There is no reason to heap allocate for each individual character (or each group of characters?) when the allocated collection isn't even going to be used anyway
9.1 KiB
Nom Recipes
These are short recipes for accomplishing common tasks with nom.
Whitespace
Wrapper combinators that eat whitespace before and after a parser
use nom::{
IResult,
error::ParseError,
combinator::value,
sequence::delimited,
character::complete::multispace0,
};
/// A combinator that takes a parser `inner` and produces a parser that also consumes both leading and
/// trailing whitespace, returning the output of `inner`.
fn ws<'a, F: 'a, O, E: ParseError<&'a str>>(inner: F) -> impl FnMut(&'a str) -> IResult<&'a str, O, E>
where
F: Fn(&'a str) -> IResult<&'a str, O, E>,
{
delimited(
multispace0,
inner,
multispace0
)
}
To eat only trailing whitespace, replace delimited(...)
with terminated(&inner, multispace0)
.
Likewise, the eat only leading whitespace, replace delimited(...)
with preceded(multispace0, &inner)
. You can use your own parser instead of multispace0
if you want to skip a different set
of lexemes.
Comments
// C++/EOL-style comments
This version uses %
to start a comment, does not consume the newline character, and returns an
output of ()
.
use nom::{
IResult,
error::ParseError,
combinator::value,
sequence::pair,
bytes::complete::is_not,
character::complete::char,
};
pub fn peol_comment<'a, E: ParseError<&'a str>>(i: &'a str) -> IResult<&'a str, (), E>
{
value(
(), // Output is thrown away.
pair(char('%'), is_not("\n\r"))
)(i)
}
/* C-style comments */
Inline comments surrounded with sentinel tags (*
and *)
. This version returns an output of ()
and does not handle nested comments.
use nom::{
IResult,
error::ParseError,
combinator::value,
sequence::tuple,
bytes::complete::{tag, take_until},
};
pub fn pinline_comment<'a, E: ParseError<&'a str>>(i: &'a str) -> IResult<&'a str, (), E> {
value(
(), // Output is thrown away.
tuple((
tag("(*"),
take_until("*)"),
tag("*)")
))
)(i)
}
Identifiers
Rust-Style Identifiers
Parsing identifiers that may start with a letter (or underscore) and may contain underscores, letters and numbers may be parsed like this:
use nom::{
IResult,
branch::alt,
multi::many0_count,
combinator::recognize,
sequence::pair,
character::complete::{alpha1, alphanumeric1},
bytes::complete::tag,
};
pub fn identifier(input: &str) -> IResult<&str, &str> {
recognize(
pair(
alt((alpha1, tag("_"))),
many0_count(alt((alphanumeric1, tag("_"))))
)
)(input)
}
Let's say we apply this to the identifier hello_world123abc
. The first alt
parser would
recognize h
. The pair
combinator ensures that ello_world123abc
will be piped to the next
alphanumeric0
parser, which recognizes every remaining character. However, the pair
combinator
returns a tuple of the results of its sub-parsers. The recognize
parser produces a &str
of the
input text that was parsed, which in this case is the entire &str
hello_world123abc
.
Literal Values
Escaped Strings
This is one of the examples in the examples directory.
Integers
The following recipes all return string slices rather than integer values. How to obtain an integer value instead is demonstrated for hexadecimal integers. The others are similar.
The parsers allow the grouping character _
, which allows one to group the digits by byte, for
example: 0xA4_3F_11_28
. If you prefer to exclude the _
character, the lambda to convert from a
string slice to an integer value is slightly simpler. You can also strip the _
from the string
slice that is returned, which is demonstrated in the second hexdecimal number parser.
If you wish to limit the number of digits in a valid integer literal, replace many1
with
many_m_n
in the recipes.
Hexadecimal
The parser outputs the string slice of the digits without the leading 0x
/0X
.
use nom::{
IResult,
branch::alt,
multi::{many0, many1},
combinator::recognize,
sequence::{preceded, terminated},
character::complete::{char, one_of},
bytes::complete::tag,
};
fn hexadecimal(input: &str) -> IResult<&str, &str> { // <'a, E: ParseError<&'a str>>
preceded(
alt((tag("0x"), tag("0X"))),
recognize(
many1(
terminated(one_of("0123456789abcdefABCDEF"), many0(char('_')))
)
)
)(input)
}
If you want it to return the integer value instead, use map:
use nom::{
IResult,
branch::alt,
multi::{many0, many1},
combinator::{map_res, recognize},
sequence::{preceded, terminated},
character::complete::{char, one_of},
bytes::complete::tag,
};
fn hexadecimal_value(input: &str) -> IResult<&str, i64> {
map_res(
preceded(
alt((tag("0x"), tag("0X"))),
recognize(
many1(
terminated(one_of("0123456789abcdefABCDEF"), many0(char('_')))
)
)
),
|out: &str| i64::from_str_radix(&str::replace(&out, "_", ""), 16)
)(input)
}
Octal
use nom::{
IResult,
branch::alt,
multi::{many0, many1},
combinator::recognize,
sequence::{preceded, terminated},
character::complete::{char, one_of},
bytes::complete::tag,
};
fn octal(input: &str) -> IResult<&str, &str> {
preceded(
alt((tag("0o"), tag("0O"))),
recognize(
many1(
terminated(one_of("01234567"), many0(char('_')))
)
)
)(input)
}
Binary
use nom::{
IResult,
branch::alt,
multi::{many0, many1},
combinator::recognize,
sequence::{preceded, terminated},
character::complete::{char, one_of},
bytes::complete::tag,
};
fn binary(input: &str) -> IResult<&str, &str> {
preceded(
alt((tag("0b"), tag("0B"))),
recognize(
many1(
terminated(one_of("01"), many0(char('_')))
)
)
)(input)
}
Decimal
use nom::{
IResult,
multi::{many0, many1},
combinator::recognize,
sequence::terminated,
character::complete::{char, one_of},
};
fn decimal(input: &str) -> IResult<&str, &str> {
recognize(
many1(
terminated(one_of("0123456789"), many0(char('_')))
)
)(input)
}
Floating Point Numbers
The following is adapted from the Python parser by Valentin Lorentz (ProgVal).
use nom::{
IResult,
branch::alt,
multi::{many0, many1},
combinator::{opt, recognize},
sequence::{preceded, terminated, tuple},
character::complete::{char, one_of},
};
fn float(input: &str) -> IResult<&str, &str> {
alt((
// Case one: .42
recognize(
tuple((
char('.'),
decimal,
opt(tuple((
one_of("eE"),
opt(one_of("+-")),
decimal
)))
))
)
, // Case two: 42e42 and 42.42e42
recognize(
tuple((
decimal,
opt(preceded(
char('.'),
decimal,
)),
one_of("eE"),
opt(one_of("+-")),
decimal
))
)
, // Case three: 42. and 42.42
recognize(
tuple((
decimal,
char('.'),
opt(decimal)
))
)
))(input)
}
fn decimal(input: &str) -> IResult<&str, &str> {
recognize(
many1(
terminated(one_of("0123456789"), many0(char('_')))
)
)(input)
}
implementing FromStr
The FromStr trait provides a common interface to parse from a string.
use nom::{
IResult, Finish, error::Error,
bytes::complete::{tag, take_while},
};
use std::str::FromStr;
// will recognize the name in "Hello, name!"
fn parse_name(input: &str) -> IResult<&str, &str> {
let (i, _) = tag("Hello, ")(input)?;
let (i, name) = take_while(|c:char| c.is_alphabetic())(i)?;
let (i, _) = tag("!")(i)?;
Ok((i, name))
}
// with FromStr, the result cannot be a reference to the input, it must be owned
#[derive(Debug)]
pub struct Name(pub String);
impl FromStr for Name {
// the error must be owned as well
type Err = Error<String>;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match parse_name(s).finish() {
Ok((_remaining, name)) => Ok(Name(name.to_string())),
Err(Error { input, code }) => Err(Error {
input: input.to_string(),
code,
})
}
}
}
fn main() {
// parsed: Ok(Name("nom"))
println!("parsed: {:?}", "Hello, nom!".parse::<Name>());
// parsed: Err(Error { input: "123!", code: Tag })
println!("parsed: {:?}", "Hello, 123!".parse::<Name>());
}