Move memory class instructions to new pass

* Refactored the Memory class of instructions in the spec out Id
validation and into a new pass
 * Tests unmodified
 * some minor disassembly changes
 * minor style changes
This commit is contained in:
Alan Baker 2018-08-01 14:44:56 -04:00
parent a5a5ea0e2d
commit d49bedcaa6
7 changed files with 610 additions and 562 deletions

View File

@ -53,6 +53,7 @@ SPVTOOLS_SRC_FILES := \
source/val/validate_image.cpp \
source/val/validate_interfaces.cpp \
source/val/validate_instruction.cpp \
source/val/validate_memory.cpp \
source/val/validate_layout.cpp \
source/val/validate_literals.cpp \
source/val/validate_logicals.cpp \

View File

@ -382,6 +382,7 @@ static_library("spvtools_val") {
"source/val/validate_layout.cpp",
"source/val/validate_literals.cpp",
"source/val/validate_logicals.cpp",
"source/val/validate_memory.cpp",
"source/val/validate_non_uniform.cpp",
"source/val/validate_primitives.cpp",
"source/val/validate_type_unique.cpp",

View File

@ -303,6 +303,7 @@ set(SPIRV_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_layout.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_literals.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_logicals.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_memory.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_non_uniform.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validate_type_unique.cpp

View File

@ -280,6 +280,7 @@ spv_result_t ValidateBinaryUsingContextAndValidationState(
if (auto error = CheckIdDefinitionDominateUse(*vstate)) return error;
if (auto error = ValidateDecorations(*vstate)) return error;
if (auto error = ValidateInterfaces(*vstate)) return error;
if (auto error = ValidateMemoryInstructions(*vstate)) return error;
// Entry point validation. Based on 2.16.1 (Universal Validation Rules) of the
// SPIRV spec:

View File

@ -87,6 +87,12 @@ spv_result_t ValidateAdjacency(ValidationState_t& _);
/// @return SPV_SUCCESS if no errors are found.
spv_result_t ValidateInterfaces(ValidationState_t& _);
/// @brief Validates memory instructions
///
/// @param[in] _ the validation state of the module
/// @return SPV_SUCCESS if no errors are found.
spv_result_t ValidateMemoryInstructions(ValidationState_t& _);
/// @brief Updates the immediate dominator for each of the block edges
///
/// Updates the immediate dominator of the blocks for each of the edges

View File

@ -77,26 +77,6 @@ class idUsage {
const MessageConsumer& consumer_;
const ValidationState_t& module_;
std::vector<uint32_t> entry_points_;
// Returns true if the two instructions represent structs that, as far as the
// validator can tell, have the exact same data layout.
bool AreLayoutCompatibleStructs(const Instruction* type1,
const Instruction* type2);
// Returns true if the operands to the OpTypeStruct instruction defining the
// types are the same or are layout compatible types. |type1| and |type2| must
// be OpTypeStruct instructions.
bool HaveLayoutCompatibleMembers(const Instruction* type1,
const Instruction* type2);
// Returns true if all decorations that affect the data layout of the struct
// (like Offset), are the same for the two types. |type1| and |type2| must be
// OpTypeStruct instructions.
bool HaveSameLayoutDecorations(const Instruction* type1,
const Instruction* type2);
bool HasConflictingMemberOffsets(
const std::vector<Decoration>& type1_decorations,
const std::vector<Decoration>& type2_decorations) const;
};
#define DIAG(inst) \
@ -1122,443 +1102,6 @@ bool idUsage::isValid<SpvOpSpecConstantComposite>(const spv_instruction_t* inst,
return true;
}
template <>
bool idUsage::isValid<SpvOpVariable>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypePointer != resultType->opcode()) {
DIAG(resultType) << "OpVariable Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a pointer type.";
return false;
}
const auto initialiserIndex = 4;
if (initialiserIndex < inst->words.size()) {
const auto initialiser = module_.FindDef(inst->words[initialiserIndex]);
const auto storageClassIndex = 3;
const auto is_module_scope_var =
initialiser && (initialiser->opcode() == SpvOpVariable) &&
(initialiser->word(storageClassIndex) != SpvStorageClassFunction);
const auto is_constant =
initialiser && spvOpcodeIsConstant(initialiser->opcode());
if (!initialiser || !(is_constant || is_module_scope_var)) {
DIAG(initialiser) << "OpVariable Initializer <id> '"
<< module_.getIdName(inst->words[initialiserIndex])
<< "' is not a constant or module-scope variable.";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpLoad>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) {
DIAG(resultType) << "OpLoad Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not defind.";
return false;
}
const bool uses_variable_pointer =
module_.features().variable_pointers ||
module_.features().variable_pointers_storage_buffer;
auto pointerIndex = 3;
auto pointer = module_.FindDef(inst->words[pointerIndex]);
if (!pointer ||
(addressingModel == SpvAddressingModelLogical &&
((!uses_variable_pointer &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointer &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
DIAG(pointer) << "OpLoad Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "' is not a logical pointer.";
return false;
}
auto pointerType = module_.FindDef(pointer->type_id());
if (!pointerType || pointerType->opcode() != SpvOpTypePointer) {
DIAG(pointer) << "OpLoad type for pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "' is not a pointer type.";
return false;
}
auto pointeeType = module_.FindDef(pointerType->words()[3]);
if (!pointeeType || resultType->id() != pointeeType->id()) {
DIAG(resultType) << "OpLoad Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' does not match Pointer <id> '"
<< module_.getIdName(pointer->id()) << "'s type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpStore>(const spv_instruction_t* inst,
const spv_opcode_desc) {
const bool uses_variable_pointer =
module_.features().variable_pointers ||
module_.features().variable_pointers_storage_buffer;
const auto pointerIndex = 1;
auto pointer = module_.FindDef(inst->words[pointerIndex]);
if (!pointer ||
(addressingModel == SpvAddressingModelLogical &&
((!uses_variable_pointer &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointer &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
DIAG(pointer) << "OpStore Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "' is not a logical pointer.";
return false;
}
auto pointerType = module_.FindDef(pointer->type_id());
if (!pointer || pointerType->opcode() != SpvOpTypePointer) {
DIAG(pointer) << "OpStore type for pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "' is not a pointer type.";
return false;
}
auto type = module_.FindDef(pointerType->words()[3]);
assert(type);
if (SpvOpTypeVoid == type->opcode()) {
DIAG(pointer) << "OpStore Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "'s type is void.";
return false;
}
// validate storage class
{
uint32_t dataType;
uint32_t storageClass;
if (!module_.GetPointerTypeInfo(pointerType->id(), &dataType,
&storageClass)) {
DIAG(pointer) << "OpStore Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "' is not pointer type";
return false;
}
if (storageClass == SpvStorageClassUniformConstant ||
storageClass == SpvStorageClassInput ||
storageClass == SpvStorageClassPushConstant) {
DIAG(pointer) << "OpStore Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "' storage class is read-only";
return false;
}
}
auto objectIndex = 2;
auto object = module_.FindDef(inst->words[objectIndex]);
if (!object || !object->type_id()) {
DIAG(object) << "OpStore Object <id> '"
<< module_.getIdName(inst->words[objectIndex])
<< "' is not an object.";
return false;
}
auto objectType = module_.FindDef(object->type_id());
assert(objectType);
if (SpvOpTypeVoid == objectType->opcode()) {
DIAG(object) << "OpStore Object <id> '"
<< module_.getIdName(inst->words[objectIndex])
<< "'s type is void.";
return false;
}
if (type->id() != objectType->id()) {
if (!module_.options()->relax_struct_store ||
type->opcode() != SpvOpTypeStruct ||
objectType->opcode() != SpvOpTypeStruct) {
DIAG(pointer) << "OpStore Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "'s type does not match Object <id> '"
<< module_.getIdName(object->id()) << "'s type.";
return false;
}
// TODO: Check for layout compatible matricies and arrays as well.
if (!AreLayoutCompatibleStructs(type, objectType)) {
DIAG(pointer) << "OpStore Pointer <id> '"
<< module_.getIdName(inst->words[pointerIndex])
<< "'s layout does not match Object <id> '"
<< module_.getIdName(object->id()) << "'s layout.";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpCopyMemory>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto targetIndex = 1;
auto target = module_.FindDef(inst->words[targetIndex]);
if (!target) return false;
auto sourceIndex = 2;
auto source = module_.FindDef(inst->words[sourceIndex]);
if (!source) return false;
auto targetPointerType = module_.FindDef(target->type_id());
assert(targetPointerType);
auto targetType = module_.FindDef(targetPointerType->words()[3]);
assert(targetType);
auto sourcePointerType = module_.FindDef(source->type_id());
assert(sourcePointerType);
auto sourceType = module_.FindDef(sourcePointerType->words()[3]);
assert(sourceType);
if (targetType->id() != sourceType->id()) {
DIAG(source) << "OpCopyMemory Target <id> '"
<< module_.getIdName(inst->words[sourceIndex])
<< "'s type does not match Source <id> '"
<< module_.getIdName(sourceType->id()) << "'s type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpCopyMemorySized>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto targetIndex = 1;
auto target = module_.FindDef(inst->words[targetIndex]);
if (!target) return false;
auto sourceIndex = 2;
auto source = module_.FindDef(inst->words[sourceIndex]);
if (!source) return false;
auto sizeIndex = 3;
auto size = module_.FindDef(inst->words[sizeIndex]);
if (!size) return false;
auto targetPointerType = module_.FindDef(target->type_id());
if (!targetPointerType || SpvOpTypePointer != targetPointerType->opcode()) {
DIAG(target) << "OpCopyMemorySized Target <id> '"
<< module_.getIdName(inst->words[targetIndex])
<< "' is not a pointer.";
return false;
}
auto sourcePointerType = module_.FindDef(source->type_id());
if (!sourcePointerType || SpvOpTypePointer != sourcePointerType->opcode()) {
DIAG(source) << "OpCopyMemorySized Source <id> '"
<< module_.getIdName(inst->words[sourceIndex])
<< "' is not a pointer.";
return false;
}
switch (size->opcode()) {
// TODO: The following opcode's are assumed to be valid, refer to the
// following bug https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13871 for
// clarification
case SpvOpConstant:
case SpvOpSpecConstant: {
auto sizeType = module_.FindDef(size->type_id());
assert(sizeType);
if (SpvOpTypeInt != sizeType->opcode()) {
DIAG(size) << "OpCopyMemorySized Size <id> '"
<< module_.getIdName(inst->words[sizeIndex])
<< "'s type is not an integer type.";
return false;
}
} break;
case SpvOpVariable: {
auto pointerType = module_.FindDef(size->type_id());
assert(pointerType);
auto sizeType = module_.FindDef(pointerType->type_id());
if (!sizeType || SpvOpTypeInt != sizeType->opcode()) {
DIAG(size) << "OpCopyMemorySized Size <id> '"
<< module_.getIdName(inst->words[sizeIndex])
<< "'s variable type is not an integer type.";
return false;
}
} break;
default:
DIAG(size) << "OpCopyMemorySized Size <id> '"
<< module_.getIdName(inst->words[sizeIndex])
<< "' is not a constant or variable.";
return false;
}
// TODO: Check that consant is a least size 1, see the same bug as above for
// clarification?
return true;
}
template <>
bool idUsage::isValid<SpvOpAccessChain>(const spv_instruction_t* inst,
const spv_opcode_desc) {
std::string instr_name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst->opcode)));
// The result type must be OpTypePointer. Result Type is at word 1.
auto resultTypeIndex = 1;
auto resultTypeInstr = module_.FindDef(inst->words[resultTypeIndex]);
if (SpvOpTypePointer != resultTypeInstr->opcode()) {
DIAG(resultTypeInstr) << "The Result Type of " << instr_name << " <id> '"
<< module_.getIdName(inst->words[2])
<< "' must be OpTypePointer. Found Op"
<< spvOpcodeString(
static_cast<SpvOp>(resultTypeInstr->opcode()))
<< ".";
return false;
}
// Result type is a pointer. Find out what it's pointing to.
// This will be used to make sure the indexing results in the same type.
// OpTypePointer word 3 is the type being pointed to.
auto resultTypePointedTo = module_.FindDef(resultTypeInstr->word(3));
// Base must be a pointer, pointing to the base of a composite object.
auto baseIdIndex = 3;
auto baseInstr = module_.FindDef(inst->words[baseIdIndex]);
auto baseTypeInstr = module_.FindDef(baseInstr->type_id());
if (!baseTypeInstr || SpvOpTypePointer != baseTypeInstr->opcode()) {
DIAG(baseInstr) << "The Base <id> '"
<< module_.getIdName(inst->words[baseIdIndex]) << "' in "
<< instr_name << " instruction must be a pointer.";
return false;
}
// The result pointer storage class and base pointer storage class must match.
// Word 2 of OpTypePointer is the Storage Class.
auto resultTypeStorageClass = resultTypeInstr->word(2);
auto baseTypeStorageClass = baseTypeInstr->word(2);
if (resultTypeStorageClass != baseTypeStorageClass) {
DIAG(resultTypeInstr) << "The result pointer storage class and base "
"pointer storage class in "
<< instr_name << " do not match.";
return false;
}
// The type pointed to by OpTypePointer (word 3) must be a composite type.
auto typePointedTo = module_.FindDef(baseTypeInstr->word(3));
// Check Universal Limit (SPIR-V Spec. Section 2.17).
// The number of indexes passed to OpAccessChain may not exceed 255
// The instruction includes 4 words + N words (for N indexes)
const size_t num_indexes = inst->words.size() - 4;
const size_t num_indexes_limit =
module_.options()->universal_limits_.max_access_chain_indexes;
if (num_indexes > num_indexes_limit) {
DIAG(resultTypeInstr) << "The number of indexes in " << instr_name
<< " may not exceed " << num_indexes_limit
<< ". Found " << num_indexes << " indexes.";
return false;
}
// Indexes walk the type hierarchy to the desired depth, potentially down to
// scalar granularity. The first index in Indexes will select the top-level
// member/element/component/element of the base composite. All composite
// constituents use zero-based numbering, as described by their OpType...
// instruction. The second index will apply similarly to that result, and so
// on. Once any non-composite type is reached, there must be no remaining
// (unused) indexes.
for (size_t i = 4; i < inst->words.size(); ++i) {
const uint32_t cur_word = inst->words[i];
// Earlier ID checks ensure that cur_word definition exists.
auto cur_word_instr = module_.FindDef(cur_word);
// The index must be a scalar integer type (See OpAccessChain in the Spec.)
auto indexTypeInstr = module_.FindDef(cur_word_instr->type_id());
if (!indexTypeInstr || SpvOpTypeInt != indexTypeInstr->opcode()) {
DIAG(module_.FindDef(cur_word))
<< "Indexes passed to " << instr_name << " must be of type integer.";
return false;
}
switch (typePointedTo->opcode()) {
case SpvOpTypeMatrix:
case SpvOpTypeVector:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray: {
// In OpTypeMatrix, OpTypeVector, OpTypeArray, and OpTypeRuntimeArray,
// word 2 is the Element Type.
typePointedTo = module_.FindDef(typePointedTo->word(2));
break;
}
case SpvOpTypeStruct: {
// In case of structures, there is an additional constraint on the
// index: the index must be an OpConstant.
if (SpvOpConstant != cur_word_instr->opcode()) {
DIAG(cur_word_instr) << "The <id> passed to " << instr_name
<< " to index into a "
"structure must be an OpConstant.";
return false;
}
// Get the index value from the OpConstant (word 3 of OpConstant).
// OpConstant could be a signed integer. But it's okay to treat it as
// unsigned because a negative constant int would never be seen as
// correct as a struct offset, since structs can't have more than 2
// billion members.
const uint32_t cur_index = cur_word_instr->word(3);
// The index points to the struct member we want, therefore, the index
// should be less than the number of struct members.
const uint32_t num_struct_members =
static_cast<uint32_t>(typePointedTo->words().size() - 2);
if (cur_index >= num_struct_members) {
DIAG(cur_word_instr) << "Index is out of bounds: " << instr_name
<< " can not find index " << cur_index
<< " into the structure <id> '"
<< module_.getIdName(typePointedTo->id())
<< "'. This structure has " << num_struct_members
<< " members. Largest valid index is "
<< num_struct_members - 1 << ".";
return false;
}
// Struct members IDs start at word 2 of OpTypeStruct.
auto structMemberId = typePointedTo->word(cur_index + 2);
typePointedTo = module_.FindDef(structMemberId);
break;
}
default: {
// Give an error. reached non-composite type while indexes still remain.
DIAG(cur_word_instr) << instr_name
<< " reached non-composite type while indexes "
"still remain to be traversed.";
return false;
}
}
}
// At this point, we have fully walked down from the base using the indeces.
// The type being pointed to should be the same as the result type.
if (typePointedTo->id() != resultTypePointedTo->id()) {
DIAG(resultTypeInstr)
<< instr_name << " result type (Op"
<< spvOpcodeString(static_cast<SpvOp>(resultTypePointedTo->opcode()))
<< ") does not match the type that results from indexing into the base "
"<id> (Op"
<< spvOpcodeString(static_cast<SpvOp>(typePointedTo->opcode())) << ").";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpInBoundsAccessChain>(
const spv_instruction_t* inst, const spv_opcode_desc opcodeEntry) {
return isValid<SpvOpAccessChain>(inst, opcodeEntry);
}
template <>
bool idUsage::isValid<SpvOpPtrAccessChain>(const spv_instruction_t* inst,
const spv_opcode_desc opcodeEntry) {
// OpPtrAccessChain's validation rules are similar to OpAccessChain, with one
// difference: word 4 must be id of an integer (Element <id>).
// The grammar guarantees that there are at least 5 words in the instruction
// (i.e. if there are fewer than 5 words, the SPIR-V code will not compile.)
int elem_index = 4;
// We can remove the Element <id> from the instruction words, and simply call
// the validation code of OpAccessChain.
spv_instruction_t new_inst = *inst;
new_inst.words.erase(new_inst.words.begin() + elem_index);
return isValid<SpvOpAccessChain>(&new_inst, opcodeEntry);
}
template <>
bool idUsage::isValid<SpvOpInBoundsPtrAccessChain>(
const spv_instruction_t* inst, const spv_opcode_desc opcodeEntry) {
// Has the same validation rules as OpPtrAccessChain
return isValid<SpvOpPtrAccessChain>(inst, opcodeEntry);
}
template <>
bool idUsage::isValid<SpvOpFunction>(const spv_instruction_t* inst,
const spv_opcode_desc) {
@ -1915,15 +1458,6 @@ bool idUsage::isValid(const spv_instruction_t* inst) {
CASE(OpSpecConstantFalse)
CASE(OpSpecConstantComposite)
CASE(OpSampledImage)
CASE(OpVariable)
CASE(OpLoad)
CASE(OpStore)
CASE(OpCopyMemory)
CASE(OpCopyMemorySized)
CASE(OpAccessChain)
CASE(OpInBoundsAccessChain)
CASE(OpPtrAccessChain)
CASE(OpInBoundsPtrAccessChain)
CASE(OpFunction)
CASE(OpFunctionParameter)
CASE(OpFunctionCall)
@ -1944,102 +1478,6 @@ bool idUsage::isValid(const spv_instruction_t* inst) {
#undef CASE
}
bool idUsage::AreLayoutCompatibleStructs(const Instruction* type1,
const Instruction* type2) {
if (type1->opcode() != SpvOpTypeStruct) {
return false;
}
if (type2->opcode() != SpvOpTypeStruct) {
return false;
}
if (!HaveLayoutCompatibleMembers(type1, type2)) return false;
return HaveSameLayoutDecorations(type1, type2);
}
bool idUsage::HaveLayoutCompatibleMembers(const Instruction* type1,
const Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be and OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be and OpTypeStruct instruction.");
const auto& type1_operands = type1->operands();
const auto& type2_operands = type2->operands();
if (type1_operands.size() != type2_operands.size()) {
return false;
}
for (size_t operand = 2; operand < type1_operands.size(); ++operand) {
if (type1->word(operand) != type2->word(operand)) {
auto def1 = module_.FindDef(type1->word(operand));
auto def2 = module_.FindDef(type2->word(operand));
if (!AreLayoutCompatibleStructs(def1, def2)) {
return false;
}
}
}
return true;
}
bool idUsage::HaveSameLayoutDecorations(const Instruction* type1,
const Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be and OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be and OpTypeStruct instruction.");
const std::vector<Decoration>& type1_decorations =
module_.id_decorations(type1->id());
const std::vector<Decoration>& type2_decorations =
module_.id_decorations(type2->id());
// TODO: Will have to add other check for arrays an matricies if we want to
// handle them.
if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) {
return false;
}
return true;
}
bool idUsage::HasConflictingMemberOffsets(
const std::vector<Decoration>& type1_decorations,
const std::vector<Decoration>& type2_decorations) const {
{
// We are interested in conflicting decoration. If a decoration is in one
// list but not the other, then we will assume the code is correct. We are
// looking for things we know to be wrong.
//
// We do not have to traverse type2_decoration because, after traversing
// type1_decorations, anything new will not be found in
// type1_decoration. Therefore, it cannot lead to a conflict.
for (const Decoration& decoration : type1_decorations) {
switch (decoration.dec_type()) {
case SpvDecorationOffset: {
// Since these affect the layout of the struct, they must be present
// in both structs.
auto compare = [&decoration](const Decoration& rhs) {
if (rhs.dec_type() != SpvDecorationOffset) return false;
return decoration.struct_member_index() ==
rhs.struct_member_index();
};
auto i = find_if(type2_decorations.begin(), type2_decorations.end(),
compare);
if (i != type2_decorations.end() &&
decoration.params().front() != i->params().front()) {
return true;
}
} break;
default:
// This decoration does not affect the layout of the structure, so
// just moving on.
break;
}
}
}
return false;
}
} // namespace
spv_result_t UpdateIdUse(ValidationState_t& _) {

View File

@ -0,0 +1,600 @@
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/val/validate.h"
#include <algorithm>
#include "source/opcode.h"
#include "source/val/instruction.h"
#include "source/val/validation_state.h"
namespace spvtools {
namespace val {
namespace {
bool AreLayoutCompatibleStructs(ValidationState_t&, const Instruction*,
const Instruction*);
bool HaveLayoutCompatibleMembers(ValidationState_t&, const Instruction*,
const Instruction*);
bool HaveSameLayoutDecorations(ValidationState_t&, const Instruction*,
const Instruction*);
bool HasConflictingMemberOffsets(const std::vector<Decoration>&,
const std::vector<Decoration>&);
// Returns true if the two instructions represent structs that, as far as the
// validator can tell, have the exact same data layout.
bool AreLayoutCompatibleStructs(ValidationState_t& _, const Instruction* type1,
const Instruction* type2) {
if (type1->opcode() != SpvOpTypeStruct) {
return false;
}
if (type2->opcode() != SpvOpTypeStruct) {
return false;
}
if (!HaveLayoutCompatibleMembers(_, type1, type2)) return false;
return HaveSameLayoutDecorations(_, type1, type2);
}
// Returns true if the operands to the OpTypeStruct instruction defining the
// types are the same or are layout compatible types. |type1| and |type2| must
// be OpTypeStruct instructions.
bool HaveLayoutCompatibleMembers(ValidationState_t& _, const Instruction* type1,
const Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be and OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be and OpTypeStruct instruction.");
const auto& type1_operands = type1->operands();
const auto& type2_operands = type2->operands();
if (type1_operands.size() != type2_operands.size()) {
return false;
}
for (size_t operand = 2; operand < type1_operands.size(); ++operand) {
if (type1->word(operand) != type2->word(operand)) {
auto def1 = _.FindDef(type1->word(operand));
auto def2 = _.FindDef(type2->word(operand));
if (!AreLayoutCompatibleStructs(_, def1, def2)) {
return false;
}
}
}
return true;
}
// Returns true if all decorations that affect the data layout of the struct
// (like Offset), are the same for the two types. |type1| and |type2| must be
// OpTypeStruct instructions.
bool HaveSameLayoutDecorations(ValidationState_t& _, const Instruction* type1,
const Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be and OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be and OpTypeStruct instruction.");
const std::vector<Decoration>& type1_decorations =
_.id_decorations(type1->id());
const std::vector<Decoration>& type2_decorations =
_.id_decorations(type2->id());
// TODO: Will have to add other check for arrays an matricies if we want to
// handle them.
if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) {
return false;
}
return true;
}
bool HasConflictingMemberOffsets(
const std::vector<Decoration>& type1_decorations,
const std::vector<Decoration>& type2_decorations) {
{
// We are interested in conflicting decoration. If a decoration is in one
// list but not the other, then we will assume the code is correct. We are
// looking for things we know to be wrong.
//
// We do not have to traverse type2_decoration because, after traversing
// type1_decorations, anything new will not be found in
// type1_decoration. Therefore, it cannot lead to a conflict.
for (const Decoration& decoration : type1_decorations) {
switch (decoration.dec_type()) {
case SpvDecorationOffset: {
// Since these affect the layout of the struct, they must be present
// in both structs.
auto compare = [&decoration](const Decoration& rhs) {
if (rhs.dec_type() != SpvDecorationOffset) return false;
return decoration.struct_member_index() ==
rhs.struct_member_index();
};
auto i = std::find_if(type2_decorations.begin(),
type2_decorations.end(), compare);
if (i != type2_decorations.end() &&
decoration.params().front() != i->params().front()) {
return true;
}
} break;
default:
// This decoration does not affect the layout of the structure, so
// just moving on.
break;
}
}
}
return false;
}
spv_result_t ValidateVariable(ValidationState_t& _, const Instruction& inst) {
auto result_type = _.FindDef(inst.type_id());
if (!result_type || result_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpVariable Result Type <id> '" << _.getIdName(inst.type_id())
<< "' is not a pointer type.";
}
const auto initializer_index = 3;
if (initializer_index < inst.operands().size()) {
const auto initializer_id = inst.GetOperandAs<uint32_t>(initializer_index);
const auto initializer = _.FindDef(initializer_id);
const auto storage_class_index = 2;
const auto is_module_scope_var =
initializer && (initializer->opcode() == SpvOpVariable) &&
(initializer->GetOperandAs<uint32_t>(storage_class_index) !=
SpvStorageClassFunction);
const auto is_constant =
initializer && spvOpcodeIsConstant(initializer->opcode());
if (!initializer || !(is_constant || is_module_scope_var)) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpVariable Initializer <id> '" << _.getIdName(initializer_id)
<< "' is not a constant or module-scope variable.";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateLoad(ValidationState_t& _, const Instruction& inst) {
const auto result_type = _.FindDef(inst.type_id());
if (!result_type) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpLoad Result Type <id> '" << _.getIdName(inst.type_id())
<< "' is not defined.";
}
const bool uses_variable_pointers =
_.features().variable_pointers ||
_.features().variable_pointers_storage_buffer;
const auto pointer_index = 2;
const auto pointer_id = inst.GetOperandAs<uint32_t>(pointer_index);
const auto pointer = _.FindDef(pointer_id);
if (!pointer ||
((_.addressing_model() == SpvAddressingModelLogical) &&
((!uses_variable_pointers &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointers &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpLoad Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a logical pointer.";
}
const auto pointer_type = _.FindDef(pointer->type_id());
if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpLoad type for pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a pointer type.";
}
const auto pointee_type = _.FindDef(pointer_type->GetOperandAs<uint32_t>(2));
if (!pointee_type || result_type->id() != pointee_type->id()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpLoad Result Type <id> '" << _.getIdName(inst.type_id())
<< "' does not match Pointer <id> '" << _.getIdName(pointer->id())
<< "'s type.";
}
return SPV_SUCCESS;
}
spv_result_t ValidateStore(ValidationState_t& _, const Instruction& inst) {
const bool uses_variable_pointer =
_.features().variable_pointers ||
_.features().variable_pointers_storage_buffer;
const auto pointer_index = 0;
const auto pointer_id = inst.GetOperandAs<uint32_t>(pointer_index);
const auto pointer = _.FindDef(pointer_id);
if (!pointer ||
(_.addressing_model() == SpvAddressingModelLogical &&
((!uses_variable_pointer &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointer &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a logical pointer.";
}
const auto pointer_type = _.FindDef(pointer->type_id());
if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore type for pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a pointer type.";
}
const auto type_id = pointer_type->GetOperandAs<uint32_t>(2);
const auto type = _.FindDef(type_id);
if (!type || SpvOpTypeVoid == type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "'s type is void.";
}
// validate storage class
{
uint32_t data_type;
uint32_t storage_class;
if (!_.GetPointerTypeInfo(pointer_type->id(), &data_type, &storage_class)) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not pointer type";
}
if (storage_class == SpvStorageClassUniformConstant ||
storage_class == SpvStorageClassInput ||
storage_class == SpvStorageClassPushConstant) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "' storage class is read-only";
}
}
const auto object_index = 1;
const auto object_id = inst.GetOperandAs<uint32_t>(object_index);
const auto object = _.FindDef(object_id);
if (!object || !object->type_id()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Object <id> '" << _.getIdName(object_id)
<< "' is not an object.";
}
const auto object_type = _.FindDef(object->type_id());
if (!object_type || SpvOpTypeVoid == object_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Object <id> '" << _.getIdName(object_id)
<< "'s type is void.";
}
if (type->id() != object_type->id()) {
if (!_.options()->relax_struct_store || type->opcode() != SpvOpTypeStruct ||
object_type->opcode() != SpvOpTypeStruct) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "'s type does not match Object <id> '"
<< _.getIdName(object->id()) << "'s type.";
}
// TODO: Check for layout compatible matricies and arrays as well.
if (!AreLayoutCompatibleStructs(_, type, object_type)) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "'s layout does not match Object <id> '"
<< _.getIdName(object->id()) << "'s layout.";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateCopyMemory(ValidationState_t& _, const Instruction& inst) {
const auto target_index = 0;
const auto target_id = inst.GetOperandAs<uint32_t>(target_index);
const auto target = _.FindDef(target_id);
if (!target) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "Target operand <id> '" << _.getIdName(target_id)
<< "' is not defined.";
}
const auto source_index = 1;
const auto source_id = inst.GetOperandAs<uint32_t>(source_index);
const auto source = _.FindDef(source_id);
if (!source) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "Source operand <id> '" << _.getIdName(source_id)
<< "' is not defined.";
}
const auto target_pointer_type = _.FindDef(target->type_id());
assert(target_pointer_type);
const auto target_type = _.FindDef(target_pointer_type->words()[3]);
assert(target_type);
const auto source_pointer_type = _.FindDef(source->type_id());
assert(source_pointer_type);
const auto source_type = _.FindDef(source_pointer_type->words()[3]);
assert(source_type);
if (target_type->id() != source_type->id()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpCopyMemory Target <id> '" << _.getIdName(source_id)
<< "'s type does not match Source <id> '"
<< _.getIdName(source_type->id()) << "'s type.";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCopyMemorySized(ValidationState_t& _,
const Instruction& inst) {
const auto target_index = 0;
const auto target_id = inst.GetOperandAs<uint32_t>(target_index);
const auto target = _.FindDef(target_id);
if (!target) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "Target operand <id> '" << _.getIdName(target_id)
<< "' is not defined.";
}
const auto source_index = 1;
const auto source_id = inst.GetOperandAs<uint32_t>(source_index);
const auto source = _.FindDef(source_id);
if (!source) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "Source operand <id> '" << _.getIdName(source_id)
<< "' is not defined.";
}
const auto size_index = 2;
const auto size_id = inst.GetOperandAs<uint32_t>(size_index);
const auto size = _.FindDef(size_id);
if (!size) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "Size operand <id> '" << _.getIdName(size_id)
<< "' is not defined.";
}
const auto target_pointer_type = _.FindDef(target->type_id());
if (!target_pointer_type ||
SpvOpTypePointer != target_pointer_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpCopyMemorySized Target <id> '" << _.getIdName(target_id)
<< "' is not a pointer.";
}
const auto source_pointer_type = _.FindDef(source->type_id());
if (!source_pointer_type ||
SpvOpTypePointer != source_pointer_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpCopyMemorySized Source <id> '" << _.getIdName(source_id)
<< "' is not a pointer.";
}
switch (size->opcode()) {
// TODO: The following opcode's are assumed to be valid, refer to the
// following bug https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13871 for
// clarification
case SpvOpConstant:
case SpvOpSpecConstant: {
auto size_type = _.FindDef(size->type_id());
assert(size_type);
if (SpvOpTypeInt != size_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpCopyMemorySized Size <id> '" << _.getIdName(size_id)
<< "'s type is not an integer type.";
}
} break;
case SpvOpVariable: {
auto pointer_type = _.FindDef(size->type_id());
assert(pointer_type);
auto size_type = _.FindDef(pointer_type->type_id());
if (!size_type || SpvOpTypeInt != size_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpCopyMemorySized Size <id> '" << _.getIdName(size_id)
<< "'s variable type is not an integer type.";
}
} break;
default:
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "OpCopyMemorySized Size <id> '" << _.getIdName(size_id)
<< "' is not a constant or variable.";
}
// TODO: Check that consant is a least size 1, see the same bug as above for
// clarification?
return SPV_SUCCESS;
}
spv_result_t ValidateAccessChain(ValidationState_t& _,
const Instruction& inst) {
std::string instr_name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst.opcode())));
// The result type must be OpTypePointer.
auto result_type = _.FindDef(inst.type_id());
if (SpvOpTypePointer != result_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "The Result Type of " << instr_name << " <id> '"
<< _.getIdName(inst.id()) << "' must be OpTypePointer. Found Op"
<< spvOpcodeString(static_cast<SpvOp>(result_type->opcode())) << ".";
}
// Result type is a pointer. Find out what it's pointing to.
// This will be used to make sure the indexing results in the same type.
// OpTypePointer word 3 is the type being pointed to.
const auto result_type_pointee = _.FindDef(result_type->word(3));
// Base must be a pointer, pointing to the base of a composite object.
const auto base_index = 2;
const auto base_id = inst.GetOperandAs<uint32_t>(base_index);
const auto base = _.FindDef(base_id);
const auto base_type = _.FindDef(base->type_id());
if (!base_type || SpvOpTypePointer != base_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "The Base <id> '" << _.getIdName(base_id) << "' in " << instr_name
<< " instruction must be a pointer.";
}
// The result pointer storage class and base pointer storage class must match.
// Word 2 of OpTypePointer is the Storage Class.
auto result_type_storage_class = result_type->word(2);
auto base_type_storage_class = base_type->word(2);
if (result_type_storage_class != base_type_storage_class) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "The result pointer storage class and base "
"pointer storage class in "
<< instr_name << " do not match.";
}
// The type pointed to by OpTypePointer (word 3) must be a composite type.
auto type_pointee = _.FindDef(base_type->word(3));
// Check Universal Limit (SPIR-V Spec. Section 2.17).
// The number of indexes passed to OpAccessChain may not exceed 255
// The instruction includes 4 words + N words (for N indexes)
size_t num_indexes = inst.words().size() - 4;
if (inst.opcode() == SpvOpPtrAccessChain ||
inst.opcode() == SpvOpInBoundsPtrAccessChain) {
// In pointer access chains, the element operand is required, but not
// counted as an index.
--num_indexes;
}
const size_t num_indexes_limit =
_.options()->universal_limits_.max_access_chain_indexes;
if (num_indexes > num_indexes_limit) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "The number of indexes in " << instr_name << " may not exceed "
<< num_indexes_limit << ". Found " << num_indexes << " indexes.";
}
// Indexes walk the type hierarchy to the desired depth, potentially down to
// scalar granularity. The first index in Indexes will select the top-level
// member/element/component/element of the base composite. All composite
// constituents use zero-based numbering, as described by their OpType...
// instruction. The second index will apply similarly to that result, and so
// on. Once any non-composite type is reached, there must be no remaining
// (unused) indexes.
auto starting_index = 4;
if (inst.opcode() == SpvOpPtrAccessChain ||
inst.opcode() == SpvOpInBoundsPtrAccessChain) {
++starting_index;
}
for (size_t i = starting_index; i < inst.words().size(); ++i) {
const uint32_t cur_word = inst.words()[i];
// Earlier ID checks ensure that cur_word definition exists.
auto cur_word_instr = _.FindDef(cur_word);
// The index must be a scalar integer type (See OpAccessChain in the Spec.)
auto index_type = _.FindDef(cur_word_instr->type_id());
if (!index_type || SpvOpTypeInt != index_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< "Indexes passed to " << instr_name
<< " must be of type integer.";
}
switch (type_pointee->opcode()) {
case SpvOpTypeMatrix:
case SpvOpTypeVector:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray: {
// In OpTypeMatrix, OpTypeVector, OpTypeArray, and OpTypeRuntimeArray,
// word 2 is the Element Type.
type_pointee = _.FindDef(type_pointee->word(2));
break;
}
case SpvOpTypeStruct: {
// In case of structures, there is an additional constraint on the
// index: the index must be an OpConstant.
if (SpvOpConstant != cur_word_instr->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
<< "The <id> passed to " << instr_name
<< " to index into a "
"structure must be an OpConstant.";
}
// Get the index value from the OpConstant (word 3 of OpConstant).
// OpConstant could be a signed integer. But it's okay to treat it as
// unsigned because a negative constant int would never be seen as
// correct as a struct offset, since structs can't have more than 2
// billion members.
const uint32_t cur_index = cur_word_instr->word(3);
// The index points to the struct member we want, therefore, the index
// should be less than the number of struct members.
const uint32_t num_struct_members =
static_cast<uint32_t>(type_pointee->words().size() - 2);
if (cur_index >= num_struct_members) {
return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
<< "Index is out of bounds: " << instr_name
<< " can not find index " << cur_index
<< " into the structure <id> '"
<< _.getIdName(type_pointee->id()) << "'. This structure has "
<< num_struct_members << " members. Largest valid index is "
<< num_struct_members - 1 << ".";
}
// Struct members IDs start at word 2 of OpTypeStruct.
auto structMemberId = type_pointee->word(cur_index + 2);
type_pointee = _.FindDef(structMemberId);
break;
}
default: {
// Give an error. reached non-composite type while indexes still remain.
return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
<< instr_name
<< " reached non-composite type while indexes "
"still remain to be traversed.";
}
}
}
// At this point, we have fully walked down from the base using the indeces.
// The type being pointed to should be the same as the result type.
if (type_pointee->id() != result_type_pointee->id()) {
return _.diag(SPV_ERROR_INVALID_ID, &inst)
<< instr_name << " result type (Op"
<< spvOpcodeString(static_cast<SpvOp>(result_type_pointee->opcode()))
<< ") does not match the type that results from indexing into the "
"base "
"<id> (Op"
<< spvOpcodeString(static_cast<SpvOp>(type_pointee->opcode()))
<< ").";
}
return SPV_SUCCESS;
}
} // namespace
spv_result_t ValidateMemoryInstructions(ValidationState_t& _) {
for (auto& inst : _.ordered_instructions()) {
switch (inst.opcode()) {
case SpvOpVariable:
if (auto error = ValidateVariable(_, inst)) return error;
break;
case SpvOpLoad:
if (auto error = ValidateLoad(_, inst)) return error;
break;
case SpvOpStore:
if (auto error = ValidateStore(_, inst)) return error;
break;
case SpvOpCopyMemory:
if (auto error = ValidateCopyMemory(_, inst)) return error;
break;
case SpvOpCopyMemorySized:
if (auto error = ValidateCopyMemorySized(_, inst)) return error;
break;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsPtrAccessChain:
if (auto error = ValidateAccessChain(_, inst)) return error;
break;
case SpvOpImageTexelPointer:
case SpvOpArrayLength:
case SpvOpGenericPtrMemSemantics:
default:
break;
}
}
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools