third_party_spirv-tools/source/opt/module.cpp
Marius Hillenbrand 1ed847f438
Fix endianness of string literals (#4622)
* Fix endianness of string literals

To get correct and consistent encoding and decoding of string literals
on big-endian platforms, use spvtools::utils::MakeString and MakeVector
(or wrapper functions) consistently for handling string literals.

- add variant of MakeVector that encodes a string literal into an
  existing vector of words
- add variants of MakeString
- add a wrapper spvDecodeLiteralStringOperand in source/
- fix wrapper Operand::AsString to use MakeString (source/opt)
- remove Operand::AsCString as broken and unused
- add a variant of GetOperandAs for string literals (source/val)
... and apply those wrappers throughout the code.

Fixes  #149

* Extend round trip test for StringLiterals to flip word order

In the encoding/decoding roundtrip tests for string literals, include
a case that flips byte order in words after encoding and then checks for
successful decoding. That is, on a little-endian host flip to big-endian
byte order and then decode, and vice versa.

* BinaryParseTest.InstructionWithStringOperand: also flip byte order

Test binary parsing of string operands both with the host's and with the
reversed byte order.
2021-12-08 12:01:26 -05:00

279 lines
9.2 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/module.h"
#include <algorithm>
#include <cstring>
#include <ostream>
#include "source/operand.h"
#include "source/opt/ir_context.h"
#include "source/opt/reflect.h"
namespace spvtools {
namespace opt {
uint32_t Module::TakeNextIdBound() {
if (context()) {
if (id_bound() >= context()->max_id_bound()) {
return 0;
}
} else if (id_bound() >= kDefaultMaxIdBound) {
return 0;
}
return header_.bound++;
}
std::vector<Instruction*> Module::GetTypes() {
std::vector<Instruction*> type_insts;
for (auto& inst : types_values_) {
if (IsTypeInst(inst.opcode())) type_insts.push_back(&inst);
}
return type_insts;
}
std::vector<const Instruction*> Module::GetTypes() const {
std::vector<const Instruction*> type_insts;
for (auto& inst : types_values_) {
if (IsTypeInst(inst.opcode())) type_insts.push_back(&inst);
}
return type_insts;
}
std::vector<Instruction*> Module::GetConstants() {
std::vector<Instruction*> const_insts;
for (auto& inst : types_values_) {
if (IsConstantInst(inst.opcode())) const_insts.push_back(&inst);
}
return const_insts;
}
std::vector<const Instruction*> Module::GetConstants() const {
std::vector<const Instruction*> const_insts;
for (auto& inst : types_values_) {
if (IsConstantInst(inst.opcode())) const_insts.push_back(&inst);
}
return const_insts;
}
uint32_t Module::GetGlobalValue(SpvOp opcode) const {
for (auto& inst : types_values_) {
if (inst.opcode() == opcode) return inst.result_id();
}
return 0;
}
void Module::AddGlobalValue(SpvOp opcode, uint32_t result_id,
uint32_t type_id) {
std::unique_ptr<Instruction> newGlobal(
new Instruction(context(), opcode, type_id, result_id, {}));
AddGlobalValue(std::move(newGlobal));
}
void Module::ForEachInst(const std::function<void(Instruction*)>& f,
bool run_on_debug_line_insts) {
#define DELEGATE(list) list.ForEachInst(f, run_on_debug_line_insts)
DELEGATE(capabilities_);
DELEGATE(extensions_);
DELEGATE(ext_inst_imports_);
if (memory_model_) memory_model_->ForEachInst(f, run_on_debug_line_insts);
DELEGATE(entry_points_);
DELEGATE(execution_modes_);
DELEGATE(debugs1_);
DELEGATE(debugs2_);
DELEGATE(debugs3_);
DELEGATE(ext_inst_debuginfo_);
DELEGATE(annotations_);
DELEGATE(types_values_);
for (auto& i : functions_) {
i->ForEachInst(f, run_on_debug_line_insts,
/* run_on_non_semantic_insts = */ true);
}
#undef DELEGATE
}
void Module::ForEachInst(const std::function<void(const Instruction*)>& f,
bool run_on_debug_line_insts) const {
#define DELEGATE(i) i.ForEachInst(f, run_on_debug_line_insts)
for (auto& i : capabilities_) DELEGATE(i);
for (auto& i : extensions_) DELEGATE(i);
for (auto& i : ext_inst_imports_) DELEGATE(i);
if (memory_model_)
static_cast<const Instruction*>(memory_model_.get())
->ForEachInst(f, run_on_debug_line_insts);
for (auto& i : entry_points_) DELEGATE(i);
for (auto& i : execution_modes_) DELEGATE(i);
for (auto& i : debugs1_) DELEGATE(i);
for (auto& i : debugs2_) DELEGATE(i);
for (auto& i : debugs3_) DELEGATE(i);
for (auto& i : annotations_) DELEGATE(i);
for (auto& i : types_values_) DELEGATE(i);
for (auto& i : ext_inst_debuginfo_) DELEGATE(i);
for (auto& i : functions_) {
static_cast<const Function*>(i.get())->ForEachInst(
f, run_on_debug_line_insts,
/* run_on_non_semantic_insts = */ true);
}
if (run_on_debug_line_insts) {
for (auto& i : trailing_dbg_line_info_) DELEGATE(i);
}
#undef DELEGATE
}
void Module::ToBinary(std::vector<uint32_t>* binary, bool skip_nop) const {
binary->push_back(header_.magic_number);
binary->push_back(header_.version);
// TODO(antiagainst): should we change the generator number?
binary->push_back(header_.generator);
binary->push_back(header_.bound);
binary->push_back(header_.schema);
size_t bound_idx = binary->size() - 2;
DebugScope last_scope(kNoDebugScope, kNoInlinedAt);
const Instruction* last_line_inst = nullptr;
bool between_merge_and_branch = false;
bool between_label_and_phi_var = false;
auto write_inst = [binary, skip_nop, &last_scope, &last_line_inst,
&between_merge_and_branch, &between_label_and_phi_var,
this](const Instruction* i) {
// Skip emitting line instructions between merge and branch instructions.
auto opcode = i->opcode();
if (between_merge_and_branch && i->IsLineInst()) {
return;
}
between_merge_and_branch = false;
if (last_line_inst != nullptr) {
// If the current instruction is OpLine or DebugLine and it is the same
// as the last line instruction that is still effective (can be applied
// to the next instruction), we skip writing the current instruction.
if (i->IsLine()) {
uint32_t operand_index = 0;
if (last_line_inst->WhileEachInOperand(
[&operand_index, i](const uint32_t* word) {
assert(i->NumInOperandWords() > operand_index);
return *word == i->GetSingleWordInOperand(operand_index++);
})) {
return;
}
} else if (!i->IsNoLine() && i->dbg_line_insts().empty()) {
// If the current instruction does not have the line information,
// the last line information is not effective any more. Emit OpNoLine
// or DebugNoLine to specify it.
uint32_t shader_set_id = context()
->get_feature_mgr()
->GetExtInstImportId_Shader100DebugInfo();
if (shader_set_id != 0) {
binary->push_back((5 << 16) | static_cast<uint16_t>(SpvOpExtInst));
binary->push_back(context()->get_type_mgr()->GetVoidTypeId());
binary->push_back(context()->TakeNextId());
binary->push_back(shader_set_id);
binary->push_back(NonSemanticShaderDebugInfo100DebugNoLine);
} else {
binary->push_back((1 << 16) | static_cast<uint16_t>(SpvOpNoLine));
}
last_line_inst = nullptr;
}
}
if (opcode == SpvOpLabel) {
between_label_and_phi_var = true;
} else if (opcode != SpvOpVariable && opcode != SpvOpPhi &&
!spvtools::opt::IsOpLineInst(opcode)) {
between_label_and_phi_var = false;
}
if (!(skip_nop && i->IsNop())) {
const auto& scope = i->GetDebugScope();
if (scope != last_scope) {
// Can only emit nonsemantic instructions after all phi instructions
// in a block so don't emit scope instructions before phi instructions
// for NonSemantic.Shader.DebugInfo.100.
if (!between_label_and_phi_var ||
context()
->get_feature_mgr()
->GetExtInstImportId_OpenCL100DebugInfo()) {
// Emit DebugScope |scope| to |binary|.
auto dbg_inst = ext_inst_debuginfo_.begin();
scope.ToBinary(dbg_inst->type_id(), context()->TakeNextId(),
dbg_inst->GetSingleWordOperand(2), binary);
}
last_scope = scope;
}
i->ToBinaryWithoutAttachedDebugInsts(binary);
}
// Update the last line instruction.
if (spvOpcodeIsBlockTerminator(opcode) || i->IsNoLine()) {
last_line_inst = nullptr;
} else if (opcode == SpvOpLoopMerge || opcode == SpvOpSelectionMerge) {
between_merge_and_branch = true;
last_line_inst = nullptr;
} else if (i->IsLine()) {
last_line_inst = i;
}
};
ForEachInst(write_inst, true);
// We create new instructions for DebugScope and DebugNoLine. The bound must
// be updated.
binary->data()[bound_idx] = header_.bound;
}
uint32_t Module::ComputeIdBound() const {
uint32_t highest = 0;
ForEachInst(
[&highest](const Instruction* inst) {
for (const auto& operand : *inst) {
if (spvIsIdType(operand.type)) {
highest = std::max(highest, operand.words[0]);
}
}
},
true /* scan debug line insts as well */);
return highest + 1;
}
bool Module::HasExplicitCapability(uint32_t cap) {
for (auto& ci : capabilities_) {
uint32_t tcap = ci.GetSingleWordOperand(0);
if (tcap == cap) {
return true;
}
}
return false;
}
uint32_t Module::GetExtInstImportId(const char* extstr) {
for (auto& ei : ext_inst_imports_)
if (!ei.GetInOperand(0).AsString().compare(extstr)) return ei.result_id();
return 0;
}
std::ostream& operator<<(std::ostream& str, const Module& module) {
module.ForEachInst([&str](const Instruction* inst) {
str << *inst;
if (inst->opcode() != SpvOpFunctionEnd) {
str << std::endl;
}
});
return str;
}
} // namespace opt
} // namespace spvtools