Add validation rules for atomic instructions

Validates all OpAtomicXXX instructions.
This commit is contained in:
Andrey Tuganov 2017-11-30 11:29:05 -05:00 committed by David Neto
parent 853a3d6c31
commit 532b327d4d
7 changed files with 852 additions and 0 deletions

View File

@ -34,6 +34,7 @@ SPVTOOLS_SRC_FILES := \
source/val/validation_state.cpp \
source/validate.cpp \
source/validate_arithmetics.cpp \
source/validate_atomics.cpp \
source/validate_bitwise.cpp \
source/validate_capability.cpp \
source/validate_cfg.cpp \

View File

@ -254,6 +254,7 @@ set(SPIRV_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/text_handler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_arithmetics.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_atomics.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_bitwise.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_capability.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_cfg.cpp

View File

@ -186,6 +186,7 @@ spv_result_t ProcessInstruction(void* user_data,
if (auto error = LogicalsPass(_, inst)) return error;
if (auto error = BitwisePass(_, inst)) return error;
if (auto error = ImagePass(_, inst)) return error;
if (auto error = AtomicsPass(_, inst)) return error;
return SPV_SUCCESS;
}

View File

@ -139,6 +139,10 @@ spv_result_t BitwisePass(ValidationState_t& _,
spv_result_t ImagePass(ValidationState_t& _,
const spv_parsed_instruction_t* inst);
/// Validates correctness of atomic instructions.
spv_result_t AtomicsPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst);
// Validates that capability declarations use operands allowed in the current
// context.
spv_result_t CapabilityPass(ValidationState_t& _,

197
source/validate_atomics.cpp Normal file
View File

@ -0,0 +1,197 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Validates correctness of atomic SPIR-V instructions.
#include "validate.h"
#include "diagnostic.h"
#include "opcode.h"
#include "val/instruction.h"
#include "val/validation_state.h"
namespace libspirv {
// Validates correctness of atomic instructions.
spv_result_t AtomicsPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
const uint32_t result_type = inst->type_id;
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpAtomicStore:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFlagTestAndSet:
case SpvOpAtomicFlagClear: {
if (opcode == SpvOpAtomicLoad || opcode == SpvOpAtomicExchange ||
opcode == SpvOpAtomicCompareExchange) {
if (!_.IsFloatScalarType(result_type) &&
!_.IsIntScalarType(result_type)) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Result Type to be int or float scalar type";
}
} else if (opcode == SpvOpAtomicFlagTestAndSet) {
if (!_.IsBoolScalarType(result_type)) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Result Type to be bool scalar type";
}
} else if (opcode == SpvOpAtomicFlagClear || opcode == SpvOpAtomicStore) {
assert(result_type == 0);
} else {
if (!_.IsIntScalarType(result_type)) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Result Type to be int scalar type";
}
}
uint32_t operand_index =
opcode == SpvOpAtomicFlagClear || opcode == SpvOpAtomicStore ? 0 : 2;
const uint32_t pointer_type = _.GetOperandTypeId(inst, operand_index++);
uint32_t data_type = 0;
uint32_t storage_class = 0;
if (!_.GetPointerTypeInfo(pointer_type, &data_type, &storage_class)) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Pointer to be of type OpTypePointer";
}
switch (storage_class) {
case SpvStorageClassUniform:
case SpvStorageClassWorkgroup:
case SpvStorageClassCrossWorkgroup:
case SpvStorageClassGeneric:
case SpvStorageClassAtomicCounter:
case SpvStorageClassImage:
case SpvStorageClassStorageBuffer:
break;
default:
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Pointer Storage Class to be Uniform, "
<< "Workgroup, CrossWorkgroup, Generic, AtomicCounter, Image or "
<< "StorageBuffer";
}
if (opcode == SpvOpAtomicFlagTestAndSet ||
opcode == SpvOpAtomicFlagClear) {
if (!_.IsIntScalarType(data_type) || _.GetBitWidth(data_type) != 32) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Pointer to point to a value of 32-bit int type";
}
} else if (opcode == SpvOpAtomicStore) {
if (!_.IsFloatScalarType(data_type) && !_.IsIntScalarType(data_type)) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Pointer to be a pointer to int or float "
<< "scalar type";
}
} else {
if (data_type != result_type) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Pointer to point to a value of type Result "
"Type";
}
}
const uint32_t scope_type = _.GetOperandTypeId(inst, operand_index++);
if (!_.IsIntScalarType(scope_type) || _.GetBitWidth(scope_type) != 32) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Scope to be 32-bit int";
}
const uint32_t memory_semantics_type1 =
_.GetOperandTypeId(inst, operand_index++);
if (!_.IsIntScalarType(memory_semantics_type1) ||
_.GetBitWidth(memory_semantics_type1) != 32) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Memory Semantics to be 32-bit int";
}
if (opcode == SpvOpAtomicCompareExchange ||
opcode == SpvOpAtomicCompareExchangeWeak) {
const uint32_t memory_semantics_type2 =
_.GetOperandTypeId(inst, operand_index++);
if (!_.IsIntScalarType(memory_semantics_type2) ||
_.GetBitWidth(memory_semantics_type2) != 32) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Memory Semantics to be 32-bit int";
}
}
if (opcode == SpvOpAtomicStore) {
const uint32_t value_type = _.GetOperandTypeId(inst, 3);
if (value_type != data_type) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Value type and the type pointed to by Pointer "
"to"
<< " be the same";
}
} else if (opcode != SpvOpAtomicLoad && opcode != SpvOpAtomicIIncrement &&
opcode != SpvOpAtomicIDecrement &&
opcode != SpvOpAtomicFlagTestAndSet &&
opcode != SpvOpAtomicFlagClear) {
const uint32_t value_type = _.GetOperandTypeId(inst, operand_index++);
if (value_type != result_type) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Value to be of type Result Type";
}
}
if (opcode == SpvOpAtomicCompareExchange ||
opcode == SpvOpAtomicCompareExchangeWeak) {
const uint32_t comparator_type =
_.GetOperandTypeId(inst, operand_index++);
if (comparator_type != result_type) {
return _.diag(SPV_ERROR_INVALID_DATA)
<< spvOpcodeString(opcode)
<< ": expected Comparator to be of type Result Type";
}
}
break;
}
default:
break;
}
return SPV_SUCCESS;
}
} // namespace libspirv

View File

@ -116,6 +116,12 @@ add_spvtools_unittest(TARGET val_image
LIBS ${SPIRV_TOOLS}
)
add_spvtools_unittest(TARGET val_atomics
SRCS val_atomics_test.cpp
${VAL_TEST_COMMON_SRCS}
LIBS ${SPIRV_TOOLS}
)
add_spvtools_unittest(TARGET val_limits
SRCS val_limits_test.cpp
${VAL_TEST_COMMON_SRCS}

View File

@ -0,0 +1,642 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "unit_spirv.h"
#include "val_fixtures.h"
namespace {
using ::testing::HasSubstr;
using ::testing::Not;
using ValidateAtomics = spvtest::ValidateBase<bool>;
std::string GenerateKernelCode(
const std::string& body,
const std::string& capabilities_and_extensions = "") {
std::ostringstream ss;
ss << R"(
OpCapability Addresses
OpCapability Kernel
OpCapability Linkage
OpCapability Int64
)";
ss << capabilities_and_extensions;
ss << R"(
OpMemoryModel Physical32 OpenCL
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%u64 = OpTypeInt 64 0
%f32vec4 = OpTypeVector %f32 4
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%u64_1 = OpConstant %u64 1
%f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0
%scope = OpConstant %u32 1
%memory_semantics = OpConstant %u32 1
%f32_ptr = OpTypePointer Workgroup %f32
%f32_var = OpVariable %f32_ptr Workgroup
%u32_ptr = OpTypePointer Workgroup %u32
%u32_var = OpVariable %u32_ptr Workgroup
%u64_ptr = OpTypePointer Workgroup %u64
%u64_var = OpVariable %u64_ptr Workgroup
%f32vec4_ptr = OpTypePointer Workgroup %f32vec4
%f32vec4_var = OpVariable %f32vec4_ptr Workgroup
%f32_ptr_function = OpTypePointer Function %f32
%main = OpFunction %void None %func
%main_entry = OpLabel
)";
ss << body;
ss << R"(
OpReturn
OpFunctionEnd)";
return ss.str();
}
TEST_F(ValidateAtomics, AtomicLoadSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %scope %memory_semantics
%val2 = OpAtomicLoad %u32 %u32_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicLoadWrongResultType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32vec4 %f32vec4_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongPointerType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_ptr %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongPointerDataType) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %f32_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongScopeType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %f32_1 %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongMemorySemanticsType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %scope %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicStore %u32_var %scope %memory_semantics %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerType) {
const std::string body = R"(
OpAtomicStore %f32_1 %scope %memory_semantics %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerDataType) {
const std::string body = R"(
OpAtomicStore %f32vec4_var %scope %memory_semantics %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: "
"expected Pointer to be a pointer to int or float scalar "
"type"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerStorageType) {
const std::string body = R"(
%f32_var_function = OpVariable %f32_ptr_function Function
OpAtomicStore %f32_var_function %scope %memory_semantics %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Pointer Storage Class to be Uniform, "
"Workgroup, CrossWorkgroup, Generic, AtomicCounter, Image or "
"StorageBuffer"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %f32_1 %memory_semantics %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %f32_1 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: "
"expected Value type and the type pointed to by Pointer to "
"be the same"));
}
TEST_F(ValidateAtomics, AtomicExchangeSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %scope %memory_semantics %f32_0
%val3 = OpAtomicStore %u32_var %scope %memory_semantics %u32_1
%val4 = OpAtomicExchange %u32 %u32_var %scope %memory_semantics %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicExchangeWrongResultType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicExchange %f32vec4 %f32vec4_var %scope %memory_semantics %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongPointerType) {
const std::string body = R"(
%val2 = OpAtomicExchange %f32 %f32vec4_ptr %scope %memory_semantics %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicExchange: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongPointerDataType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicExchange %f32 %f32vec4_var %scope %memory_semantics %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %f32_1 %memory_semantics %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %scope %f32_1 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicExchange: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %scope %memory_semantics %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Value to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %scope %memory_semantics %memory_semantics %f32_0 %f32_1
%val3 = OpAtomicStore %u32_var %scope %memory_semantics %u32_1
%val4 = OpAtomicCompareExchange %u32 %u32_var %scope %memory_semantics %memory_semantics %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongResultType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicCompareExchange %f32vec4 %f32vec4_var %scope %memory_semantics %memory_semantics %f32vec4_0000 %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerType) {
const std::string body = R"(
%val2 = OpAtomicCompareExchange %f32 %f32vec4_ptr %scope %memory_semantics %memory_semantics %f32vec4_0000 %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected Pointer to be of type "
"OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerDataType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicCompareExchange %f32 %f32vec4_var %scope %memory_semantics %memory_semantics %f32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %f32_1 %memory_semantics %memory_semantics %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType1) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %scope %f32_1 %memory_semantics %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicCompareExchange: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType2) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %scope %memory_semantics %f32_1 %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicCompareExchange: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %scope %memory_semantics %memory_semantics %u32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Value to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongComparatorType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %scope %memory_semantics %memory_semantics %f32_0 %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Comparator to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWeakSuccess) {
const std::string body = R"(
%val3 = OpAtomicStore %u32_var %scope %memory_semantics %u32_1
%val4 = OpAtomicCompareExchangeWeak %u32 %u32_var %scope %memory_semantics %memory_semantics %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWeakWrongResultType) {
const std::string body = R"(
OpAtomicStore %f32_var %scope %memory_semantics %f32_1
%val2 = OpAtomicCompareExchangeWeak %f32 %f32_var %scope %memory_semantics %memory_semantics %f32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchangeWeak: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicArithmeticsSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %scope %memory_semantics %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %scope %memory_semantics
%val2 = OpAtomicIDecrement %u32 %u32_var %scope %memory_semantics
%val3 = OpAtomicIAdd %u32 %u32_var %scope %memory_semantics %u32_1
%val4 = OpAtomicISub %u32 %u32_var %scope %memory_semantics %u32_1
%val5 = OpAtomicUMin %u32 %u32_var %scope %memory_semantics %u32_1
%val6 = OpAtomicUMax %u32 %u32_var %scope %memory_semantics %u32_1
%val7 = OpAtomicSMin %u32 %u32_var %scope %memory_semantics %u32_1
%val8 = OpAtomicSMax %u32 %u32_var %scope %memory_semantics %u32_1
%val9 = OpAtomicAnd %u32 %u32_var %scope %memory_semantics %u32_1
%val10 = OpAtomicOr %u32 %u32_var %scope %memory_semantics %u32_1
%val11 = OpAtomicXor %u32 %u32_var %scope %memory_semantics %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicFlagsSuccess) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %scope %memory_semantics
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongResultType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %u32 %u32_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Result Type to be bool scalar type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotPointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_1 %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotIntPointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %f32_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotInt32Pointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u64_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongScopeType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %u64_1 %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongMemorySemanticsType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %scope %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotPointer) {
const std::string body = R"(
OpAtomicFlagClear %u32_1 %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotIntPointer) {
const std::string body = R"(
OpAtomicFlagClear %f32_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotInt32Pointer) {
const std::string body = R"(
OpAtomicFlagClear %u64_var %scope %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagClearWrongScopeType) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %u64_1 %memory_semantics
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagClear: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagClearWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %scope %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: expected Memory Semantics to be 32-bit int"));
}
} // anonymous namespace