third_party_spirv-tools/test/cpp_interface_test.cpp
dan sinclair d835d664bd
[val] Fixup id name output (#2158)
This CL changes the id/name output from the validator to always use a
consistent id[%name] style. This removes the need for getIdOrName. The
name lookup is changed to use the NameMapper so the output is consistent
with what the disassembler will produce.

Fixes #2137
2018-12-03 17:01:30 -05:00

329 lines
11 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv/1.1/spirv.h"
namespace spvtools {
namespace {
using ::testing::ContainerEq;
using ::testing::HasSubstr;
// Return a string that contains the minimum instructions needed to form
// a valid module. Other instructions can be appended to this string.
std::string Header() {
return R"(OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
)";
}
// When we assemble with a target environment of SPIR-V 1.1, we expect
// the following in the module header version word.
const uint32_t kExpectedSpvVersion = 0x10100;
TEST(CppInterface, SuccessfulRoundTrip) {
const std::string input_text = "%2 = OpSizeOf %1 %3\n";
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(input_text, &binary));
EXPECT_TRUE(binary.size() > 5u);
EXPECT_EQ(SpvMagicNumber, binary[0]);
EXPECT_EQ(kExpectedSpvVersion, binary[1]);
// This cannot pass validation since %1 is not defined.
t.SetMessageConsumer([](spv_message_level_t level, const char* source,
const spv_position_t& position, const char* message) {
EXPECT_EQ(SPV_MSG_ERROR, level);
EXPECT_STREQ("input", source);
EXPECT_EQ(0u, position.line);
EXPECT_EQ(0u, position.column);
EXPECT_EQ(1u, position.index);
EXPECT_STREQ("ID 1[%1] has not been defined\n %2 = OpSizeOf %1 %3\n",
message);
});
EXPECT_FALSE(t.Validate(binary));
std::string output_text;
EXPECT_TRUE(t.Disassemble(binary, &output_text));
EXPECT_EQ(input_text, output_text);
}
TEST(CppInterface, AssembleEmptyModule) {
std::vector<uint32_t> binary(10, 42);
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
EXPECT_TRUE(t.Assemble("", &binary));
// We only have the header.
EXPECT_EQ(5u, binary.size());
EXPECT_EQ(SpvMagicNumber, binary[0]);
EXPECT_EQ(kExpectedSpvVersion, binary[1]);
}
TEST(CppInterface, AssembleOverloads) {
const std::string input_text = "%2 = OpSizeOf %1 %3\n";
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
{
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(input_text, &binary));
EXPECT_TRUE(binary.size() > 5u);
EXPECT_EQ(SpvMagicNumber, binary[0]);
EXPECT_EQ(kExpectedSpvVersion, binary[1]);
}
{
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(input_text.data(), input_text.size(), &binary));
EXPECT_TRUE(binary.size() > 5u);
EXPECT_EQ(SpvMagicNumber, binary[0]);
EXPECT_EQ(kExpectedSpvVersion, binary[1]);
}
{ // Ignore the last newline.
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(input_text.data(), input_text.size() - 1, &binary));
EXPECT_TRUE(binary.size() > 5u);
EXPECT_EQ(SpvMagicNumber, binary[0]);
EXPECT_EQ(kExpectedSpvVersion, binary[1]);
}
}
TEST(CppInterface, DisassembleEmptyModule) {
std::string text(10, 'x');
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
int invocation_count = 0;
t.SetMessageConsumer(
[&invocation_count](spv_message_level_t level, const char* source,
const spv_position_t& position, const char* message) {
++invocation_count;
EXPECT_EQ(SPV_MSG_ERROR, level);
EXPECT_STREQ("input", source);
EXPECT_EQ(0u, position.line);
EXPECT_EQ(0u, position.column);
EXPECT_EQ(0u, position.index);
EXPECT_STREQ("Missing module.", message);
});
EXPECT_FALSE(t.Disassemble({}, &text));
EXPECT_EQ("xxxxxxxxxx", text); // The original string is unmodified.
EXPECT_EQ(1, invocation_count);
}
TEST(CppInterface, DisassembleOverloads) {
const std::string input_text = "%2 = OpSizeOf %1 %3\n";
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(input_text, &binary));
{
std::string output_text;
EXPECT_TRUE(t.Disassemble(binary, &output_text));
EXPECT_EQ(input_text, output_text);
}
{
std::string output_text;
EXPECT_TRUE(t.Disassemble(binary.data(), binary.size(), &output_text));
EXPECT_EQ(input_text, output_text);
}
}
TEST(CppInterface, SuccessfulValidation) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
int invocation_count = 0;
t.SetMessageConsumer([&invocation_count](spv_message_level_t, const char*,
const spv_position_t&, const char*) {
++invocation_count;
});
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(Header(), &binary));
EXPECT_TRUE(t.Validate(binary));
EXPECT_EQ(0, invocation_count);
}
TEST(CppInterface, ValidateOverloads) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(Header(), &binary));
{ EXPECT_TRUE(t.Validate(binary)); }
{ EXPECT_TRUE(t.Validate(binary.data(), binary.size())); }
}
TEST(CppInterface, ValidateEmptyModule) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
int invocation_count = 0;
t.SetMessageConsumer(
[&invocation_count](spv_message_level_t level, const char* source,
const spv_position_t& position, const char* message) {
++invocation_count;
EXPECT_EQ(SPV_MSG_ERROR, level);
EXPECT_STREQ("input", source);
EXPECT_EQ(0u, position.line);
EXPECT_EQ(0u, position.column);
EXPECT_EQ(0u, position.index);
EXPECT_STREQ("Invalid SPIR-V magic number.", message);
});
EXPECT_FALSE(t.Validate({}));
EXPECT_EQ(1, invocation_count);
}
// Returns the assembly for a SPIR-V module with a struct declaration
// with the given number of members.
std::string MakeModuleHavingStruct(int num_members) {
std::stringstream os;
os << Header();
os << R"(%1 = OpTypeInt 32 0
%2 = OpTypeStruct)";
for (int i = 0; i < num_members; i++) os << " %1";
return os.str();
}
TEST(CppInterface, ValidateWithOptionsPass) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(MakeModuleHavingStruct(10), &binary));
const ValidatorOptions opts;
EXPECT_TRUE(t.Validate(binary.data(), binary.size(), opts));
}
TEST(CppInterface, ValidateWithOptionsFail) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble(MakeModuleHavingStruct(10), &binary));
ValidatorOptions opts;
opts.SetUniversalLimit(spv_validator_limit_max_struct_members, 9);
std::stringstream os;
t.SetMessageConsumer([&os](spv_message_level_t, const char*,
const spv_position_t&,
const char* message) { os << message; });
EXPECT_FALSE(t.Validate(binary.data(), binary.size(), opts));
EXPECT_THAT(
os.str(),
HasSubstr(
"Number of OpTypeStruct members (10) has exceeded the limit (9)"));
}
// Checks that after running the given optimizer |opt| on the given |original|
// source code, we can get the given |optimized| source code.
void CheckOptimization(const std::string& original,
const std::string& optimized, const Optimizer& opt) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> original_binary;
ASSERT_TRUE(t.Assemble(original, &original_binary));
std::vector<uint32_t> optimized_binary;
EXPECT_TRUE(opt.Run(original_binary.data(), original_binary.size(),
&optimized_binary));
std::string optimized_text;
EXPECT_TRUE(t.Disassemble(optimized_binary, &optimized_text));
EXPECT_EQ(optimized, optimized_text);
}
TEST(CppInterface, OptimizeEmptyModule) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
EXPECT_TRUE(t.Assemble("", &binary));
Optimizer o(SPV_ENV_UNIVERSAL_1_1);
o.RegisterPass(CreateStripDebugInfoPass());
// Fails to validate.
EXPECT_FALSE(o.Run(binary.data(), binary.size(), &binary));
}
TEST(CppInterface, OptimizeModifiedModule) {
Optimizer o(SPV_ENV_UNIVERSAL_1_1);
o.RegisterPass(CreateStripDebugInfoPass());
CheckOptimization(Header() + "OpSource GLSL 450", Header(), o);
}
TEST(CppInterface, OptimizeMulitplePasses) {
std::string original_text = Header() +
"OpSource GLSL 450 "
"OpDecorate %true SpecId 1 "
"%bool = OpTypeBool "
"%true = OpSpecConstantTrue %bool";
Optimizer o(SPV_ENV_UNIVERSAL_1_1);
o.RegisterPass(CreateStripDebugInfoPass())
.RegisterPass(CreateFreezeSpecConstantValuePass());
std::string expected_text = Header() +
"%bool = OpTypeBool\n"
"%true = OpConstantTrue %bool\n";
CheckOptimization(original_text, expected_text, o);
}
TEST(CppInterface, OptimizeDoNothingWithPassToken) {
CreateFreezeSpecConstantValuePass();
auto token = CreateUnifyConstantPass();
}
TEST(CppInterface, OptimizeReassignPassToken) {
auto token = CreateNullPass();
token = CreateStripDebugInfoPass();
CheckOptimization(
Header() + "OpSource GLSL 450", Header(),
Optimizer(SPV_ENV_UNIVERSAL_1_1).RegisterPass(std::move(token)));
}
TEST(CppInterface, OptimizeMoveConstructPassToken) {
auto token1 = CreateStripDebugInfoPass();
Optimizer::PassToken token2(std::move(token1));
CheckOptimization(
Header() + "OpSource GLSL 450", Header(),
Optimizer(SPV_ENV_UNIVERSAL_1_1).RegisterPass(std::move(token2)));
}
TEST(CppInterface, OptimizeMoveAssignPassToken) {
auto token1 = CreateStripDebugInfoPass();
auto token2 = CreateNullPass();
token2 = std::move(token1);
CheckOptimization(
Header() + "OpSource GLSL 450", Header(),
Optimizer(SPV_ENV_UNIVERSAL_1_1).RegisterPass(std::move(token2)));
}
TEST(CppInterface, OptimizeSameAddressForOriginalOptimizedBinary) {
SpirvTools t(SPV_ENV_UNIVERSAL_1_1);
std::vector<uint32_t> binary;
ASSERT_TRUE(t.Assemble(Header() + "OpSource GLSL 450", &binary));
EXPECT_TRUE(Optimizer(SPV_ENV_UNIVERSAL_1_1)
.RegisterPass(CreateStripDebugInfoPass())
.Run(binary.data(), binary.size(), &binary));
std::string optimized_text;
EXPECT_TRUE(t.Disassemble(binary, &optimized_text));
EXPECT_EQ(Header(), optimized_text);
}
// TODO(antiagainst): tests for SetMessageConsumer().
} // namespace
} // namespace spvtools