third_party_spirv-tools/source/fuzz/force_render_red.cpp

376 lines
16 KiB
C++
Raw Permalink Normal View History

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/force_render_red.h"
#include "source/fuzz/fact_manager/fact_manager.h"
#include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/protobufs/spirvfuzz_protobufs.h"
#include "source/fuzz/transformation_context.h"
#include "source/fuzz/transformation_replace_constant_with_uniform.h"
#include "source/opt/build_module.h"
#include "source/opt/ir_context.h"
#include "source/opt/types.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace fuzz {
namespace {
// Helper method to find the fragment shader entry point, complaining if there
// is no shader or if there is no fragment entry point.
opt::Function* FindFragmentShaderEntryPoint(opt::IRContext* ir_context,
MessageConsumer message_consumer) {
// Check that this is a fragment shader
bool found_capability_shader = false;
for (auto& capability : ir_context->capabilities()) {
assert(capability.opcode() == spv::Op::OpCapability);
if (spv::Capability(capability.GetSingleWordInOperand(0)) ==
spv::Capability::Shader) {
found_capability_shader = true;
break;
}
}
if (!found_capability_shader) {
message_consumer(
SPV_MSG_ERROR, nullptr, {},
"Forcing of red rendering requires the Shader capability.");
return nullptr;
}
opt::Instruction* fragment_entry_point = nullptr;
for (auto& entry_point : ir_context->module()->entry_points()) {
if (spv::ExecutionModel(entry_point.GetSingleWordInOperand(0)) ==
spv::ExecutionModel::Fragment) {
fragment_entry_point = &entry_point;
break;
}
}
if (fragment_entry_point == nullptr) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"Forcing of red rendering requires an entry point with "
"the Fragment execution model.");
return nullptr;
}
for (auto& function : *ir_context->module()) {
if (function.result_id() ==
fragment_entry_point->GetSingleWordInOperand(1)) {
return &function;
}
}
assert(
false &&
"A valid module must have a function associate with each entry point.");
return nullptr;
}
// Helper method to check that there is a single vec4 output variable and get a
// pointer to it.
opt::Instruction* FindVec4OutputVariable(opt::IRContext* ir_context,
MessageConsumer message_consumer) {
opt::Instruction* output_variable = nullptr;
for (auto& inst : ir_context->types_values()) {
if (inst.opcode() == spv::Op::OpVariable &&
spv::StorageClass(inst.GetSingleWordInOperand(0)) ==
spv::StorageClass::Output) {
if (output_variable != nullptr) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"Only one output variable can be handled at present; "
"found multiple.");
return nullptr;
}
output_variable = &inst;
// Do not break, as we want to check for multiple output variables.
}
}
if (output_variable == nullptr) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"No output variable to which to write red was found.");
return nullptr;
}
auto output_variable_base_type = ir_context->get_type_mgr()
->GetType(output_variable->type_id())
->AsPointer()
->pointee_type()
->AsVector();
if (!output_variable_base_type ||
output_variable_base_type->element_count() != 4 ||
!output_variable_base_type->element_type()->AsFloat()) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"The output variable must have type vec4.");
return nullptr;
}
return output_variable;
}
// Helper to get the ids of float constants 0.0 and 1.0, creating them if
// necessary.
std::pair<uint32_t, uint32_t> FindOrCreateFloatZeroAndOne(
opt::IRContext* ir_context, opt::analysis::Float* float_type) {
float one = 1.0;
uint32_t one_as_uint;
memcpy(&one_as_uint, &one, sizeof(float));
std::vector<uint32_t> zero_bytes = {0};
std::vector<uint32_t> one_bytes = {one_as_uint};
auto constant_zero = ir_context->get_constant_mgr()->RegisterConstant(
MakeUnique<opt::analysis::FloatConstant>(float_type, zero_bytes));
auto constant_one = ir_context->get_constant_mgr()->RegisterConstant(
MakeUnique<opt::analysis::FloatConstant>(float_type, one_bytes));
auto constant_zero_id = ir_context->get_constant_mgr()
->GetDefiningInstruction(constant_zero)
->result_id();
auto constant_one_id = ir_context->get_constant_mgr()
->GetDefiningInstruction(constant_one)
->result_id();
return std::pair<uint32_t, uint32_t>(constant_zero_id, constant_one_id);
}
std::unique_ptr<TransformationReplaceConstantWithUniform>
MakeConstantUniformReplacement(opt::IRContext* ir_context,
const FactManager& fact_manager,
uint32_t constant_id,
uint32_t greater_than_instruction,
uint32_t in_operand_index) {
return MakeUnique<TransformationReplaceConstantWithUniform>(
MakeIdUseDescriptor(
constant_id,
MakeInstructionDescriptor(greater_than_instruction,
spv::Op::OpFOrdGreaterThan, 0),
in_operand_index),
fact_manager.GetUniformDescriptorsForConstant(constant_id)[0],
ir_context->TakeNextId(), ir_context->TakeNextId());
}
} // namespace
bool ForceRenderRed(
const spv_target_env& target_env, spv_validator_options validator_options,
const std::vector<uint32_t>& binary_in,
const spvtools::fuzz::protobufs::FactSequence& initial_facts,
const MessageConsumer& message_consumer,
std::vector<uint32_t>* binary_out) {
spvtools::SpirvTools tools(target_env);
if (!tools.IsValid()) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"Failed to create SPIRV-Tools interface; stopping.");
return false;
}
// Initial binary should be valid.
if (!tools.Validate(&binary_in[0], binary_in.size(), validator_options)) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"Initial binary is invalid; stopping.");
return false;
}
// Build the module from the input binary.
std::unique_ptr<opt::IRContext> ir_context = BuildModule(
target_env, message_consumer, binary_in.data(), binary_in.size());
assert(ir_context);
// Set up a fact manager with any given initial facts.
TransformationContext transformation_context(
MakeUnique<FactManager>(ir_context.get()), validator_options);
for (auto& fact : initial_facts.fact()) {
transformation_context.GetFactManager()->MaybeAddFact(fact);
}
auto entry_point_function =
FindFragmentShaderEntryPoint(ir_context.get(), message_consumer);
auto output_variable =
FindVec4OutputVariable(ir_context.get(), message_consumer);
if (entry_point_function == nullptr || output_variable == nullptr) {
return false;
}
opt::analysis::Float temp_float_type(32);
opt::analysis::Float* float_type = ir_context->get_type_mgr()
->GetRegisteredType(&temp_float_type)
->AsFloat();
std::pair<uint32_t, uint32_t> zero_one_float_ids =
FindOrCreateFloatZeroAndOne(ir_context.get(), float_type);
// Make the new exit block
auto new_exit_block_id = ir_context->TakeNextId();
{
auto label = MakeUnique<opt::Instruction>(
ir_context.get(), spv::Op::OpLabel, 0, new_exit_block_id,
opt::Instruction::OperandList());
auto new_exit_block = MakeUnique<opt::BasicBlock>(std::move(label));
new_exit_block->AddInstruction(
MakeUnique<opt::Instruction>(ir_context.get(), spv::Op::OpReturn, 0, 0,
opt::Instruction::OperandList()));
entry_point_function->AddBasicBlock(std::move(new_exit_block));
}
// Make the new entry block
{
auto label = MakeUnique<opt::Instruction>(
ir_context.get(), spv::Op::OpLabel, 0, ir_context->TakeNextId(),
opt::Instruction::OperandList());
auto new_entry_block = MakeUnique<opt::BasicBlock>(std::move(label));
// Make an instruction to construct vec4(1.0, 0.0, 0.0, 1.0), representing
// the colour red.
opt::Operand zero_float = {SPV_OPERAND_TYPE_ID, {zero_one_float_ids.first}};
opt::Operand one_float = {SPV_OPERAND_TYPE_ID, {zero_one_float_ids.second}};
opt::Instruction::OperandList op_composite_construct_operands = {
one_float, zero_float, zero_float, one_float};
auto temp_vec4 = opt::analysis::Vector(float_type, 4);
auto vec4_id = ir_context->get_type_mgr()->GetId(&temp_vec4);
auto red = MakeUnique<opt::Instruction>(
ir_context.get(), spv::Op::OpCompositeConstruct, vec4_id,
ir_context->TakeNextId(), op_composite_construct_operands);
auto red_id = red->result_id();
new_entry_block->AddInstruction(std::move(red));
// Make an instruction to store red into the output color.
opt::Operand variable_to_store_into = {SPV_OPERAND_TYPE_ID,
{output_variable->result_id()}};
opt::Operand value_to_be_stored = {SPV_OPERAND_TYPE_ID, {red_id}};
opt::Instruction::OperandList op_store_operands = {variable_to_store_into,
value_to_be_stored};
new_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context.get(), spv::Op::OpStore, 0, 0, op_store_operands));
// We are going to attempt to construct 'false' as an expression of the form
// 'literal1 > literal2'. If we succeed, we will later replace each literal
// with a uniform of the same value - we can only do that replacement once
// we have added the entry block to the module.
std::unique_ptr<TransformationReplaceConstantWithUniform>
first_greater_then_operand_replacement = nullptr;
std::unique_ptr<TransformationReplaceConstantWithUniform>
second_greater_then_operand_replacement = nullptr;
uint32_t id_guaranteed_to_be_false = 0;
opt::analysis::Bool temp_bool_type;
opt::analysis::Bool* registered_bool_type =
ir_context->get_type_mgr()
->GetRegisteredType(&temp_bool_type)
->AsBool();
auto float_type_id = ir_context->get_type_mgr()->GetId(float_type);
auto types_for_which_uniforms_are_known =
transformation_context.GetFactManager()
->GetTypesForWhichUniformValuesAreKnown();
// Check whether we have any float uniforms.
if (std::find(types_for_which_uniforms_are_known.begin(),
types_for_which_uniforms_are_known.end(),
float_type_id) != types_for_which_uniforms_are_known.end()) {
// We have at least one float uniform; let's see whether we have at least
// two.
auto available_constants =
transformation_context.GetFactManager()
->GetConstantsAvailableFromUniformsForType(float_type_id);
if (available_constants.size() > 1) {
// Grab the float constants associated with the first two known float
// uniforms.
auto first_constant =
ir_context->get_constant_mgr()
->GetConstantFromInst(ir_context->get_def_use_mgr()->GetDef(
available_constants[0]))
->AsFloatConstant();
auto second_constant =
ir_context->get_constant_mgr()
->GetConstantFromInst(ir_context->get_def_use_mgr()->GetDef(
available_constants[1]))
->AsFloatConstant();
// Now work out which of the two constants is larger than the other.
uint32_t larger_constant_index = 0;
uint32_t smaller_constant_index = 0;
if (first_constant->GetFloat() > second_constant->GetFloat()) {
larger_constant_index = 0;
smaller_constant_index = 1;
} else if (first_constant->GetFloat() < second_constant->GetFloat()) {
larger_constant_index = 1;
smaller_constant_index = 0;
}
// Only proceed with these constants if they have turned out to be
// distinct.
if (larger_constant_index != smaller_constant_index) {
// We are in a position to create 'false' as 'literal1 > literal2', so
// reserve an id for this computation; this id will end up being
// guaranteed to be 'false'.
id_guaranteed_to_be_false = ir_context->TakeNextId();
auto smaller_constant = available_constants[smaller_constant_index];
auto larger_constant = available_constants[larger_constant_index];
opt::Instruction::OperandList greater_than_operands = {
{SPV_OPERAND_TYPE_ID, {smaller_constant}},
{SPV_OPERAND_TYPE_ID, {larger_constant}}};
new_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context.get(), spv::Op::OpFOrdGreaterThan,
ir_context->get_type_mgr()->GetId(registered_bool_type),
id_guaranteed_to_be_false, greater_than_operands));
first_greater_then_operand_replacement =
MakeConstantUniformReplacement(
ir_context.get(), *transformation_context.GetFactManager(),
smaller_constant, id_guaranteed_to_be_false, 0);
second_greater_then_operand_replacement =
MakeConstantUniformReplacement(
ir_context.get(), *transformation_context.GetFactManager(),
larger_constant, id_guaranteed_to_be_false, 1);
}
}
}
if (id_guaranteed_to_be_false == 0) {
auto constant_false = ir_context->get_constant_mgr()->RegisterConstant(
MakeUnique<opt::analysis::BoolConstant>(registered_bool_type, false));
id_guaranteed_to_be_false = ir_context->get_constant_mgr()
->GetDefiningInstruction(constant_false)
->result_id();
}
opt::Operand false_condition = {SPV_OPERAND_TYPE_ID,
{id_guaranteed_to_be_false}};
opt::Operand then_block = {SPV_OPERAND_TYPE_ID,
{entry_point_function->entry()->id()}};
opt::Operand else_block = {SPV_OPERAND_TYPE_ID, {new_exit_block_id}};
opt::Instruction::OperandList op_branch_conditional_operands = {
false_condition, then_block, else_block};
new_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context.get(), spv::Op::OpBranchConditional, 0, 0,
op_branch_conditional_operands));
entry_point_function->InsertBasicBlockBefore(
std::move(new_entry_block), entry_point_function->entry().get());
for (auto& replacement : {first_greater_then_operand_replacement.get(),
second_greater_then_operand_replacement.get()}) {
if (replacement) {
assert(replacement->IsApplicable(ir_context.get(),
transformation_context));
replacement->Apply(ir_context.get(), &transformation_context);
}
}
}
// Write out the module as a binary.
ir_context->module()->ToBinary(binary_out, false);
return true;
}
} // namespace fuzz
} // namespace spvtools