/* * * Copyright (c) 2021-2022 The Khronos Group Inc. * Copyright (c) 2021-2022 Valve Corporation * Copyright (c) 2021-2022 LunarG, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Mark Young * */ // Non-windows and non-apple only header file, guard it so that accidental // inclusion doesn't cause unknown header include errors #if defined(LOADER_ENABLE_LINUX_SORT) #include #include #include "loader_linux.h" #include "allocation.h" #include "loader_environment.h" #include "loader.h" #include "log.h" // Determine a priority based on device type with the higher value being higher priority. uint32_t determine_priority_type_value(VkPhysicalDeviceType type) { switch (type) { case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: return 10; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: return 5; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: return 3; case VK_PHYSICAL_DEVICE_TYPE_OTHER: return 2; case VK_PHYSICAL_DEVICE_TYPE_CPU: return 1; case VK_PHYSICAL_DEVICE_TYPE_MAX_ENUM: // Not really an enum, but throws warning if it's not here break; } return 0; } // Compare the two device types. // This behaves similar to a qsort compare. int32_t device_type_compare(VkPhysicalDeviceType a, VkPhysicalDeviceType b) { uint32_t a_value = determine_priority_type_value(a); uint32_t b_value = determine_priority_type_value(b); if (a_value > b_value) { return -1; } else if (b_value > a_value) { return 1; } return 0; } // Used to compare two devices and determine which one should have priority. The criteria is // simple: // 1) Default device ALWAYS wins // 2) Sort by type // 3) Sort by PCI bus ID // 4) Ties broken by device_ID XOR vendor_ID comparison int32_t compare_devices(const void *a, const void *b) { struct LinuxSortedDeviceInfo *left = (struct LinuxSortedDeviceInfo *)a; struct LinuxSortedDeviceInfo *right = (struct LinuxSortedDeviceInfo *)b; // Default device always gets priority if (left->default_device) { return -1; } else if (right->default_device) { return 1; } // Order by device type next int32_t dev_type_comp = device_type_compare(left->device_type, right->device_type); if (0 != dev_type_comp) { return dev_type_comp; } // Sort by PCI info (prioritize devices that have info over those that don't) if (left->has_pci_bus_info && !right->has_pci_bus_info) { return -1; } else if (!left->has_pci_bus_info && right->has_pci_bus_info) { return 1; } else if (left->has_pci_bus_info && right->has_pci_bus_info) { // Sort low to high PCI domain if (left->pci_domain < right->pci_domain) { return -1; } else if (left->pci_domain > right->pci_domain) { return 1; } // Sort low to high PCI bus if (left->pci_bus < right->pci_bus) { return -1; } else if (left->pci_bus > right->pci_bus) { return 1; } // Sort low to high PCI device if (left->pci_device < right->pci_device) { return -1; } else if (left->pci_device > right->pci_device) { return 1; } // Sort low to high PCI function if (left->pci_function < right->pci_function) { return -1; } else if (left->pci_function > right->pci_function) { return 1; } } // Somehow we have a tie above, so XOR vendorID and deviceID and compare uint32_t left_xord_dev_vend = left->device_id ^ left->vendor_id; uint32_t right_xord_dev_vend = right->device_id ^ right->vendor_id; if (left_xord_dev_vend < right_xord_dev_vend) { return -1; } else if (right_xord_dev_vend < left_xord_dev_vend) { return 1; } return 0; } // Used to compare two device groups and determine which one should have priority. // NOTE: This assumes that devices in each group have already been sorted. // The group sort criteria is simple: // 1) Group with the default device ALWAYS wins // 2) Group with the best device type for device 0 wins // 3) Group with best PCI bus ID for device 0 wins // 4) Ties broken by group device 0 device_ID XOR vendor_ID comparison int32_t compare_device_groups(const void *a, const void *b) { struct loader_physical_device_group_term *grp_a = (struct loader_physical_device_group_term *)a; struct loader_physical_device_group_term *grp_b = (struct loader_physical_device_group_term *)b; // Use the first GPU's info from each group to sort the groups by struct LinuxSortedDeviceInfo *left = &grp_a->internal_device_info[0]; struct LinuxSortedDeviceInfo *right = &grp_b->internal_device_info[0]; // Default device always gets priority if (left->default_device) { return -1; } else if (right->default_device) { return 1; } // Order by device type next int32_t dev_type_comp = device_type_compare(left->device_type, right->device_type); if (0 != dev_type_comp) { return dev_type_comp; } // Sort by PCI info (prioritize devices that have info over those that don't) if (left->has_pci_bus_info && !right->has_pci_bus_info) { return -1; } else if (!left->has_pci_bus_info && right->has_pci_bus_info) { return 1; } else if (left->has_pci_bus_info && right->has_pci_bus_info) { // Sort low to high PCI domain if (left->pci_domain < right->pci_domain) { return -1; } else if (left->pci_domain > right->pci_domain) { return 1; } // Sort low to high PCI bus if (left->pci_bus < right->pci_bus) { return -1; } else if (left->pci_bus > right->pci_bus) { return 1; } // Sort low to high PCI device if (left->pci_device < right->pci_device) { return -1; } else if (left->pci_device > right->pci_device) { return 1; } // Sort low to high PCI function if (left->pci_function < right->pci_function) { return -1; } else if (left->pci_function > right->pci_function) { return 1; } } // Somehow we have a tie above, so XOR vendorID and deviceID and compare uint32_t left_xord_dev_vend = left->device_id ^ left->vendor_id; uint32_t right_xord_dev_vend = right->device_id ^ right->vendor_id; if (left_xord_dev_vend < right_xord_dev_vend) { return -1; } else if (right_xord_dev_vend < left_xord_dev_vend) { return 1; } return 0; } // Search for the default device using the loader environment variable. void linux_env_var_default_device(struct loader_instance *inst, uint32_t device_count, struct LinuxSortedDeviceInfo *sorted_device_info) { char *selection = loader_getenv("VK_LOADER_DEVICE_SELECT", inst); if (NULL != selection) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_env_var_default_device: Found \'VK_LOADER_DEVICE_SELECT\' set to %s", selection); // The environment variable exists, so grab the vendor ID and device ID of the // selected default device unsigned vendor_id, device_id; int32_t matched = sscanf(selection, "%x:%x", &vendor_id, &device_id); if (matched == 2) { for (int32_t i = 0; i < (int32_t)device_count; ++i) { if (sorted_device_info[i].vendor_id == vendor_id && sorted_device_info[i].device_id == device_id) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_env_var_default_device: Found default at index %u \'%s\'", i, sorted_device_info[i].device_name); sorted_device_info[i].default_device = true; break; } } } loader_free_getenv(selection, inst); } } // This function allocates an array in sorted_devices which must be freed by the caller if not null VkResult linux_read_sorted_physical_devices(struct loader_instance *inst, uint32_t icd_count, struct loader_icd_physical_devices *icd_devices, uint32_t phys_dev_count, struct loader_physical_device_term **sorted_device_term) { VkResult res = VK_SUCCESS; bool app_is_vulkan_1_1 = loader_check_version_meets_required(LOADER_VERSION_1_1_0, inst->app_api_version); struct LinuxSortedDeviceInfo *sorted_device_info = loader_instance_heap_calloc( inst, phys_dev_count * sizeof(struct LinuxSortedDeviceInfo), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == sorted_device_info) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_read_sorted_physical_devices:"); loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Original order:"); // Grab all the necessary info we can about each device uint32_t index = 0; for (uint32_t icd_idx = 0; icd_idx < icd_count; ++icd_idx) { for (uint32_t phys_dev = 0; phys_dev < icd_devices[icd_idx].device_count; ++phys_dev) { struct loader_icd_term *icd_term = icd_devices[icd_idx].icd_term; VkPhysicalDeviceProperties dev_props = {}; sorted_device_info[index].physical_device = icd_devices[icd_idx].physical_devices[phys_dev]; sorted_device_info[index].icd_index = icd_idx; sorted_device_info[index].icd_term = icd_term; sorted_device_info[index].has_pci_bus_info = false; icd_term->dispatch.GetPhysicalDeviceProperties(sorted_device_info[index].physical_device, &dev_props); sorted_device_info[index].device_type = dev_props.deviceType; strncpy(sorted_device_info[index].device_name, dev_props.deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE); sorted_device_info[index].vendor_id = dev_props.vendorID; sorted_device_info[index].device_id = dev_props.deviceID; bool device_is_1_1_capable = loader_check_version_meets_required(LOADER_VERSION_1_1_0, loader_make_version(dev_props.apiVersion)); if (!sorted_device_info[index].has_pci_bus_info) { uint32_t ext_count = 0; icd_term->dispatch.EnumerateDeviceExtensionProperties(sorted_device_info[index].physical_device, NULL, &ext_count, NULL); if (ext_count > 0) { VkExtensionProperties *ext_props = (VkExtensionProperties *)loader_stack_alloc(sizeof(VkExtensionProperties) * ext_count); if (NULL == ext_props) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } icd_term->dispatch.EnumerateDeviceExtensionProperties(sorted_device_info[index].physical_device, NULL, &ext_count, ext_props); for (uint32_t ext = 0; ext < ext_count; ++ext) { if (!strcmp(ext_props[ext].extensionName, VK_EXT_PCI_BUS_INFO_EXTENSION_NAME)) { sorted_device_info[index].has_pci_bus_info = true; break; } } } } if (sorted_device_info[index].has_pci_bus_info) { VkPhysicalDevicePCIBusInfoPropertiesEXT pci_props = (VkPhysicalDevicePCIBusInfoPropertiesEXT){ .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT}; VkPhysicalDeviceProperties2 dev_props2 = (VkPhysicalDeviceProperties2){ .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, .pNext = (VkBaseInStructure *)&pci_props}; PFN_vkGetPhysicalDeviceProperties2 GetPhysDevProps2 = NULL; if (app_is_vulkan_1_1 && device_is_1_1_capable) { GetPhysDevProps2 = icd_term->dispatch.GetPhysicalDeviceProperties2; } else { GetPhysDevProps2 = (PFN_vkGetPhysicalDeviceProperties2)icd_term->dispatch.GetPhysicalDeviceProperties2KHR; } if (NULL != GetPhysDevProps2) { GetPhysDevProps2(sorted_device_info[index].physical_device, &dev_props2); sorted_device_info[index].pci_domain = pci_props.pciDomain; sorted_device_info[index].pci_bus = pci_props.pciBus; sorted_device_info[index].pci_device = pci_props.pciDevice; sorted_device_info[index].pci_function = pci_props.pciFunction; } else { sorted_device_info[index].has_pci_bus_info = false; } } loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s", index, sorted_device_info[index].device_name); index++; } } // Select default device if set in the environment variable linux_env_var_default_device(inst, phys_dev_count, sorted_device_info); // Sort devices by PCI info qsort(sorted_device_info, phys_dev_count, sizeof(struct LinuxSortedDeviceInfo), compare_devices); // If we have a selected index, add that first. loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Sorted order:"); // Add all others after (they've already been sorted) for (uint32_t dev = 0; dev < phys_dev_count; ++dev) { sorted_device_term[dev]->this_icd_term = sorted_device_info[dev].icd_term; sorted_device_term[dev]->icd_index = sorted_device_info[dev].icd_index; sorted_device_term[dev]->phys_dev = sorted_device_info[dev].physical_device; loader_set_dispatch((void *)sorted_device_term[dev], inst->disp); loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s %s", dev, sorted_device_info[dev].device_name, (sorted_device_info[dev].default_device ? "[default]" : "")); } out: loader_instance_heap_free(inst, sorted_device_info); return res; } // This function sorts an array of physical device groups VkResult linux_sort_physical_device_groups(struct loader_instance *inst, uint32_t group_count, struct loader_physical_device_group_term *sorted_group_term) { VkResult res = VK_SUCCESS; bool app_is_vulkan_1_1 = loader_check_version_meets_required(LOADER_VERSION_1_1_0, inst->app_api_version); loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_sort_physical_device_groups: Original order:"); for (uint32_t group = 0; group < group_count; ++group) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Group %u", group); struct loader_icd_term *icd_term = sorted_group_term[group].this_icd_term; for (uint32_t gpu = 0; gpu < sorted_group_term[group].group_props.physicalDeviceCount; ++gpu) { VkPhysicalDeviceProperties dev_props = {}; sorted_group_term[group].internal_device_info[gpu].physical_device = sorted_group_term[group].group_props.physicalDevices[gpu]; sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info = false; icd_term->dispatch.GetPhysicalDeviceProperties(sorted_group_term[group].internal_device_info[gpu].physical_device, &dev_props); sorted_group_term[group].internal_device_info[gpu].device_type = dev_props.deviceType; strncpy(sorted_group_term[group].internal_device_info[gpu].device_name, dev_props.deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE); sorted_group_term[group].internal_device_info[gpu].vendor_id = dev_props.vendorID; sorted_group_term[group].internal_device_info[gpu].device_id = dev_props.deviceID; bool device_is_1_1_capable = loader_check_version_meets_required(LOADER_VERSION_1_1_0, loader_make_version(dev_props.apiVersion)); if (!sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info) { uint32_t ext_count; icd_term->dispatch.EnumerateDeviceExtensionProperties( sorted_group_term[group].internal_device_info[gpu].physical_device, NULL, &ext_count, NULL); if (ext_count > 0) { VkExtensionProperties *ext_props = (VkExtensionProperties *)loader_stack_alloc(sizeof(VkExtensionProperties) * ext_count); if (NULL == ext_props) { return VK_ERROR_OUT_OF_HOST_MEMORY; } icd_term->dispatch.EnumerateDeviceExtensionProperties( sorted_group_term[group].internal_device_info[gpu].physical_device, NULL, &ext_count, ext_props); for (uint32_t ext = 0; ext < ext_count; ++ext) { if (!strcmp(ext_props[ext].extensionName, VK_EXT_PCI_BUS_INFO_EXTENSION_NAME)) { sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info = true; break; } } } } if (sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info) { VkPhysicalDevicePCIBusInfoPropertiesEXT pci_props = (VkPhysicalDevicePCIBusInfoPropertiesEXT){ .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT}; VkPhysicalDeviceProperties2 dev_props2 = (VkPhysicalDeviceProperties2){ .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, .pNext = (VkBaseInStructure *)&pci_props}; PFN_vkGetPhysicalDeviceProperties2 GetPhysDevProps2 = NULL; if (app_is_vulkan_1_1 && device_is_1_1_capable) { GetPhysDevProps2 = icd_term->dispatch.GetPhysicalDeviceProperties2; } else { GetPhysDevProps2 = (PFN_vkGetPhysicalDeviceProperties2)icd_term->dispatch.GetPhysicalDeviceProperties2KHR; } if (NULL != GetPhysDevProps2) { GetPhysDevProps2(sorted_group_term[group].internal_device_info[gpu].physical_device, &dev_props2); sorted_group_term[group].internal_device_info[gpu].pci_domain = pci_props.pciDomain; sorted_group_term[group].internal_device_info[gpu].pci_bus = pci_props.pciBus; sorted_group_term[group].internal_device_info[gpu].pci_device = pci_props.pciDevice; sorted_group_term[group].internal_device_info[gpu].pci_function = pci_props.pciFunction; } else { sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info = false; } } loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s", gpu, sorted_group_term[group].internal_device_info[gpu].device_name); } // Select default device if set in the environment variable linux_env_var_default_device(inst, sorted_group_term[group].group_props.physicalDeviceCount, sorted_group_term[group].internal_device_info); // Sort GPUs in each group qsort(sorted_group_term[group].internal_device_info, sorted_group_term[group].group_props.physicalDeviceCount, sizeof(struct LinuxSortedDeviceInfo), compare_devices); // Match the externally used physical device list with the sorted physical device list for this group. for (uint32_t dev = 0; dev < sorted_group_term[group].group_props.physicalDeviceCount; ++dev) { sorted_group_term[group].group_props.physicalDevices[dev] = sorted_group_term[group].internal_device_info[dev].physical_device; } } // Sort device groups by PCI info qsort(sorted_group_term, group_count, sizeof(struct loader_physical_device_group_term), compare_device_groups); loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_sort_physical_device_groups: Sorted order:"); for (uint32_t group = 0; group < group_count; ++group) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Group %u", group); for (uint32_t gpu = 0; gpu < sorted_group_term[group].group_props.physicalDeviceCount; ++gpu) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s %p %s", gpu, sorted_group_term[group].internal_device_info[gpu].device_name, sorted_group_term[group].internal_device_info[gpu].physical_device, (sorted_group_term[group].internal_device_info[gpu].default_device ? "[default]" : "")); } } return res; } #endif // LOADER_ENABLE_LINUX_SORT