2019-12-21 19:17:21 +00:00
|
|
|
|
//! This example shows an example of how to parse an escaped string. The
|
|
|
|
|
//! rules for the string are similar to JSON and rust. A string is:
|
|
|
|
|
//!
|
|
|
|
|
//! - Enclosed by double quotes
|
|
|
|
|
//! - Can contain any raw unescaped code point besides \ and "
|
|
|
|
|
//! - Matches the following escape sequences: \b, \f, \n, \r, \t, \", \\, \/
|
|
|
|
|
//! - Matches code points like Rust: \u{XXXX}, where XXXX can be up to 6
|
|
|
|
|
//! hex characters
|
|
|
|
|
//! - an escape followed by whitespace consumes all whitespace between the
|
|
|
|
|
//! escape and the next non-whitespace character
|
|
|
|
|
|
|
|
|
|
#![cfg(feature = "alloc")]
|
|
|
|
|
|
|
|
|
|
use nom::branch::alt;
|
|
|
|
|
use nom::bytes::streaming::{is_not, take_while_m_n};
|
|
|
|
|
use nom::character::streaming::{char, multispace1};
|
2019-12-27 05:53:38 +00:00
|
|
|
|
use nom::combinator::{map, map_opt, map_res, value, verify};
|
2020-10-24 13:19:14 +00:00
|
|
|
|
use nom::error::{FromExternalError, ParseError};
|
2019-12-21 19:17:21 +00:00
|
|
|
|
use nom::multi::fold_many0;
|
|
|
|
|
use nom::sequence::{delimited, preceded};
|
|
|
|
|
use nom::IResult;
|
|
|
|
|
|
|
|
|
|
// parser combinators are constructed from the bottom up:
|
|
|
|
|
// first we write parsers for the smallest elements (escaped characters),
|
|
|
|
|
// then combine them into larger parsers.
|
|
|
|
|
|
|
|
|
|
/// Parse a unicode sequence, of the form u{XXXX}, where XXXX is 1 to 6
|
|
|
|
|
/// hexadecimal numerals. We will combine this later with parse_escaped_char
|
|
|
|
|
/// to parse sequences like \u{00AC}.
|
2020-10-24 13:19:14 +00:00
|
|
|
|
fn parse_unicode<'a, E>(input: &'a str) -> IResult<&'a str, char, E>
|
|
|
|
|
where
|
|
|
|
|
E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
|
|
|
|
|
{
|
2019-12-21 19:17:21 +00:00
|
|
|
|
// `take_while_m_n` parses between `m` and `n` bytes (inclusive) that match
|
2019-12-27 05:53:38 +00:00
|
|
|
|
// a predicate. `parse_hex` here parses between 1 and 6 hexadecimal numerals.
|
2019-12-21 19:17:21 +00:00
|
|
|
|
let parse_hex = take_while_m_n(1, 6, |c: char| c.is_ascii_hexdigit());
|
|
|
|
|
|
2021-09-26 02:16:01 +00:00
|
|
|
|
// `preceded` takes a prefix parser, and if it succeeds, returns the result
|
2019-12-21 19:17:21 +00:00
|
|
|
|
// of the body parser. In this case, it parses u{XXXX}.
|
|
|
|
|
let parse_delimited_hex = preceded(
|
|
|
|
|
char('u'),
|
|
|
|
|
// `delimited` is like `preceded`, but it parses both a prefix and a suffix.
|
|
|
|
|
// It returns the result of the middle parser. In this case, it parses
|
2019-12-27 05:53:38 +00:00
|
|
|
|
// {XXXX}, where XXXX is 1 to 6 hex numerals, and returns XXXX
|
2019-12-21 19:17:21 +00:00
|
|
|
|
delimited(char('{'), parse_hex, char('}')),
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// `map_res` takes the result of a parser and applies a function that returns
|
|
|
|
|
// a Result. In this case we take the hex bytes from parse_hex and attempt to
|
|
|
|
|
// convert them to a u32.
|
2019-12-27 05:53:38 +00:00
|
|
|
|
let parse_u32 = map_res(parse_delimited_hex, move |hex| u32::from_str_radix(hex, 16));
|
2019-12-21 19:17:21 +00:00
|
|
|
|
|
2019-12-27 05:53:38 +00:00
|
|
|
|
// map_opt is like map_res, but it takes an Option instead of a Result. If
|
|
|
|
|
// the function returns None, map_opt returns an error. In this case, because
|
|
|
|
|
// not all u32 values are valid unicode code points, we have to fallibly
|
|
|
|
|
// convert to char with from_u32.
|
|
|
|
|
map_opt(parse_u32, |value| std::char::from_u32(value))(input)
|
2019-12-21 19:17:21 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Parse an escaped character: \n, \t, \r, \u{00AC}, etc.
|
2020-10-24 13:19:14 +00:00
|
|
|
|
fn parse_escaped_char<'a, E>(input: &'a str) -> IResult<&'a str, char, E>
|
|
|
|
|
where
|
|
|
|
|
E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
|
|
|
|
|
{
|
2019-12-21 19:17:21 +00:00
|
|
|
|
preceded(
|
|
|
|
|
char('\\'),
|
2020-05-29 20:17:13 +00:00
|
|
|
|
// `alt` tries each parser in sequence, returning the result of
|
2019-12-21 19:17:21 +00:00
|
|
|
|
// the first successful match
|
|
|
|
|
alt((
|
|
|
|
|
parse_unicode,
|
|
|
|
|
// The `value` parser returns a fixed value (the first argument) if its
|
|
|
|
|
// parser (the second argument) succeeds. In these cases, it looks for
|
|
|
|
|
// the marker characters (n, r, t, etc) and returns the matching
|
|
|
|
|
// character (\n, \r, \t, etc).
|
|
|
|
|
value('\n', char('n')),
|
|
|
|
|
value('\r', char('r')),
|
|
|
|
|
value('\t', char('t')),
|
|
|
|
|
value('\u{08}', char('b')),
|
|
|
|
|
value('\u{0C}', char('f')),
|
|
|
|
|
value('\\', char('\\')),
|
|
|
|
|
value('/', char('/')),
|
|
|
|
|
value('"', char('"')),
|
|
|
|
|
)),
|
|
|
|
|
)(input)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Parse a backslash, followed by any amount of whitespace. This is used later
|
|
|
|
|
/// to discard any escaped whitespace.
|
2020-04-10 09:01:58 +00:00
|
|
|
|
fn parse_escaped_whitespace<'a, E: ParseError<&'a str>>(
|
|
|
|
|
input: &'a str,
|
|
|
|
|
) -> IResult<&'a str, &'a str, E> {
|
2019-12-21 19:17:21 +00:00
|
|
|
|
preceded(char('\\'), multispace1)(input)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Parse a non-empty block of text that doesn't include \ or "
|
|
|
|
|
fn parse_literal<'a, E: ParseError<&'a str>>(input: &'a str) -> IResult<&'a str, &'a str, E> {
|
2019-12-27 05:53:38 +00:00
|
|
|
|
// `is_not` parses a string of 0 or more characters that aren't one of the
|
|
|
|
|
// given characters.
|
|
|
|
|
let not_quote_slash = is_not("\"\\");
|
|
|
|
|
|
2019-12-21 19:17:21 +00:00
|
|
|
|
// `verify` runs a parser, then runs a verification function on the output of
|
|
|
|
|
// the parser. The verification function accepts out output only if it
|
|
|
|
|
// returns true. In this case, we want to ensure that the output of is_not
|
|
|
|
|
// is non-empty.
|
2019-12-27 05:53:38 +00:00
|
|
|
|
verify(not_quote_slash, |s: &str| !s.is_empty())(input)
|
2019-12-21 19:17:21 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// A string fragment contains a fragment of a string being parsed: either
|
|
|
|
|
/// a non-empty Literal (a series of non-escaped characters), a single
|
|
|
|
|
/// parsed escaped character, or a block of escaped whitespace.
|
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
|
|
|
enum StringFragment<'a> {
|
|
|
|
|
Literal(&'a str),
|
|
|
|
|
EscapedChar(char),
|
|
|
|
|
EscapedWS,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Combine parse_literal, parse_escaped_whitespace, and parse_escaped_char
|
|
|
|
|
/// into a StringFragment.
|
2020-10-24 13:19:14 +00:00
|
|
|
|
fn parse_fragment<'a, E>(input: &'a str) -> IResult<&'a str, StringFragment<'a>, E>
|
|
|
|
|
where
|
|
|
|
|
E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
|
|
|
|
|
{
|
2019-12-21 19:17:21 +00:00
|
|
|
|
alt((
|
|
|
|
|
// The `map` combinator runs a parser, then applies a function to the output
|
|
|
|
|
// of that parser.
|
|
|
|
|
map(parse_literal, StringFragment::Literal),
|
|
|
|
|
map(parse_escaped_char, StringFragment::EscapedChar),
|
|
|
|
|
value(StringFragment::EscapedWS, parse_escaped_whitespace),
|
|
|
|
|
))(input)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Parse a string. Use a loop of parse_fragment and push all of the fragments
|
|
|
|
|
/// into an output string.
|
2020-10-24 13:19:14 +00:00
|
|
|
|
fn parse_string<'a, E>(input: &'a str) -> IResult<&'a str, String, E>
|
|
|
|
|
where
|
|
|
|
|
E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
|
|
|
|
|
{
|
2019-12-21 19:17:21 +00:00
|
|
|
|
// fold_many0 is the equivalent of iterator::fold. It runs a parser in a loop,
|
|
|
|
|
// and for each output value, calls a folding function on each output value.
|
|
|
|
|
let build_string = fold_many0(
|
|
|
|
|
// Our parser function– parses a single string fragment
|
|
|
|
|
parse_fragment,
|
|
|
|
|
// Our init value, an empty string
|
2021-08-08 22:03:45 +00:00
|
|
|
|
String::new,
|
2019-12-21 19:17:21 +00:00
|
|
|
|
// Our folding function. For each fragment, append the fragment to the
|
|
|
|
|
// string.
|
|
|
|
|
|mut string, fragment| {
|
|
|
|
|
match fragment {
|
|
|
|
|
StringFragment::Literal(s) => string.push_str(s),
|
|
|
|
|
StringFragment::EscapedChar(c) => string.push(c),
|
|
|
|
|
StringFragment::EscapedWS => {}
|
|
|
|
|
}
|
|
|
|
|
string
|
|
|
|
|
},
|
|
|
|
|
);
|
|
|
|
|
|
2020-01-07 22:03:27 +00:00
|
|
|
|
// Finally, parse the string. Note that, if `build_string` could accept a raw
|
|
|
|
|
// " character, the closing delimiter " would never match. When using
|
|
|
|
|
// `delimited` with a looping parser (like fold_many0), be sure that the
|
|
|
|
|
// loop won't accidentally match your closing delimiter!
|
2019-12-21 19:17:21 +00:00
|
|
|
|
delimited(char('"'), build_string, char('"'))(input)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
|
let data = "\"abc\"";
|
|
|
|
|
println!("EXAMPLE 1:\nParsing a simple input string: {}", data);
|
|
|
|
|
let result = parse_string::<()>(data);
|
|
|
|
|
assert_eq!(result, Ok(("", String::from("abc"))));
|
|
|
|
|
println!("Result: {}\n\n", result.unwrap().1);
|
|
|
|
|
|
|
|
|
|
let data = "\"tab:\\tafter tab, newline:\\nnew line, quote: \\\", emoji: \\u{1F602}, newline:\\nescaped whitespace: \\ abc\"";
|
|
|
|
|
println!(
|
|
|
|
|
"EXAMPLE 2:\nParsing a string with escape sequences, newline literal, and escaped whitespace:\n\n{}\n",
|
|
|
|
|
data
|
|
|
|
|
);
|
|
|
|
|
let result = parse_string::<()>(data);
|
|
|
|
|
assert_eq!(
|
|
|
|
|
result,
|
|
|
|
|
Ok((
|
|
|
|
|
"",
|
|
|
|
|
String::from("tab:\tafter tab, newline:\nnew line, quote: \", emoji: 😂, newline:\nescaped whitespace: abc")
|
|
|
|
|
))
|
|
|
|
|
);
|
|
|
|
|
println!("Result:\n\n{}", result.unwrap().1);
|
|
|
|
|
}
|