third_party_spirv-tools/source/opt/amd_ext_to_khr.cpp
Marius Hillenbrand 1ed847f438
Fix endianness of string literals (#4622)
* Fix endianness of string literals

To get correct and consistent encoding and decoding of string literals
on big-endian platforms, use spvtools::utils::MakeString and MakeVector
(or wrapper functions) consistently for handling string literals.

- add variant of MakeVector that encodes a string literal into an
  existing vector of words
- add variants of MakeString
- add a wrapper spvDecodeLiteralStringOperand in source/
- fix wrapper Operand::AsString to use MakeString (source/opt)
- remove Operand::AsCString as broken and unused
- add a variant of GetOperandAs for string literals (source/val)
... and apply those wrappers throughout the code.

Fixes  #149

* Extend round trip test for StringLiterals to flip word order

In the encoding/decoding roundtrip tests for string literals, include
a case that flips byte order in words after encoding and then checks for
successful decoding. That is, on a little-endian host flip to big-endian
byte order and then decode, and vice versa.

* BinaryParseTest.InstructionWithStringOperand: also flip byte order

Test binary parsing of string operands both with the host's and with the
reversed byte order.
2021-12-08 12:01:26 -05:00

971 lines
40 KiB
C++

// Copyright (c) 2019 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/amd_ext_to_khr.h"
#include <set>
#include <string>
#include "ir_builder.h"
#include "source/opt/ir_context.h"
#include "spv-amd-shader-ballot.insts.inc"
#include "type_manager.h"
namespace spvtools {
namespace opt {
namespace {
enum AmdShaderBallotExtOpcodes {
AmdShaderBallotSwizzleInvocationsAMD = 1,
AmdShaderBallotSwizzleInvocationsMaskedAMD = 2,
AmdShaderBallotWriteInvocationAMD = 3,
AmdShaderBallotMbcntAMD = 4
};
enum AmdShaderTrinaryMinMaxExtOpCodes {
FMin3AMD = 1,
UMin3AMD = 2,
SMin3AMD = 3,
FMax3AMD = 4,
UMax3AMD = 5,
SMax3AMD = 6,
FMid3AMD = 7,
UMid3AMD = 8,
SMid3AMD = 9
};
enum AmdGcnShader { CubeFaceCoordAMD = 2, CubeFaceIndexAMD = 1, TimeAMD = 3 };
analysis::Type* GetUIntType(IRContext* ctx) {
analysis::Integer int_type(32, false);
return ctx->get_type_mgr()->GetRegisteredType(&int_type);
}
// Returns a folding rule that replaces |op(a,b,c)| by |op(op(a,b),c)|, where
// |op| is either min or max. |opcode| is the binary opcode in the GLSLstd450
// extended instruction set that corresponds to the trinary instruction being
// replaced.
template <GLSLstd450 opcode>
bool ReplaceTrinaryMinMax(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
uint32_t glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
if (glsl405_ext_inst_id == 0) {
ctx->AddExtInstImport("GLSL.std.450");
glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
}
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t op1 = inst->GetSingleWordInOperand(2);
uint32_t op2 = inst->GetSingleWordInOperand(3);
uint32_t op3 = inst->GetSingleWordInOperand(4);
Instruction* temp = ir_builder.AddNaryExtendedInstruction(
inst->type_id(), glsl405_ext_inst_id, opcode, {op1, op2});
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {glsl405_ext_inst_id}});
new_operands.push_back({SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
{static_cast<uint32_t>(opcode)}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {temp->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {op3}});
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// Returns a folding rule that replaces |mid(a,b,c)| by |clamp(a, min(b,c),
// max(b,c)|. The three parameters are the opcode that correspond to the min,
// max, and clamp operations for the type of the instruction being replaced.
template <GLSLstd450 min_opcode, GLSLstd450 max_opcode, GLSLstd450 clamp_opcode>
bool ReplaceTrinaryMid(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
uint32_t glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
if (glsl405_ext_inst_id == 0) {
ctx->AddExtInstImport("GLSL.std.450");
glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
}
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t op1 = inst->GetSingleWordInOperand(2);
uint32_t op2 = inst->GetSingleWordInOperand(3);
uint32_t op3 = inst->GetSingleWordInOperand(4);
Instruction* min = ir_builder.AddNaryExtendedInstruction(
inst->type_id(), glsl405_ext_inst_id, static_cast<uint32_t>(min_opcode),
{op2, op3});
Instruction* max = ir_builder.AddNaryExtendedInstruction(
inst->type_id(), glsl405_ext_inst_id, static_cast<uint32_t>(max_opcode),
{op2, op3});
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {glsl405_ext_inst_id}});
new_operands.push_back({SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
{static_cast<uint32_t>(clamp_opcode)}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {op1}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {min->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {max->result_id()}});
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// Returns a folding rule that will replace the opcode with |opcode| and add
// the capabilities required. The folding rule assumes it is folding an
// OpGroup*NonUniformAMD instruction from the SPV_AMD_shader_ballot extension.
template <SpvOp new_opcode>
bool ReplaceGroupNonuniformOperationOpCode(
IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
switch (new_opcode) {
case SpvOpGroupNonUniformIAdd:
case SpvOpGroupNonUniformFAdd:
case SpvOpGroupNonUniformUMin:
case SpvOpGroupNonUniformSMin:
case SpvOpGroupNonUniformFMin:
case SpvOpGroupNonUniformUMax:
case SpvOpGroupNonUniformSMax:
case SpvOpGroupNonUniformFMax:
break;
default:
assert(
false &&
"Should be replacing with a group non uniform arithmetic operation.");
}
switch (inst->opcode()) {
case SpvOpGroupIAddNonUniformAMD:
case SpvOpGroupFAddNonUniformAMD:
case SpvOpGroupUMinNonUniformAMD:
case SpvOpGroupSMinNonUniformAMD:
case SpvOpGroupFMinNonUniformAMD:
case SpvOpGroupUMaxNonUniformAMD:
case SpvOpGroupSMaxNonUniformAMD:
case SpvOpGroupFMaxNonUniformAMD:
break;
default:
assert(false &&
"Should be replacing a group non uniform arithmetic operation.");
}
ctx->AddCapability(SpvCapabilityGroupNonUniformArithmetic);
inst->SetOpcode(new_opcode);
return true;
}
// Returns a folding rule that will replace the SwizzleInvocationsAMD extended
// instruction in the SPV_AMD_shader_ballot extension.
//
// The instruction
//
// %offset = OpConstantComposite %v3uint %x %y %z %w
// %result = OpExtInst %type %1 SwizzleInvocationsAMD %data %offset
//
// is replaced with
//
// potentially new constants and types
//
// clang-format off
// %uint_max = OpConstant %uint 0xFFFFFFFF
// %v4uint = OpTypeVector %uint 4
// %ballot_value = OpConstantComposite %v4uint %uint_max %uint_max %uint_max %uint_max
// %null = OpConstantNull %type
// clang-format on
//
// and the following code in the function body
//
// clang-format off
// %id = OpLoad %uint %SubgroupLocalInvocationId
// %quad_idx = OpBitwiseAnd %uint %id %uint_3
// %quad_ldr = OpBitwiseXor %uint %id %quad_idx
// %my_offset = OpVectorExtractDynamic %uint %offset %quad_idx
// %target_inv = OpIAdd %uint %quad_ldr %my_offset
// %is_active = OpGroupNonUniformBallotBitExtract %bool %uint_3 %ballot_value %target_inv
// %shuffle = OpGroupNonUniformShuffle %type %uint_3 %data %target_inv
// %result = OpSelect %type %is_active %shuffle %null
// clang-format on
//
// Also adding the capabilities and builtins that are needed.
bool ReplaceSwizzleInvocations(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
analysis::TypeManager* type_mgr = ctx->get_type_mgr();
analysis::ConstantManager* const_mgr = ctx->get_constant_mgr();
ctx->AddExtension("SPV_KHR_shader_ballot");
ctx->AddCapability(SpvCapabilityGroupNonUniformBallot);
ctx->AddCapability(SpvCapabilityGroupNonUniformShuffle);
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t data_id = inst->GetSingleWordInOperand(2);
uint32_t offset_id = inst->GetSingleWordInOperand(3);
// Get the subgroup invocation id.
uint32_t var_id =
ctx->GetBuiltinInputVarId(SpvBuiltInSubgroupLocalInvocationId);
assert(var_id != 0 && "Could not get SubgroupLocalInvocationId variable.");
Instruction* var_inst = ctx->get_def_use_mgr()->GetDef(var_id);
Instruction* var_ptr_type =
ctx->get_def_use_mgr()->GetDef(var_inst->type_id());
uint32_t uint_type_id = var_ptr_type->GetSingleWordInOperand(1);
Instruction* id = ir_builder.AddLoad(uint_type_id, var_id);
uint32_t quad_mask = ir_builder.GetUintConstantId(3);
// This gives the offset in the group of 4 of this invocation.
Instruction* quad_idx = ir_builder.AddBinaryOp(uint_type_id, SpvOpBitwiseAnd,
id->result_id(), quad_mask);
// Get the invocation id of the first invocation in the group of 4.
Instruction* quad_ldr = ir_builder.AddBinaryOp(
uint_type_id, SpvOpBitwiseXor, id->result_id(), quad_idx->result_id());
// Get the offset of the target invocation from the offset vector.
Instruction* my_offset =
ir_builder.AddBinaryOp(uint_type_id, SpvOpVectorExtractDynamic, offset_id,
quad_idx->result_id());
// Determine the index of the invocation to read from.
Instruction* target_inv = ir_builder.AddBinaryOp(
uint_type_id, SpvOpIAdd, quad_ldr->result_id(), my_offset->result_id());
// Do the group operations
uint32_t uint_max_id = ir_builder.GetUintConstantId(0xFFFFFFFF);
uint32_t subgroup_scope = ir_builder.GetUintConstantId(SpvScopeSubgroup);
const auto* ballot_value_const = const_mgr->GetConstant(
type_mgr->GetUIntVectorType(4),
{uint_max_id, uint_max_id, uint_max_id, uint_max_id});
Instruction* ballot_value =
const_mgr->GetDefiningInstruction(ballot_value_const);
Instruction* is_active = ir_builder.AddNaryOp(
type_mgr->GetBoolTypeId(), SpvOpGroupNonUniformBallotBitExtract,
{subgroup_scope, ballot_value->result_id(), target_inv->result_id()});
Instruction* shuffle =
ir_builder.AddNaryOp(inst->type_id(), SpvOpGroupNonUniformShuffle,
{subgroup_scope, data_id, target_inv->result_id()});
// Create the null constant to use in the select.
const auto* null = const_mgr->GetConstant(type_mgr->GetType(inst->type_id()),
std::vector<uint32_t>());
Instruction* null_inst = const_mgr->GetDefiningInstruction(null);
// Build the select.
inst->SetOpcode(SpvOpSelect);
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {is_active->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {shuffle->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {null_inst->result_id()}});
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// Returns a folding rule that will replace the SwizzleInvocationsMaskedAMD
// extended instruction in the SPV_AMD_shader_ballot extension.
//
// The instruction
//
// %mask = OpConstantComposite %v3uint %uint_x %uint_y %uint_z
// %result = OpExtInst %uint %1 SwizzleInvocationsMaskedAMD %data %mask
//
// is replaced with
//
// potentially new constants and types
//
// clang-format off
// %uint_mask_extend = OpConstant %uint 0xFFFFFFE0
// %uint_max = OpConstant %uint 0xFFFFFFFF
// %v4uint = OpTypeVector %uint 4
// %ballot_value = OpConstantComposite %v4uint %uint_max %uint_max %uint_max %uint_max
// clang-format on
//
// and the following code in the function body
//
// clang-format off
// %id = OpLoad %uint %SubgroupLocalInvocationId
// %and_mask = OpBitwiseOr %uint %uint_x %uint_mask_extend
// %and = OpBitwiseAnd %uint %id %and_mask
// %or = OpBitwiseOr %uint %and %uint_y
// %target_inv = OpBitwiseXor %uint %or %uint_z
// %is_active = OpGroupNonUniformBallotBitExtract %bool %uint_3 %ballot_value %target_inv
// %shuffle = OpGroupNonUniformShuffle %type %uint_3 %data %target_inv
// %result = OpSelect %type %is_active %shuffle %uint_0
// clang-format on
//
// Also adding the capabilities and builtins that are needed.
bool ReplaceSwizzleInvocationsMasked(
IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
analysis::TypeManager* type_mgr = ctx->get_type_mgr();
analysis::DefUseManager* def_use_mgr = ctx->get_def_use_mgr();
analysis::ConstantManager* const_mgr = ctx->get_constant_mgr();
ctx->AddCapability(SpvCapabilityGroupNonUniformBallot);
ctx->AddCapability(SpvCapabilityGroupNonUniformShuffle);
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
// Get the operands to inst, and the components of the mask
uint32_t data_id = inst->GetSingleWordInOperand(2);
Instruction* mask_inst = def_use_mgr->GetDef(inst->GetSingleWordInOperand(3));
assert(mask_inst->opcode() == SpvOpConstantComposite &&
"The mask is suppose to be a vector constant.");
assert(mask_inst->NumInOperands() == 3 &&
"The mask is suppose to have 3 components.");
uint32_t uint_x = mask_inst->GetSingleWordInOperand(0);
uint32_t uint_y = mask_inst->GetSingleWordInOperand(1);
uint32_t uint_z = mask_inst->GetSingleWordInOperand(2);
// Get the subgroup invocation id.
uint32_t var_id =
ctx->GetBuiltinInputVarId(SpvBuiltInSubgroupLocalInvocationId);
ctx->AddExtension("SPV_KHR_shader_ballot");
assert(var_id != 0 && "Could not get SubgroupLocalInvocationId variable.");
Instruction* var_inst = ctx->get_def_use_mgr()->GetDef(var_id);
Instruction* var_ptr_type =
ctx->get_def_use_mgr()->GetDef(var_inst->type_id());
uint32_t uint_type_id = var_ptr_type->GetSingleWordInOperand(1);
Instruction* id = ir_builder.AddLoad(uint_type_id, var_id);
// Do the bitwise operations.
uint32_t mask_extended = ir_builder.GetUintConstantId(0xFFFFFFE0);
Instruction* and_mask = ir_builder.AddBinaryOp(uint_type_id, SpvOpBitwiseOr,
uint_x, mask_extended);
Instruction* and_result = ir_builder.AddBinaryOp(
uint_type_id, SpvOpBitwiseAnd, id->result_id(), and_mask->result_id());
Instruction* or_result = ir_builder.AddBinaryOp(
uint_type_id, SpvOpBitwiseOr, and_result->result_id(), uint_y);
Instruction* target_inv = ir_builder.AddBinaryOp(
uint_type_id, SpvOpBitwiseXor, or_result->result_id(), uint_z);
// Do the group operations
uint32_t uint_max_id = ir_builder.GetUintConstantId(0xFFFFFFFF);
uint32_t subgroup_scope = ir_builder.GetUintConstantId(SpvScopeSubgroup);
const auto* ballot_value_const = const_mgr->GetConstant(
type_mgr->GetUIntVectorType(4),
{uint_max_id, uint_max_id, uint_max_id, uint_max_id});
Instruction* ballot_value =
const_mgr->GetDefiningInstruction(ballot_value_const);
Instruction* is_active = ir_builder.AddNaryOp(
type_mgr->GetBoolTypeId(), SpvOpGroupNonUniformBallotBitExtract,
{subgroup_scope, ballot_value->result_id(), target_inv->result_id()});
Instruction* shuffle =
ir_builder.AddNaryOp(inst->type_id(), SpvOpGroupNonUniformShuffle,
{subgroup_scope, data_id, target_inv->result_id()});
// Create the null constant to use in the select.
const auto* null = const_mgr->GetConstant(type_mgr->GetType(inst->type_id()),
std::vector<uint32_t>());
Instruction* null_inst = const_mgr->GetDefiningInstruction(null);
// Build the select.
inst->SetOpcode(SpvOpSelect);
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {is_active->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {shuffle->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {null_inst->result_id()}});
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// Returns a folding rule that will replace the WriteInvocationAMD extended
// instruction in the SPV_AMD_shader_ballot extension.
//
// The instruction
//
// clang-format off
// %result = OpExtInst %type %1 WriteInvocationAMD %input_value %write_value %invocation_index
// clang-format on
//
// with
//
// %id = OpLoad %uint %SubgroupLocalInvocationId
// %cmp = OpIEqual %bool %id %invocation_index
// %result = OpSelect %type %cmp %write_value %input_value
//
// Also adding the capabilities and builtins that are needed.
bool ReplaceWriteInvocation(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
uint32_t var_id =
ctx->GetBuiltinInputVarId(SpvBuiltInSubgroupLocalInvocationId);
ctx->AddCapability(SpvCapabilitySubgroupBallotKHR);
ctx->AddExtension("SPV_KHR_shader_ballot");
assert(var_id != 0 && "Could not get SubgroupLocalInvocationId variable.");
Instruction* var_inst = ctx->get_def_use_mgr()->GetDef(var_id);
Instruction* var_ptr_type =
ctx->get_def_use_mgr()->GetDef(var_inst->type_id());
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
Instruction* t =
ir_builder.AddLoad(var_ptr_type->GetSingleWordInOperand(1), var_id);
analysis::Bool bool_type;
uint32_t bool_type_id = ctx->get_type_mgr()->GetTypeInstruction(&bool_type);
Instruction* cmp =
ir_builder.AddBinaryOp(bool_type_id, SpvOpIEqual, t->result_id(),
inst->GetSingleWordInOperand(4));
// Build a select.
inst->SetOpcode(SpvOpSelect);
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {cmp->result_id()}});
new_operands.push_back(inst->GetInOperand(3));
new_operands.push_back(inst->GetInOperand(2));
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// Returns a folding rule that will replace the MbcntAMD extended instruction in
// the SPV_AMD_shader_ballot extension.
//
// The instruction
//
// %result = OpExtInst %uint %1 MbcntAMD %mask
//
// with
//
// Get SubgroupLtMask and convert the first 64-bits into a uint64_t because
// AMD's shader compiler expects a 64-bit integer mask.
//
// %var = OpLoad %v4uint %SubgroupLtMaskKHR
// %shuffle = OpVectorShuffle %v2uint %var %var 0 1
// %cast = OpBitcast %ulong %shuffle
//
// Perform the mask and count the bits.
//
// %and = OpBitwiseAnd %ulong %cast %mask
// %result = OpBitCount %uint %and
//
// Also adding the capabilities and builtins that are needed.
bool ReplaceMbcnt(IRContext* context, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
analysis::TypeManager* type_mgr = context->get_type_mgr();
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
uint32_t var_id = context->GetBuiltinInputVarId(SpvBuiltInSubgroupLtMask);
assert(var_id != 0 && "Could not get SubgroupLtMask variable.");
context->AddCapability(SpvCapabilityGroupNonUniformBallot);
Instruction* var_inst = def_use_mgr->GetDef(var_id);
Instruction* var_ptr_type = def_use_mgr->GetDef(var_inst->type_id());
Instruction* var_type =
def_use_mgr->GetDef(var_ptr_type->GetSingleWordInOperand(1));
assert(var_type->opcode() == SpvOpTypeVector &&
"Variable is suppose to be a vector of 4 ints");
// Get the type for the shuffle.
analysis::Vector temp_type(GetUIntType(context), 2);
const analysis::Type* shuffle_type =
context->get_type_mgr()->GetRegisteredType(&temp_type);
uint32_t shuffle_type_id = type_mgr->GetTypeInstruction(shuffle_type);
uint32_t mask_id = inst->GetSingleWordInOperand(2);
Instruction* mask_inst = def_use_mgr->GetDef(mask_id);
// Testing with amd's shader compiler shows that a 64-bit mask is expected.
assert(type_mgr->GetType(mask_inst->type_id())->AsInteger() != nullptr);
assert(type_mgr->GetType(mask_inst->type_id())->AsInteger()->width() == 64);
InstructionBuilder ir_builder(
context, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
Instruction* load = ir_builder.AddLoad(var_type->result_id(), var_id);
Instruction* shuffle = ir_builder.AddVectorShuffle(
shuffle_type_id, load->result_id(), load->result_id(), {0, 1});
Instruction* bitcast = ir_builder.AddUnaryOp(
mask_inst->type_id(), SpvOpBitcast, shuffle->result_id());
Instruction* t = ir_builder.AddBinaryOp(mask_inst->type_id(), SpvOpBitwiseAnd,
bitcast->result_id(), mask_id);
inst->SetOpcode(SpvOpBitCount);
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {t->result_id()}}});
context->UpdateDefUse(inst);
return true;
}
// A folding rule that will replace the CubeFaceCoordAMD extended
// instruction in the SPV_AMD_gcn_shader_ballot. Returns true if the folding is
// successful.
//
// The instruction
//
// %result = OpExtInst %v2float %1 CubeFaceCoordAMD %input
//
// with
//
// %x = OpCompositeExtract %float %input 0
// %y = OpCompositeExtract %float %input 1
// %z = OpCompositeExtract %float %input 2
// %nx = OpFNegate %float %x
// %ny = OpFNegate %float %y
// %nz = OpFNegate %float %z
// %ax = OpExtInst %float %n_1 FAbs %x
// %ay = OpExtInst %float %n_1 FAbs %y
// %az = OpExtInst %float %n_1 FAbs %z
// %amax_x_y = OpExtInst %float %n_1 FMax %ay %ax
// %amax = OpExtInst %float %n_1 FMax %az %amax_x_y
// %cubema = OpFMul %float %float_2 %amax
// %is_z_max = OpFOrdGreaterThanEqual %bool %az %amax_x_y
// %not_is_z_max = OpLogicalNot %bool %is_z_max
// %y_gt_x = OpFOrdGreaterThanEqual %bool %ay %ax
// %is_y_max = OpLogicalAnd %bool %not_is_z_max %y_gt_x
// %is_z_neg = OpFOrdLessThan %bool %z %float_0
// %cubesc_case_1 = OpSelect %float %is_z_neg %nx %x
// %is_x_neg = OpFOrdLessThan %bool %x %float_0
// %cubesc_case_2 = OpSelect %float %is_x_neg %z %nz
// %sel = OpSelect %float %is_y_max %x %cubesc_case_2
// %cubesc = OpSelect %float %is_z_max %cubesc_case_1 %sel
// %is_y_neg = OpFOrdLessThan %bool %y %float_0
// %cubetc_case_1 = OpSelect %float %is_y_neg %nz %z
// %cubetc = OpSelect %float %is_y_max %cubetc_case_1 %ny
// %cube = OpCompositeConstruct %v2float %cubesc %cubetc
// %denom = OpCompositeConstruct %v2float %cubema %cubema
// %div = OpFDiv %v2float %cube %denom
// %result = OpFAdd %v2float %div %const
//
// Also adding the capabilities and builtins that are needed.
bool ReplaceCubeFaceCoord(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
analysis::TypeManager* type_mgr = ctx->get_type_mgr();
analysis::ConstantManager* const_mgr = ctx->get_constant_mgr();
uint32_t float_type_id = type_mgr->GetFloatTypeId();
const analysis::Type* v2_float_type = type_mgr->GetFloatVectorType(2);
uint32_t v2_float_type_id = type_mgr->GetId(v2_float_type);
uint32_t bool_id = type_mgr->GetBoolTypeId();
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t input_id = inst->GetSingleWordInOperand(2);
uint32_t glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
if (glsl405_ext_inst_id == 0) {
ctx->AddExtInstImport("GLSL.std.450");
glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
}
// Get the constants that will be used.
uint32_t f0_const_id = const_mgr->GetFloatConstId(0.0);
uint32_t f2_const_id = const_mgr->GetFloatConstId(2.0);
uint32_t f0_5_const_id = const_mgr->GetFloatConstId(0.5);
const analysis::Constant* vec_const =
const_mgr->GetConstant(v2_float_type, {f0_5_const_id, f0_5_const_id});
uint32_t vec_const_id =
const_mgr->GetDefiningInstruction(vec_const)->result_id();
// Extract the input values.
Instruction* x = ir_builder.AddCompositeExtract(float_type_id, input_id, {0});
Instruction* y = ir_builder.AddCompositeExtract(float_type_id, input_id, {1});
Instruction* z = ir_builder.AddCompositeExtract(float_type_id, input_id, {2});
// Negate the input values.
Instruction* nx =
ir_builder.AddUnaryOp(float_type_id, SpvOpFNegate, x->result_id());
Instruction* ny =
ir_builder.AddUnaryOp(float_type_id, SpvOpFNegate, y->result_id());
Instruction* nz =
ir_builder.AddUnaryOp(float_type_id, SpvOpFNegate, z->result_id());
// Get the abolsute values of the inputs.
Instruction* ax = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FAbs, {x->result_id()});
Instruction* ay = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FAbs, {y->result_id()});
Instruction* az = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FAbs, {z->result_id()});
// Find which values are negative. Used in later computations.
Instruction* is_z_neg = ir_builder.AddBinaryOp(bool_id, SpvOpFOrdLessThan,
z->result_id(), f0_const_id);
Instruction* is_y_neg = ir_builder.AddBinaryOp(bool_id, SpvOpFOrdLessThan,
y->result_id(), f0_const_id);
Instruction* is_x_neg = ir_builder.AddBinaryOp(bool_id, SpvOpFOrdLessThan,
x->result_id(), f0_const_id);
// Compute cubema
Instruction* amax_x_y = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FMax,
{ax->result_id(), ay->result_id()});
Instruction* amax = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FMax,
{az->result_id(), amax_x_y->result_id()});
Instruction* cubema = ir_builder.AddBinaryOp(float_type_id, SpvOpFMul,
f2_const_id, amax->result_id());
// Do the comparisons needed for computing cubesc and cubetc.
Instruction* is_z_max =
ir_builder.AddBinaryOp(bool_id, SpvOpFOrdGreaterThanEqual,
az->result_id(), amax_x_y->result_id());
Instruction* not_is_z_max =
ir_builder.AddUnaryOp(bool_id, SpvOpLogicalNot, is_z_max->result_id());
Instruction* y_gr_x = ir_builder.AddBinaryOp(
bool_id, SpvOpFOrdGreaterThanEqual, ay->result_id(), ax->result_id());
Instruction* is_y_max = ir_builder.AddBinaryOp(
bool_id, SpvOpLogicalAnd, not_is_z_max->result_id(), y_gr_x->result_id());
// Select the correct value for cubesc.
Instruction* cubesc_case_1 = ir_builder.AddSelect(
float_type_id, is_z_neg->result_id(), nx->result_id(), x->result_id());
Instruction* cubesc_case_2 = ir_builder.AddSelect(
float_type_id, is_x_neg->result_id(), z->result_id(), nz->result_id());
Instruction* sel =
ir_builder.AddSelect(float_type_id, is_y_max->result_id(), x->result_id(),
cubesc_case_2->result_id());
Instruction* cubesc =
ir_builder.AddSelect(float_type_id, is_z_max->result_id(),
cubesc_case_1->result_id(), sel->result_id());
// Select the correct value for cubetc.
Instruction* cubetc_case_1 = ir_builder.AddSelect(
float_type_id, is_y_neg->result_id(), nz->result_id(), z->result_id());
Instruction* cubetc =
ir_builder.AddSelect(float_type_id, is_y_max->result_id(),
cubetc_case_1->result_id(), ny->result_id());
// Do the division
Instruction* cube = ir_builder.AddCompositeConstruct(
v2_float_type_id, {cubesc->result_id(), cubetc->result_id()});
Instruction* denom = ir_builder.AddCompositeConstruct(
v2_float_type_id, {cubema->result_id(), cubema->result_id()});
Instruction* div = ir_builder.AddBinaryOp(
v2_float_type_id, SpvOpFDiv, cube->result_id(), denom->result_id());
// Get the final result by adding 0.5 to |div|.
inst->SetOpcode(SpvOpFAdd);
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {div->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {vec_const_id}});
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// A folding rule that will replace the CubeFaceIndexAMD extended
// instruction in the SPV_AMD_gcn_shader_ballot. Returns true if the folding
// is successful.
//
// The instruction
//
// %result = OpExtInst %float %1 CubeFaceIndexAMD %input
//
// with
//
// %x = OpCompositeExtract %float %input 0
// %y = OpCompositeExtract %float %input 1
// %z = OpCompositeExtract %float %input 2
// %ax = OpExtInst %float %n_1 FAbs %x
// %ay = OpExtInst %float %n_1 FAbs %y
// %az = OpExtInst %float %n_1 FAbs %z
// %is_z_neg = OpFOrdLessThan %bool %z %float_0
// %is_y_neg = OpFOrdLessThan %bool %y %float_0
// %is_x_neg = OpFOrdLessThan %bool %x %float_0
// %amax_x_y = OpExtInst %float %n_1 FMax %ax %ay
// %is_z_max = OpFOrdGreaterThanEqual %bool %az %amax_x_y
// %y_gt_x = OpFOrdGreaterThanEqual %bool %ay %ax
// %case_z = OpSelect %float %is_z_neg %float_5 %float4
// %case_y = OpSelect %float %is_y_neg %float_3 %float2
// %case_x = OpSelect %float %is_x_neg %float_1 %float0
// %sel = OpSelect %float %y_gt_x %case_y %case_x
// %result = OpSelect %float %is_z_max %case_z %sel
//
// Also adding the capabilities and builtins that are needed.
bool ReplaceCubeFaceIndex(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
analysis::TypeManager* type_mgr = ctx->get_type_mgr();
analysis::ConstantManager* const_mgr = ctx->get_constant_mgr();
uint32_t float_type_id = type_mgr->GetFloatTypeId();
uint32_t bool_id = type_mgr->GetBoolTypeId();
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t input_id = inst->GetSingleWordInOperand(2);
uint32_t glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
if (glsl405_ext_inst_id == 0) {
ctx->AddExtInstImport("GLSL.std.450");
glsl405_ext_inst_id =
ctx->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
}
// Get the constants that will be used.
uint32_t f0_const_id = const_mgr->GetFloatConstId(0.0);
uint32_t f1_const_id = const_mgr->GetFloatConstId(1.0);
uint32_t f2_const_id = const_mgr->GetFloatConstId(2.0);
uint32_t f3_const_id = const_mgr->GetFloatConstId(3.0);
uint32_t f4_const_id = const_mgr->GetFloatConstId(4.0);
uint32_t f5_const_id = const_mgr->GetFloatConstId(5.0);
// Extract the input values.
Instruction* x = ir_builder.AddCompositeExtract(float_type_id, input_id, {0});
Instruction* y = ir_builder.AddCompositeExtract(float_type_id, input_id, {1});
Instruction* z = ir_builder.AddCompositeExtract(float_type_id, input_id, {2});
// Get the absolute values of the inputs.
Instruction* ax = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FAbs, {x->result_id()});
Instruction* ay = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FAbs, {y->result_id()});
Instruction* az = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FAbs, {z->result_id()});
// Find which values are negative. Used in later computations.
Instruction* is_z_neg = ir_builder.AddBinaryOp(bool_id, SpvOpFOrdLessThan,
z->result_id(), f0_const_id);
Instruction* is_y_neg = ir_builder.AddBinaryOp(bool_id, SpvOpFOrdLessThan,
y->result_id(), f0_const_id);
Instruction* is_x_neg = ir_builder.AddBinaryOp(bool_id, SpvOpFOrdLessThan,
x->result_id(), f0_const_id);
// Find the max value.
Instruction* amax_x_y = ir_builder.AddNaryExtendedInstruction(
float_type_id, glsl405_ext_inst_id, GLSLstd450FMax,
{ax->result_id(), ay->result_id()});
Instruction* is_z_max =
ir_builder.AddBinaryOp(bool_id, SpvOpFOrdGreaterThanEqual,
az->result_id(), amax_x_y->result_id());
Instruction* y_gr_x = ir_builder.AddBinaryOp(
bool_id, SpvOpFOrdGreaterThanEqual, ay->result_id(), ax->result_id());
// Get the value for each case.
Instruction* case_z = ir_builder.AddSelect(
float_type_id, is_z_neg->result_id(), f5_const_id, f4_const_id);
Instruction* case_y = ir_builder.AddSelect(
float_type_id, is_y_neg->result_id(), f3_const_id, f2_const_id);
Instruction* case_x = ir_builder.AddSelect(
float_type_id, is_x_neg->result_id(), f1_const_id, f0_const_id);
// Select the correct case.
Instruction* sel =
ir_builder.AddSelect(float_type_id, y_gr_x->result_id(),
case_y->result_id(), case_x->result_id());
// Get the final result by adding 0.5 to |div|.
inst->SetOpcode(SpvOpSelect);
Instruction::OperandList new_operands;
new_operands.push_back({SPV_OPERAND_TYPE_ID, {is_z_max->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {case_z->result_id()}});
new_operands.push_back({SPV_OPERAND_TYPE_ID, {sel->result_id()}});
inst->SetInOperands(std::move(new_operands));
ctx->UpdateDefUse(inst);
return true;
}
// A folding rule that will replace the TimeAMD extended instruction in the
// SPV_AMD_gcn_shader_ballot. It returns true if the folding is successful.
// It returns False, otherwise.
//
// The instruction
//
// %result = OpExtInst %uint64 %1 TimeAMD
//
// with
//
// %result = OpReadClockKHR %uint64 %uint_3
//
// NOTE: TimeAMD uses subgroup scope (it is not a real time clock).
bool ReplaceTimeAMD(IRContext* ctx, Instruction* inst,
const std::vector<const analysis::Constant*>&) {
InstructionBuilder ir_builder(
ctx, inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
ctx->AddExtension("SPV_KHR_shader_clock");
ctx->AddCapability(SpvCapabilityShaderClockKHR);
inst->SetOpcode(SpvOpReadClockKHR);
Instruction::OperandList args;
uint32_t subgroup_scope_id = ir_builder.GetUintConstantId(SpvScopeSubgroup);
args.push_back({SPV_OPERAND_TYPE_ID, {subgroup_scope_id}});
inst->SetInOperands(std::move(args));
ctx->UpdateDefUse(inst);
return true;
}
class AmdExtFoldingRules : public FoldingRules {
public:
explicit AmdExtFoldingRules(IRContext* ctx) : FoldingRules(ctx) {}
protected:
virtual void AddFoldingRules() override {
rules_[SpvOpGroupIAddNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformIAdd>);
rules_[SpvOpGroupFAddNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformFAdd>);
rules_[SpvOpGroupUMinNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformUMin>);
rules_[SpvOpGroupSMinNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformSMin>);
rules_[SpvOpGroupFMinNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformFMin>);
rules_[SpvOpGroupUMaxNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformUMax>);
rules_[SpvOpGroupSMaxNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformSMax>);
rules_[SpvOpGroupFMaxNonUniformAMD].push_back(
ReplaceGroupNonuniformOperationOpCode<SpvOpGroupNonUniformFMax>);
uint32_t extension_id =
context()->module()->GetExtInstImportId("SPV_AMD_shader_ballot");
if (extension_id != 0) {
ext_rules_[{extension_id, AmdShaderBallotSwizzleInvocationsAMD}]
.push_back(ReplaceSwizzleInvocations);
ext_rules_[{extension_id, AmdShaderBallotSwizzleInvocationsMaskedAMD}]
.push_back(ReplaceSwizzleInvocationsMasked);
ext_rules_[{extension_id, AmdShaderBallotWriteInvocationAMD}].push_back(
ReplaceWriteInvocation);
ext_rules_[{extension_id, AmdShaderBallotMbcntAMD}].push_back(
ReplaceMbcnt);
}
extension_id = context()->module()->GetExtInstImportId(
"SPV_AMD_shader_trinary_minmax");
if (extension_id != 0) {
ext_rules_[{extension_id, FMin3AMD}].push_back(
ReplaceTrinaryMinMax<GLSLstd450FMin>);
ext_rules_[{extension_id, UMin3AMD}].push_back(
ReplaceTrinaryMinMax<GLSLstd450UMin>);
ext_rules_[{extension_id, SMin3AMD}].push_back(
ReplaceTrinaryMinMax<GLSLstd450SMin>);
ext_rules_[{extension_id, FMax3AMD}].push_back(
ReplaceTrinaryMinMax<GLSLstd450FMax>);
ext_rules_[{extension_id, UMax3AMD}].push_back(
ReplaceTrinaryMinMax<GLSLstd450UMax>);
ext_rules_[{extension_id, SMax3AMD}].push_back(
ReplaceTrinaryMinMax<GLSLstd450SMax>);
ext_rules_[{extension_id, FMid3AMD}].push_back(
ReplaceTrinaryMid<GLSLstd450FMin, GLSLstd450FMax, GLSLstd450FClamp>);
ext_rules_[{extension_id, UMid3AMD}].push_back(
ReplaceTrinaryMid<GLSLstd450UMin, GLSLstd450UMax, GLSLstd450UClamp>);
ext_rules_[{extension_id, SMid3AMD}].push_back(
ReplaceTrinaryMid<GLSLstd450SMin, GLSLstd450SMax, GLSLstd450SClamp>);
}
extension_id =
context()->module()->GetExtInstImportId("SPV_AMD_gcn_shader");
if (extension_id != 0) {
ext_rules_[{extension_id, CubeFaceCoordAMD}].push_back(
ReplaceCubeFaceCoord);
ext_rules_[{extension_id, CubeFaceIndexAMD}].push_back(
ReplaceCubeFaceIndex);
ext_rules_[{extension_id, TimeAMD}].push_back(ReplaceTimeAMD);
}
}
};
class AmdExtConstFoldingRules : public ConstantFoldingRules {
public:
AmdExtConstFoldingRules(IRContext* ctx) : ConstantFoldingRules(ctx) {}
protected:
virtual void AddFoldingRules() override {}
};
} // namespace
Pass::Status AmdExtensionToKhrPass::Process() {
bool changed = false;
// Traverse the body of the functions to replace instructions that require
// the extensions.
InstructionFolder folder(
context(),
std::unique_ptr<AmdExtFoldingRules>(new AmdExtFoldingRules(context())),
MakeUnique<AmdExtConstFoldingRules>(context()));
for (Function& func : *get_module()) {
func.ForEachInst([&changed, &folder](Instruction* inst) {
if (folder.FoldInstruction(inst)) {
changed = true;
}
});
}
// Now that instruction that require the extensions have been removed, we can
// remove the extension instructions.
std::set<std::string> ext_to_remove = {"SPV_AMD_shader_ballot",
"SPV_AMD_shader_trinary_minmax",
"SPV_AMD_gcn_shader"};
std::vector<Instruction*> to_be_killed;
for (Instruction& inst : context()->module()->extensions()) {
if (inst.opcode() == SpvOpExtension) {
if (ext_to_remove.count(inst.GetInOperand(0).AsString()) != 0) {
to_be_killed.push_back(&inst);
}
}
}
for (Instruction& inst : context()->ext_inst_imports()) {
if (inst.opcode() == SpvOpExtInstImport) {
if (ext_to_remove.count(inst.GetInOperand(0).AsString()) != 0) {
to_be_killed.push_back(&inst);
}
}
}
for (Instruction* inst : to_be_killed) {
context()->KillInst(inst);
changed = true;
}
// The replacements that take place use instructions that are missing before
// SPIR-V 1.3. If we changed something, we will have to make sure the version
// is at least SPIR-V 1.3 to make sure those instruction can be used.
if (changed) {
uint32_t version = get_module()->version();
if (version < 0x00010300 /*1.3*/) {
get_module()->set_version(0x00010300);
}
}
return changed ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
} // namespace opt
} // namespace spvtools