mirror of
https://gitee.com/openharmony/third_party_qrcodegen
synced 2024-11-30 10:50:35 +00:00
Added type annotations to nearly all local variables in Python library code.
This commit is contained in:
parent
3c3aec6b9c
commit
0ff7b57a81
@ -88,7 +88,7 @@ class QrCode:
|
||||
Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible
|
||||
QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the
|
||||
ecl argument if it can be done without increasing the version."""
|
||||
segs = QrSegment.make_segments(text)
|
||||
segs: List[QrSegment] = QrSegment.make_segments(text)
|
||||
return QrCode.encode_segments(segs, ecl)
|
||||
|
||||
|
||||
@ -120,12 +120,12 @@ class QrCode:
|
||||
|
||||
# Find the minimal version number to use
|
||||
for version in range(minversion, maxversion + 1):
|
||||
datacapacitybits = QrCode._get_num_data_codewords(version, ecl) * 8 # Number of data bits available
|
||||
datausedbits = QrSegment.get_total_bits(segs, version)
|
||||
datacapacitybits: int = QrCode._get_num_data_codewords(version, ecl) * 8 # Number of data bits available
|
||||
datausedbits: Optional[int] = QrSegment.get_total_bits(segs, version)
|
||||
if datausedbits is not None and datausedbits <= datacapacitybits:
|
||||
break # This version number is found to be suitable
|
||||
if version >= maxversion: # All versions in the range could not fit the given data
|
||||
msg = "Segment too long"
|
||||
msg: str = "Segment too long"
|
||||
if datausedbits is not None:
|
||||
msg = "Data length = {} bits, Max capacity = {} bits".format(datausedbits, datacapacitybits)
|
||||
raise DataTooLongError(msg)
|
||||
@ -219,12 +219,12 @@ class QrCode:
|
||||
|
||||
# Compute ECC, draw modules
|
||||
self._draw_function_patterns()
|
||||
allcodewords = self._add_ecc_and_interleave(bytearray(datacodewords))
|
||||
allcodewords: bytes = self._add_ecc_and_interleave(bytearray(datacodewords))
|
||||
self._draw_codewords(allcodewords)
|
||||
|
||||
# Do masking
|
||||
if mask == -1: # Automatically choose best mask
|
||||
minpenalty = 1 << 32
|
||||
minpenalty: int = 1 << 32
|
||||
for i in range(8):
|
||||
self._apply_mask(i)
|
||||
self._draw_format_bits(i)
|
||||
@ -273,7 +273,7 @@ class QrCode:
|
||||
of border modules. The string always uses Unix newlines (\n), regardless of the platform."""
|
||||
if border < 0:
|
||||
raise ValueError("Border must be non-negative")
|
||||
parts = []
|
||||
parts: List[str] = []
|
||||
for y in range(self._size):
|
||||
for x in range(self._size):
|
||||
if self.get_module(x, y):
|
||||
@ -302,9 +302,9 @@ class QrCode:
|
||||
self._draw_finder_pattern(3, self._size - 4)
|
||||
|
||||
# Draw numerous alignment patterns
|
||||
alignpatpos = self._get_alignment_pattern_positions()
|
||||
numalign = len(alignpatpos)
|
||||
skips = ((0, 0), (0, numalign - 1), (numalign - 1, 0))
|
||||
alignpatpos: List[int] = self._get_alignment_pattern_positions()
|
||||
numalign: int = len(alignpatpos)
|
||||
skips: Sequence[Tuple[int,int]] = ((0, 0), (0, numalign - 1), (numalign - 1, 0))
|
||||
for i in range(numalign):
|
||||
for j in range(numalign):
|
||||
if (i, j) not in skips: # Don't draw on the three finder corners
|
||||
@ -319,11 +319,11 @@ class QrCode:
|
||||
"""Draws two copies of the format bits (with its own error correction code)
|
||||
based on the given mask and this object's error correction level field."""
|
||||
# Calculate error correction code and pack bits
|
||||
data = self._errcorlvl.formatbits << 3 | mask # errCorrLvl is uint2, mask is uint3
|
||||
rem = data
|
||||
data: int = self._errcorlvl.formatbits << 3 | mask # errCorrLvl is uint2, mask is uint3
|
||||
rem: int = data
|
||||
for _ in range(10):
|
||||
rem = (rem << 1) ^ ((rem >> 9) * 0x537)
|
||||
bits = (data << 10 | rem) ^ 0x5412 # uint15
|
||||
bits: int = (data << 10 | rem) ^ 0x5412 # uint15
|
||||
assert bits >> 15 == 0
|
||||
|
||||
# Draw first copy
|
||||
@ -350,17 +350,17 @@ class QrCode:
|
||||
return
|
||||
|
||||
# Calculate error correction code and pack bits
|
||||
rem = self._version # version is uint6, in the range [7, 40]
|
||||
rem: int = self._version # version is uint6, in the range [7, 40]
|
||||
for _ in range(12):
|
||||
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25)
|
||||
bits = self._version << 12 | rem # uint18
|
||||
bits: int = self._version << 12 | rem # uint18
|
||||
assert bits >> 18 == 0
|
||||
|
||||
# Draw two copies
|
||||
for i in range(18):
|
||||
bit = _get_bit(bits, i)
|
||||
a = self._size - 11 + i % 3
|
||||
b = i // 3
|
||||
bit: bool = _get_bit(bits, i)
|
||||
a: int = self._size - 11 + i % 3
|
||||
b: int = i // 3
|
||||
self._set_function_module(a, b, bit)
|
||||
self._set_function_module(b, a, bit)
|
||||
|
||||
@ -397,24 +397,24 @@ class QrCode:
|
||||
def _add_ecc_and_interleave(self, data: bytearray) -> bytes:
|
||||
"""Returns a new byte string representing the given data with the appropriate error correction
|
||||
codewords appended to it, based on this object's version and error correction level."""
|
||||
version = self._version
|
||||
version: int = self._version
|
||||
assert len(data) == QrCode._get_num_data_codewords(version, self._errcorlvl)
|
||||
|
||||
# Calculate parameter numbers
|
||||
numblocks = QrCode._NUM_ERROR_CORRECTION_BLOCKS[self._errcorlvl.ordinal][version]
|
||||
blockecclen = QrCode._ECC_CODEWORDS_PER_BLOCK [self._errcorlvl.ordinal][version]
|
||||
rawcodewords = QrCode._get_num_raw_data_modules(version) // 8
|
||||
numshortblocks = numblocks - rawcodewords % numblocks
|
||||
shortblocklen = rawcodewords // numblocks
|
||||
numblocks: int = QrCode._NUM_ERROR_CORRECTION_BLOCKS[self._errcorlvl.ordinal][version]
|
||||
blockecclen: int = QrCode._ECC_CODEWORDS_PER_BLOCK [self._errcorlvl.ordinal][version]
|
||||
rawcodewords: int = QrCode._get_num_raw_data_modules(version) // 8
|
||||
numshortblocks: int = numblocks - rawcodewords % numblocks
|
||||
shortblocklen: int = rawcodewords // numblocks
|
||||
|
||||
# Split data into blocks and append ECC to each block
|
||||
blocks = []
|
||||
rsdiv = QrCode._reed_solomon_compute_divisor(blockecclen)
|
||||
k = 0
|
||||
blocks: List[bytes] = []
|
||||
rsdiv: bytes = QrCode._reed_solomon_compute_divisor(blockecclen)
|
||||
k: int = 0
|
||||
for i in range(numblocks):
|
||||
dat = data[k : k + shortblocklen - blockecclen + (0 if i < numshortblocks else 1)]
|
||||
dat: bytearray = data[k : k + shortblocklen - blockecclen + (0 if i < numshortblocks else 1)]
|
||||
k += len(dat)
|
||||
ecc = QrCode._reed_solomon_compute_remainder(dat, rsdiv)
|
||||
ecc: bytes = QrCode._reed_solomon_compute_remainder(dat, rsdiv)
|
||||
if i < numshortblocks:
|
||||
dat.append(0)
|
||||
blocks.append(dat + ecc)
|
||||
@ -436,16 +436,16 @@ class QrCode:
|
||||
data area of this QR Code. Function modules need to be marked off before this is called."""
|
||||
assert len(data) == QrCode._get_num_raw_data_modules(self._version) // 8
|
||||
|
||||
i = 0 # Bit index into the data
|
||||
i: int = 0 # Bit index into the data
|
||||
# Do the funny zigzag scan
|
||||
for right in range(self._size - 1, 0, -2): # Index of right column in each column pair
|
||||
if right <= 6:
|
||||
right -= 1
|
||||
for vert in range(self._size): # Vertical counter
|
||||
for j in range(2):
|
||||
x = right - j # Actual x coordinate
|
||||
upward = (right + 1) & 2 == 0
|
||||
y = (self._size - 1 - vert) if upward else vert # Actual y coordinate
|
||||
x: int = right - j # Actual x coordinate
|
||||
upward: bool = (right + 1) & 2 == 0
|
||||
y: int = (self._size - 1 - vert) if upward else vert # Actual y coordinate
|
||||
if not self._isfunction[y][x] and i < len(data) * 8:
|
||||
self._modules[y][x] = _get_bit(data[i >> 3], 7 - (i & 7))
|
||||
i += 1
|
||||
@ -462,7 +462,7 @@ class QrCode:
|
||||
QR Code needs exactly one (not zero, two, etc.) mask applied."""
|
||||
if not (0 <= mask <= 7):
|
||||
raise ValueError("Mask value out of range")
|
||||
masker = QrCode._MASK_PATTERNS[mask]
|
||||
masker: Callable[[int,int],int] = QrCode._MASK_PATTERNS[mask]
|
||||
for y in range(self._size):
|
||||
for x in range(self._size):
|
||||
self._modules[y][x] ^= (masker(x, y) == 0) and (not self._isfunction[y][x])
|
||||
@ -471,14 +471,14 @@ class QrCode:
|
||||
def _get_penalty_score(self) -> int:
|
||||
"""Calculates and returns the penalty score based on state of this QR Code's current modules.
|
||||
This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score."""
|
||||
result = 0
|
||||
size = self._size
|
||||
modules = self._modules
|
||||
result: int = 0
|
||||
size: int = self._size
|
||||
modules: List[List[bool]] = self._modules
|
||||
|
||||
# Adjacent modules in row having same color, and finder-like patterns
|
||||
for y in range(size):
|
||||
runcolor = False
|
||||
runx = 0
|
||||
runcolor: bool = False
|
||||
runx: int = 0
|
||||
runhistory = collections.deque([0] * 7, 7)
|
||||
for x in range(size):
|
||||
if modules[y][x] == runcolor:
|
||||
@ -521,10 +521,10 @@ class QrCode:
|
||||
result += QrCode._PENALTY_N2
|
||||
|
||||
# Balance of black and white modules
|
||||
black = sum((1 if cell else 0) for row in modules for cell in row)
|
||||
total = size**2 # Note that size is odd, so black/total != 1/2
|
||||
black: int = sum((1 if cell else 0) for row in modules for cell in row)
|
||||
total: int = size**2 # Note that size is odd, so black/total != 1/2
|
||||
# Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
|
||||
k = (abs(black * 20 - total * 10) + total - 1) // total - 1
|
||||
k: int = (abs(black * 20 - total * 10) + total - 1) // total - 1
|
||||
result += k * QrCode._PENALTY_N4
|
||||
return result
|
||||
|
||||
@ -535,14 +535,14 @@ class QrCode:
|
||||
"""Returns an ascending list of positions of alignment patterns for this version number.
|
||||
Each position is in the range [0,177), and are used on both the x and y axes.
|
||||
This could be implemented as lookup table of 40 variable-length lists of integers."""
|
||||
ver = self._version
|
||||
ver: int = self._version
|
||||
if ver == 1:
|
||||
return []
|
||||
else:
|
||||
numalign = ver // 7 + 2
|
||||
step = 26 if (ver == 32) else \
|
||||
numalign: int = ver // 7 + 2
|
||||
step: int = 26 if (ver == 32) else \
|
||||
(ver*4 + numalign*2 + 1) // (numalign*2 - 2) * 2
|
||||
result = [(self._size - 7 - i * step) for i in range(numalign - 1)] + [6]
|
||||
result: List[int] = [(self._size - 7 - i * step) for i in range(numalign - 1)] + [6]
|
||||
return list(reversed(result))
|
||||
|
||||
|
||||
@ -553,9 +553,9 @@ class QrCode:
|
||||
The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table."""
|
||||
if not (QrCode.MIN_VERSION <= ver <= QrCode.MAX_VERSION):
|
||||
raise ValueError("Version number out of range")
|
||||
result = (16 * ver + 128) * ver + 64
|
||||
result: int = (16 * ver + 128) * ver + 64
|
||||
if ver >= 2:
|
||||
numalign = ver // 7 + 2
|
||||
numalign: int = ver // 7 + 2
|
||||
result -= (25 * numalign - 10) * numalign - 55
|
||||
if ver >= 7:
|
||||
result -= 36
|
||||
@ -586,7 +586,7 @@ class QrCode:
|
||||
# Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
|
||||
# and drop the highest monomial term which is always 1x^degree.
|
||||
# Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
|
||||
root = 1
|
||||
root: int = 1
|
||||
for _ in range(degree): # Unused variable i
|
||||
# Multiply the current product by (x - r^i)
|
||||
for j in range(degree):
|
||||
@ -602,7 +602,7 @@ class QrCode:
|
||||
"""Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials."""
|
||||
result = bytearray([0] * len(divisor))
|
||||
for b in data: # Polynomial division
|
||||
factor = b ^ result.pop(0)
|
||||
factor: int = b ^ result.pop(0)
|
||||
result.append(0)
|
||||
for (i, coef) in enumerate(divisor):
|
||||
result[i] ^= QrCode._reed_solomon_multiply(coef, factor)
|
||||
@ -616,7 +616,7 @@ class QrCode:
|
||||
if x >> 8 != 0 or y >> 8 != 0:
|
||||
raise ValueError("Byte out of range")
|
||||
# Russian peasant multiplication
|
||||
z = 0
|
||||
z: int = 0
|
||||
for i in reversed(range(8)):
|
||||
z = (z << 1) ^ ((z >> 7) * 0x11D)
|
||||
z ^= ((y >> i) & 1) * x
|
||||
@ -627,9 +627,9 @@ class QrCode:
|
||||
def _finder_penalty_count_patterns(self, runhistory: collections.deque) -> int:
|
||||
"""Can only be called immediately after a white run is added, and
|
||||
returns either 0, 1, or 2. A helper function for _get_penalty_score()."""
|
||||
n = runhistory[1]
|
||||
n: int = runhistory[1]
|
||||
assert n <= self._size * 3
|
||||
core = n > 0 and (runhistory[2] == runhistory[4] == runhistory[5] == n) and runhistory[3] == n * 3
|
||||
core: bool = n > 0 and (runhistory[2] == runhistory[4] == runhistory[5] == n) and runhistory[3] == n * 3
|
||||
return (1 if (core and runhistory[0] >= n * 4 and runhistory[6] >= n) else 0) \
|
||||
+ (1 if (core and runhistory[6] >= n * 4 and runhistory[0] >= n) else 0)
|
||||
|
||||
@ -747,9 +747,9 @@ class QrSegment:
|
||||
if QrSegment.NUMERIC_REGEX.fullmatch(digits) is None:
|
||||
raise ValueError("String contains non-numeric characters")
|
||||
bb = _BitBuffer()
|
||||
i = 0
|
||||
i: int = 0
|
||||
while i < len(digits): # Consume up to 3 digits per iteration
|
||||
n = min(len(digits) - i, 3)
|
||||
n: int = min(len(digits) - i, 3)
|
||||
bb.append_bits(int(digits[i : i + n]), n * 3 + 1)
|
||||
i += n
|
||||
return QrSegment(QrSegment.Mode.NUMERIC, len(digits), bb)
|
||||
@ -764,7 +764,7 @@ class QrSegment:
|
||||
raise ValueError("String contains unencodable characters in alphanumeric mode")
|
||||
bb = _BitBuffer()
|
||||
for i in range(0, len(text) - 1, 2): # Process groups of 2
|
||||
temp = QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i]] * 45
|
||||
temp: int = QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i]] * 45
|
||||
temp += QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i + 1]]
|
||||
bb.append_bits(temp, 11)
|
||||
if len(text) % 2 > 0: # 1 character remaining
|
||||
@ -863,7 +863,7 @@ class QrSegment:
|
||||
returns None if a segment has too many characters to fit its length field."""
|
||||
result = 0
|
||||
for seg in segs:
|
||||
ccbits = seg.get_mode().num_char_count_bits(version)
|
||||
ccbits: int = seg.get_mode().num_char_count_bits(version)
|
||||
if seg.get_num_chars() >= (1 << ccbits):
|
||||
return None # The segment's length doesn't fit the field's bit width
|
||||
result += 4 + ccbits + len(seg._bitdata)
|
||||
|
Loading…
Reference in New Issue
Block a user