pair[0] = newpair[0];
d->m.pair[1] = newpair[1];
}
}
// find parent
lfs_mdir_t parent;
lfs_stag_t tag = lfs_fs_parent(lfs, oldpair, &parent);
if (tag < 0 && tag != LFS_ERR_NOENT) {
return tag;
}
if (tag != LFS_ERR_NOENT) {
// update disk, this creates a desync
lfs_fs_preporphans(lfs, +1);
lfs_pair_tole32(newpair);
int err = lfs_dir_commit(lfs, &parent, LFS_MKATTRS({tag, newpair}));
lfs_pair_fromle32(newpair);
if (err) {
return err;
}
// next step, clean up orphans
lfs_fs_preporphans(lfs, -1);
}
// find pred
int err = lfs_fs_pred(lfs, oldpair, &parent);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// if we can't find dir, it must be new
if (err != LFS_ERR_NOENT) {
// replace bad pair, either we clean up desync, or no desync occured
lfs_pair_tole32(newpair);
err = lfs_dir_commit(lfs, &parent, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_TAIL + parent.split, 0x3ff, 8), newpair}));
lfs_pair_fromle32(newpair);
if (err) {
return err;
}
}
return 0;
}
static void lfs_fs_preporphans(lfs_t *lfs, int8_t orphans) {
lfs->gpending.tag += orphans;
lfs_gstate_xororphans(&lfs->gdelta, &lfs->gpending,
lfs_gstate_hasorphans(&lfs->gpending));
lfs_gstate_xororphans(&lfs->gpending, &lfs->gpending,
lfs_gstate_hasorphans(&lfs->gpending));
}
static void lfs_fs_prepmove(lfs_t *lfs,
uint16_t id, const lfs_block_t pair[2]) {
lfs_gstate_xormove(&lfs->gdelta, &lfs->gpending, id, pair);
lfs_gstate_xormove(&lfs->gpending, &lfs->gpending, id, pair);
}
static int lfs_fs_demove(lfs_t *lfs) {
if (!lfs_gstate_hasmove(&lfs->gstate)) {
return 0;
}
// Fix bad moves
LFS_DEBUG("Fixing move %"PRIu32" %"PRIu32" %"PRIu16,
lfs->gstate.pair[0],
lfs->gstate.pair[1],
lfs_tag_id(lfs->gstate.tag));
// fetch and delete the moved entry
lfs_mdir_t movedir;
int err = lfs_dir_fetch(lfs, &movedir, lfs->gstate.pair);
if (err) {
return err;
}
// rely on cancel logic inside commit
err = lfs_dir_commit(lfs, &movedir, NULL, 0);
if (err) {
return err;
}
return 0;
}
static int lfs_fs_deorphan(lfs_t *lfs) {
if (!lfs_gstate_hasorphans(&lfs->gstate)) {
return 0;
}
// Fix any orphans
lfs_mdir_t pdir = {.split = true};
lfs_mdir_t dir = {.tail = {0, 1}};
// iterate over all directory directory entries
while (!lfs_pair_isnull(dir.tail)) {
int err = lfs_dir_fetch(lfs, &dir, dir.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!pdir.split) {
// check if we have a parent
lfs_mdir_t parent;
lfs_stag_t tag = lfs_fs_parent(lfs, pdir.tail, &parent);
if (tag < 0 && tag != LFS_ERR_NOENT) {
return tag;
}
if (tag == LFS_ERR_NOENT) {
// we are an orphan
LFS_DEBUG("Fixing orphan %"PRIu32" %"PRIu32,
pdir.tail[0], pdir.tail[1]);
err = lfs_dir_drop(lfs, &pdir, &dir);
if (err) {
return err;
}
break;
}
lfs_block_t pair[2];
lfs_stag_t res = lfs_dir_get(lfs, &parent,
LFS_MKTAG(0x7ff, 0x3ff, 0), tag, pair);
if (res < 0) {
return res;
}
lfs_pair_fromle32(pair);
if (!lfs_pair_sync(pair, pdir.tail)) {
// we have desynced
LFS_DEBUG("Fixing half-orphan %"PRIu32" %"PRIu32,
pair[0], pair[1]);
lfs_pair_tole32(pair);
err = lfs_dir_commit(lfs, &pdir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), pair}));
lfs_pair_fromle32(pair);
if (err) {
return err;
}
break;
}
}
memcpy(&pdir, &dir, sizeof(pdir));
}
// mark orphans as fixed
lfs_fs_preporphans(lfs, -lfs_gstate_getorphans(&lfs->gstate));
lfs->gstate = lfs->gpending;
return 0;
}
static int lfs_fs_forceconsistency(lfs_t *lfs) {
int err = lfs_fs_demove(lfs);
if (err) {
return err;
}
err = lfs_fs_deorphan(lfs);
if (err) {
return err;
}
return 0;
}
static int lfs_fs_size_count(void *p, lfs_block_t block) {
(void)block;
lfs_size_t *size = p;
*size += 1;
return 0;
}
lfs_ssize_t lfs_fs_size(lfs_t *lfs) {
lfs_size_t size = 0;
int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size);
if (err) {
return err;
}
return size;
}
#ifdef LFS_MIGRATE
////// Migration from littelfs v1 below this //////
/// Version info ///
// Software library version
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS1_VERSION 0x00010007
#define LFS1_VERSION_MAJOR (0xffff & (LFS1_VERSION >> 16))
#define LFS1_VERSION_MINOR (0xffff & (LFS1_VERSION >> 0))
// Version of On-disk data structures
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS1_DISK_VERSION 0x00010001
#define LFS1_DISK_VERSION_MAJOR (0xffff & (LFS1_DISK_VERSION >> 16))
#define LFS1_DISK_VERSION_MINOR (0xffff & (LFS1_DISK_VERSION >> 0))
/// v1 Definitions ///
// File types
enum lfs1_type {
LFS1_TYPE_REG = 0x11,
LFS1_TYPE_DIR = 0x22,
LFS1_TYPE_SUPERBLOCK = 0x2e,
};
typedef struct lfs1 {
lfs_block_t root[2];
} lfs1_t;
typedef struct lfs1_entry {
lfs_off_t off;
struct lfs1_disk_entry {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
union {
struct {
lfs_block_t head;
lfs_size_t size;
} file;
lfs_block_t dir[2];
} u;
} d;
} lfs1_entry_t;
typedef struct lfs1_dir {
struct lfs1_dir *next;
lfs_block_t pair[2];
lfs_off_t off;
lfs_block_t head[2];
lfs_off_t pos;
struct lfs1_disk_dir {
uint32_t rev;
lfs_size_t size;
lfs_block_t tail[2];
} d;
} lfs1_dir_t;
typedef struct lfs1_superblock {
lfs_off_t off;
struct lfs1_disk_superblock {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
lfs_block_t root[2];
uint32_t block_size;
uint32_t block_count;
uint32_t version;
char magic[8];
} d;
} lfs1_superblock_t;
/// Low-level wrappers v1->v2 ///
void lfs1_crc(uint32_t *crc, const void *buffer, size_t size) {
*crc = lfs_crc(*crc, buffer, size);
}
static int lfs1_bd_read(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
// if we ever do more than writes to alternating pairs,
// this may need to consider pcache
return lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, size,
block, off, buffer, size);
}
static int lfs1_bd_crc(lfs_t *lfs, lfs_block_t block,
lfs_off_t off, lfs_size_t size, uint32_t *crc) {
for (lfs_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs1_bd_read(lfs, block, off+i, &c, 1);
if (err) {
return err;
}
lfs1_crc(crc, &c, 1);
}
return 0;
}
/// Endian swapping functions ///
static void lfs1_dir_fromle32(struct lfs1_disk_dir *d) {
d->rev = lfs_fromle32(d->rev);
d->size = lfs_fromle32(d->size);
d->tail[0] = lfs_fromle32(d->tail[0]);
d->tail[1] = lfs_fromle32(d->tail[1]);
}
static void lfs1_dir_tole32(struct lfs1_disk_dir *d) {
d->rev = lfs_tole32(d->rev);
d->size = lfs_tole32(d->size);
d->tail[0] = lfs_tole32(d->tail[0]);
d->tail[1] = lfs_tole32(d->tail[1]);
}
static void lfs1_entry_fromle32(struct lfs1_disk_entry *d) {
d->u.dir[0] = lfs_fromle32(d->u.dir[0]);
d->u.dir[1] = lfs_fromle32(d->u.dir[1]);
}
static void lfs1_entry_tole32(struct lfs1_disk_entry *d) {
d->u.dir[0] = lfs_tole32(d->u.dir[0]);
d->u.dir[1] = lfs_tole32(d->u.dir[1]);
}
static void lfs1_superblock_fromle32(struct lfs1_disk_superblock *d) {
d->root[0] = lfs_fromle32(d->root[0]);
d->root[1] = lfs_fromle32(d->root[1]);
d->block_size = lfs_fromle32(d->block_size);
d->block_count = lfs_fromle32(d->block_count);
d->version = lfs_fromle32(d->version);
}
///// Metadata pair and directory operations ///
static inline lfs_size_t lfs1_entry_size(const lfs1_entry_t *entry) {
return 4 + entry->d.elen + entry->d.alen + entry->d.nlen;
}
static int lfs1_dir_fetch(lfs_t *lfs,
lfs1_dir_t *dir, const lfs_block_t pair[2]) {
// copy out pair, otherwise may be aliasing dir
const lfs_block_t tpair[2] = {pair[0], pair[1]};
bool valid = false;
// check both blocks for the most recent revision
for (int i = 0; i < 2; i++) {
struct lfs1_disk_dir test;
int err = lfs1_bd_read(lfs, tpair[i], 0, &test, sizeof(test));
lfs1_dir_fromle32(&test);
if (err) {
if (err == LFS_ERR_CORRUPT) {
continue;
}
return err;
}
if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
continue;
}
if ((0x7fffffff & test.size) < sizeof(test)+4 ||
(0x7fffffff & test.size) > lfs->cfg->block_size) {
continue;
}
uint32_t crc = 0xffffffff;
lfs1_dir_tole32(&test);
lfs1_crc(&crc, &test, sizeof(test));
lfs1_dir_fromle32(&test);
err = lfs1_bd_crc(lfs, tpair[i], sizeof(test),
(0x7fffffff & test.size) - sizeof(test), &crc);
if (err) {
if (err == LFS_ERR_CORRUPT) {
continue;
}
return err;
}
if (crc != 0) {
continue;
}
valid = true;
// setup dir in case it's valid
dir->pair[0] = tpair[(i+0) % 2];
dir->pair[1] = tpair[(i+1) % 2];
dir->off = sizeof(dir->d);
dir->d = test;
}
if (!valid) {
LFS_ERROR("Corrupted dir pair at %" PRIu32 " %" PRIu32 ,
tpair[0], tpair[1]);
return LFS_ERR_CORRUPT;
}
return 0;
}
static int lfs1_dir_next(lfs_t *lfs, lfs1_dir_t *dir, lfs1_entry_t *entry) {
while (dir->off + sizeof(entry->d) > (0x7fffffff & dir->d.size)-4) {
if (!(0x80000000 & dir->d.size)) {
entry->off = dir->off;
return LFS_ERR_NOENT;
}
int err = lfs1_dir_fetch(lfs, dir, dir->d.tail);
if (err) {
return err;
}
dir->off = sizeof(dir->d);
dir->pos += sizeof(dir->d) + 4;
}
int err = lfs1_bd_read(lfs, dir->pair[0], dir->off,
&entry->d, sizeof(entry->d));
lfs1_entry_fromle32(&entry->d);
if (err) {
return err;
}
entry->off = dir->off;
dir->off += lfs1_entry_size(entry);
dir->pos += lfs1_entry_size(entry);
return 0;
}
/// littlefs v1 specific operations ///
int lfs1_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
if (lfs_pair_isnull(lfs->lfs1->root)) {
return 0;
}
// iterate over metadata pairs
lfs1_dir_t dir;
lfs1_entry_t entry;
lfs_block_t cwd[2] = {0, 1};
while (true) {
for (int i = 0; i < 2; i++) {
int err = cb(data, cwd[i]);
if (err) {
return err;
}
}
int err = lfs1_dir_fetch(lfs, &dir, cwd);
if (err) {
return err;
}
// iterate over contents
while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
err = lfs1_bd_read(lfs, dir.pair[0], dir.off,
&entry.d, sizeof(entry.d));
lfs1_entry_fromle32(&entry.d);
if (err) {
return err;
}
dir.off += lfs1_entry_size(&entry);
if ((0x70 & entry.d.type) == (0x70 & LFS1_TYPE_REG)) {
err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
entry.d.u.file.head, entry.d.u.file.size, cb, data);
if (err) {
return err;
}
}
}
// we also need to check if we contain a threaded v2 directory
lfs_mdir_t dir2 = {.split=true, .tail={cwd[0], cwd[1]}};
while (dir2.split) {
err = lfs_dir_fetch(lfs, &dir2, dir2.tail);
if (err) {
break;
}
for (int i = 0; i < 2; i++) {
err = cb(data, dir2.pair[i]);
if (err) {
return err;
}
}
}
cwd[0] = dir.d.tail[0];
cwd[1] = dir.d.tail[1];
if (lfs_pair_isnull(cwd)) {
break;
}
}
return 0;
}
static int lfs1_moved(lfs_t *lfs, const void *e) {
if (lfs_pair_isnull(lfs->lfs1->root)) {
return 0;
}
// skip superblock
lfs1_dir_t cwd;
int err = lfs1_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1});
if (err) {
return err;
}
// iterate over all directory directory entries
lfs1_entry_t entry;
while (!lfs_pair_isnull(cwd.d.tail)) {
err = lfs1_dir_fetch(lfs, &cwd, cwd.d.tail);
if (err) {
return err;
}
while (true) {
err = lfs1_dir_next(lfs, &cwd, &entry);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
break;
}
if (!(0x80 & entry.d.type) &&
memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
return true;
}
}
}
return false;
}
/// Filesystem operations ///
static int lfs1_mount(lfs_t *lfs, struct lfs1 *lfs1,
const struct lfs_config *cfg) {
int err = 0;
{
err = lfs_init(lfs, cfg);
if (err) {
return err;
}
lfs->lfs1 = lfs1;
lfs->lfs1->root[0] = 0xffffffff;
lfs->lfs1->root[1] = 0xffffffff;
// setup free lookahead
lfs->free.off = 0;
lfs->free.size = 0;
lfs->free.i = 0;
lfs_alloc_ack(lfs);
// load superblock
lfs1_dir_t dir;
lfs1_superblock_t superblock;
err = lfs1_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
if (err && err != LFS_ERR_CORRUPT) {
goto cleanup;
}
if (!err) {
err = lfs1_bd_read(lfs, dir.pair[0], sizeof(dir.d),
&superblock.d, sizeof(superblock.d));
lfs1_superblock_fromle32(&superblock.d);
if (err) {
goto cleanup;
}
lfs->lfs1->root[0] = superblock.d.root[0];
lfs->lfs1->root[1] = superblock.d.root[1];
}
if (err || memcmp(superblock.d.magic, "littlefs", 8) != 0) {
LFS_ERROR("Invalid superblock at %d %d", 0, 1);
err = LFS_ERR_CORRUPT;
goto cleanup;
}
uint16_t major_version = (0xffff & (superblock.d.version >> 16));
uint16_t minor_version = (0xffff & (superblock.d.version >> 0));
if ((major_version != LFS1_DISK_VERSION_MAJOR ||
minor_version > LFS1_DISK_VERSION_MINOR)) {
LFS_ERROR("Invalid version %d.%d", major_version, minor_version);
err = LFS_ERR_INVAL;
goto cleanup;
}
return 0;
}
cleanup:
lfs_deinit(lfs);
return err;
}
static int lfs1_unmount(lfs_t *lfs) {
return lfs_deinit(lfs);
}
/// v1 migration ///
int lfs_migrate(lfs_t *lfs, const struct lfs_config *cfg) {
struct lfs1 lfs1;
int err = lfs1_mount(lfs, &lfs1, cfg);
if (err) {
return err;
}
{
// iterate through each directory, copying over entries
// into new directory
lfs1_dir_t dir1;
lfs_mdir_t dir2;
dir1.d.tail[0] = lfs->lfs1->root[0];
dir1.d.tail[1] = lfs->lfs1->root[1];
while (!lfs_pair_isnull(dir1.d.tail)) {
// iterate old dir
err = lfs1_dir_fetch(lfs, &dir1, dir1.d.tail);
if (err) {
goto cleanup;
}
// create new dir and bind as temporary pretend root
err = lfs_dir_alloc(lfs, &dir2);
if (err) {
goto cleanup;
}
dir2.rev = dir1.d.rev;
dir1.head[0] = dir1.pair[0];
dir1.head[1] = dir1.pair[1];
lfs->root[0] = dir2.pair[0];
lfs->root[1] = dir2.pair[1];
err = lfs_dir_commit(lfs, &dir2, NULL, 0);
if (err) {
goto cleanup;
}
while (true) {
lfs1_entry_t entry1;
err = lfs1_dir_next(lfs, &dir1, &entry1);
if (err && err != LFS_ERR_NOENT) {
goto cleanup;
}
if (err == LFS_ERR_NOENT) {
break;
}
// check that entry has not been moved
if (entry1.d.type & 0x80) {
int moved = lfs1_moved(lfs, &entry1.d.u);
if (moved < 0) {
err = moved;
goto cleanup;
}
if (moved) {
continue;
}
entry1.d.type &= ~0x80;
}
// also fetch name
char name[LFS_NAME_MAX+1];
memset(name, 0, sizeof(name));
err = lfs1_bd_read(lfs, dir1.pair[0],
entry1.off + 4+entry1.d.elen+entry1.d.alen,
name, entry1.d.nlen);
if (err) {
goto cleanup;
}
bool isdir = (entry1.d.type == LFS1_TYPE_DIR);
// create entry in new dir
err = lfs_dir_fetch(lfs, &dir2, lfs->root);
if (err) {
goto cleanup;
}
uint16_t id;
err = lfs_dir_find(lfs, &dir2, &(const char*){name}, &id);
if (!(err == LFS_ERR_NOENT && id != 0x3ff)) {
err = (err < 0) ? err : LFS_ERR_EXIST;
goto cleanup;
}
lfs1_entry_tole32(&entry1.d);
err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, id, 0), NULL},
{LFS_MKTAG(
isdir ? LFS_TYPE_DIR : LFS_TYPE_REG,
id, entry1.d.nlen), name},
{LFS_MKTAG(
isdir ? LFS_TYPE_DIRSTRUCT : LFS_TYPE_CTZSTRUCT,
id, sizeof(&entry1.d.u)), &entry1.d.u}));
lfs1_entry_fromle32(&entry1.d);
if (err) {
goto cleanup;
}
}
if (!lfs_pair_isnull(dir1.d.tail)) {
// find last block and update tail to thread into fs
err = lfs_dir_fetch(lfs, &dir2, lfs->root);
if (err) {
goto cleanup;
}
while (dir2.split) {
err = lfs_dir_fetch(lfs, &dir2, dir2.tail);
if (err) {
goto cleanup;
}
}
lfs_pair_tole32(dir2.pair);
err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 0),
dir1.d.tail}));
lfs_pair_fromle32(dir2.pair);
if (err) {
goto cleanup;
}
}
// Copy over first block to thread into fs. Unfortunately
// if this fails there is not much we can do.
LFS_DEBUG("Migrating %"PRIu32" %"PRIu32" -> %"PRIu32" %"PRIu32,
lfs->root[0], lfs->root[1], dir1.head[0], dir1.head[1]);
err = lfs_bd_erase(lfs, dir1.head[1]);
if (err) {
goto cleanup;
}
err = lfs_dir_fetch(lfs, &dir2, lfs->root);
if (err) {
goto cleanup;
}
for (lfs_off_t i = 0; i < dir2.off; i++) {
uint8_t dat;
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, dir2.off,
dir2.pair[0], i, &dat, 1);
if (err) {
goto cleanup;
}
err = lfs_bd_prog(lfs,
&lfs->pcache, &lfs->rcache, true,
dir1.head[1], i, &dat, 1);
if (err) {
goto cleanup;
}
}
}
// Create new superblock. This marks a successful migration!
err = lfs1_dir_fetch(lfs, &dir1, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
dir2.pair[0] = dir1.pair[0];
dir2.pair[1] = dir1.pair[1];
dir2.rev = dir1.d.rev;
dir2.off = sizeof(dir2.rev);
dir2.etag = 0xffffffff;
dir2.count = 0;
dir2.tail[0] = lfs->lfs1->root[0];
dir2.tail[1] = lfs->lfs1->root[1];
dir2.erased = false;
dir2.split = true;
lfs_superblock_t superblock = {
.version = LFS_DISK_VERSION,
.block_size = lfs->cfg->block_size,
.block_count = lfs->cfg->block_count,
.name_max = lfs->name_max,
.file_max = lfs->file_max,
.attr_max = lfs->attr_max,
};
lfs_superblock_tole32(&superblock);
err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_CREATE, 0, 0), NULL},
{LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
{LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock}));
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs_dir_fetch(lfs, &dir2, (const lfs_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
}
cleanup:
lfs1_unmount(lfs);
return err;
}
#endif