/* * * Copyright (c) 2014-2022 The Khronos Group Inc. * Copyright (c) 2014-2022 Valve Corporation * Copyright (c) 2014-2022 LunarG, Inc. * Copyright (C) 2015 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Jon Ashburn * Author: Courtney Goeltzenleuchter * Author: Mark Young * Author: Lenny Komow * Author: Charles Giessen * */ #include "loader.h" #include #include #include #include #include #include #include #if defined(__APPLE__) #include #include #endif // Time related functions #include #include #if defined(_WIN32) #include "dirent_on_windows.h" #else // _WIN32 #include #endif // _WIN32 #include "allocation.h" #include "cJSON.h" #include "debug_utils.h" #include "get_environment.h" #include "gpa_helper.h" #include "log.h" #include "unknown_function_handling.h" #include "vk_loader_platform.h" #include "wsi.h" #if defined(WIN32) #include "loader_windows.h" #endif #ifdef LOADER_ENABLE_LINUX_SORT // This header is currently only used when sorting Linux devices, so don't include it otherwise. #include "loader_linux.h" #endif // LOADER_ENABLE_LINUX_SORT // Generated file containing all the extension data #include "vk_loader_extensions.c" struct loader_struct loader = {0}; struct activated_layer_info { char *name; char *manifest; char *library; bool is_implicit; char *disable_env; }; // thread safety lock for accessing global data structures such as "loader" // all entrypoints on the instance chain need to be locked except GPA // additionally CreateDevice and DestroyDevice needs to be locked loader_platform_thread_mutex loader_lock; loader_platform_thread_mutex loader_json_lock; loader_platform_thread_mutex loader_preload_icd_lock; // A list of ICDs that gets initialized when the loader does its global initialization. This list should never be used by anything // other than EnumerateInstanceExtensionProperties(), vkDestroyInstance, and loader_release(). This list does not change // functionality, but the fact that the libraries already been loaded causes any call that needs to load ICD libraries to speed up // significantly. This can have a huge impact when making repeated calls to vkEnumerateInstanceExtensionProperties and // vkCreateInstance. static struct loader_icd_tramp_list scanned_icds; LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init); // Creates loader_api_version struct that contains the major and minor fields, setting patch to 0 loader_api_version loader_make_version(uint32_t version) { loader_api_version out_version; out_version.major = VK_API_VERSION_MAJOR(version); out_version.minor = VK_API_VERSION_MINOR(version); out_version.patch = 0; return out_version; } // Creates loader_api_version struct containing the major, minor, and patch fields loader_api_version loader_make_full_version(uint32_t version) { loader_api_version out_version; out_version.major = VK_API_VERSION_MAJOR(version); out_version.minor = VK_API_VERSION_MINOR(version); out_version.patch = VK_API_VERSION_PATCH(version); return out_version; } loader_api_version loader_combine_version(uint32_t major, uint32_t minor, uint32_t patch) { loader_api_version out_version; out_version.major = (uint16_t)major; out_version.minor = (uint16_t)minor; out_version.patch = (uint16_t)patch; return out_version; } // Helper macros for determining if a version is valid or not bool loader_check_version_meets_required(loader_api_version required, loader_api_version version) { // major version is satisfied return (version.major > required.major) || // major version is equal, minor version is patch version is gerater to minimum minor (version.major == required.major && version.minor > required.minor) || // major and minor version are equal, patch version is greater or equal to minimum patch (version.major == required.major && version.minor == required.minor && version.patch >= required.patch); } // Wrapper around opendir so that the dirent_on_windows gets the instance it needs // while linux opendir & readdir does not DIR *loader_opendir(const struct loader_instance *instance, const char *name) { #if defined(_WIN32) return opendir(instance ? &instance->alloc_callbacks : NULL, name); #else // _WIN32 return opendir(name); #endif // _WIN32 } int loader_closedir(const struct loader_instance *instance, DIR *dir) { #if defined(_WIN32) return closedir(instance ? &instance->alloc_callbacks : NULL, dir); #else // _WIN32 return closedir(dir); #endif // _WIN32 } static bool is_json(const char *path, size_t len) { if (len < 5) { return false; } return !strncmp(path, ".json", 5); } // Handle error from to library loading void loader_handle_load_library_error(const struct loader_instance *inst, const char *filename, enum loader_layer_library_status *lib_status) { const char *error_message = loader_platform_open_library_error(filename); // If the error is due to incompatible architecture (eg 32 bit vs 64 bit), report it with INFO level // Discussed in Github issue 262 & 644 // "wrong ELF class" is a linux error, " with error 193" is a windows error VkFlags err_flag = VULKAN_LOADER_ERROR_BIT; if (strstr(error_message, "wrong ELF class:") != NULL || strstr(error_message, " with error 193") != NULL) { err_flag = VULKAN_LOADER_INFO_BIT; if (NULL != lib_status) { *lib_status = LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE; } } else if (NULL != lib_status) { *lib_status = LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD; } loader_log(inst, err_flag, 0, error_message); } VKAPI_ATTR VkResult VKAPI_CALL vkSetInstanceDispatch(VkInstance instance, void *object) { struct loader_instance *inst = loader_get_instance(instance); if (!inst) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkSetInstanceDispatch: Can not retrieve Instance dispatch table."); return VK_ERROR_INITIALIZATION_FAILED; } loader_set_dispatch(object, inst->disp); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkSetDeviceDispatch(VkDevice device, void *object) { struct loader_device *dev; struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL); if (NULL == icd_term) { return VK_ERROR_INITIALIZATION_FAILED; } loader_set_dispatch(object, &dev->loader_dispatch); return VK_SUCCESS; } void loader_free_layer_properties(const struct loader_instance *inst, struct loader_layer_properties *layer_properties) { loader_instance_heap_free(inst, layer_properties->component_layer_names); loader_instance_heap_free(inst, layer_properties->override_paths); loader_instance_heap_free(inst, layer_properties->blacklist_layer_names); loader_instance_heap_free(inst, layer_properties->app_key_paths); loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_properties->instance_extension_list); if (layer_properties->device_extension_list.capacity > 0 && NULL != layer_properties->device_extension_list.list) { for (uint32_t i = 0; i < layer_properties->device_extension_list.count; i++) { struct loader_dev_ext_props *ext_props = &layer_properties->device_extension_list.list[i]; if (ext_props->entrypoint_count > 0) { for (uint32_t j = 0; j < ext_props->entrypoint_count; j++) { loader_instance_heap_free(inst, ext_props->entrypoints[j]); } loader_instance_heap_free(inst, ext_props->entrypoints); } } } loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_properties->device_extension_list); // Make sure to clear out the removed layer, in case new layers are added in the previous location memset(layer_properties, 0, sizeof(struct loader_layer_properties)); } // Combine path elements, separating each element with the platform-specific // directory separator, and save the combined string to a destination buffer, // not exceeding the given length. Path elements are given as variable args, // with a NULL element terminating the list. // // \returns the total length of the combined string, not including an ASCII // NUL termination character. This length may exceed the available storage: // in this case, the written string will be truncated to avoid a buffer // overrun, and the return value will greater than or equal to the storage // size. A NULL argument may be provided as the destination buffer in order // to determine the required string length without actually writing a string. static size_t loader_platform_combine_path(char *dest, size_t len, ...) { size_t required_len = 0; va_list ap; const char *component; va_start(ap, len); component = va_arg(ap, const char *); while (component) { if (required_len > 0) { // This path element is not the first non-empty element; prepend // a directory separator if space allows if (dest && required_len + 1 < len) { (void)snprintf(dest + required_len, len - required_len, "%c", DIRECTORY_SYMBOL); } required_len++; } if (dest && required_len < len) { strncpy(dest + required_len, component, len - required_len); } required_len += strlen(component); component = va_arg(ap, const char *); } va_end(ap); // strncpy(3) won't add a NUL terminating byte in the event of truncation. if (dest && required_len >= len) { dest[len - 1] = '\0'; } return required_len; } // Given string of three part form "maj.min.pat" convert to a vulkan version number. // Also can understand four part form "variant.major.minor.patch" if provided. static uint32_t loader_parse_version_string(char *vers_str) { uint32_t variant = 0, major = 0, minor = 0, patch = 0; char *vers_tok; if (!vers_str) { return 0; } vers_tok = strtok(vers_str, ".\"\n\r"); if (NULL != vers_tok) { major = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { minor = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { patch = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); // check that we are using a 4 part version string if (NULL != vers_tok) { // if we are, move the values over into the correct place variant = major; major = minor; minor = patch; patch = (uint16_t)atoi(vers_tok); } } } } return VK_MAKE_API_VERSION(variant, major, minor, patch); } bool compare_vk_extension_properties(const VkExtensionProperties *op1, const VkExtensionProperties *op2) { return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false; } // Search the given ext_array for an extension matching the given vk_ext_prop bool has_vk_extension_property_array(const VkExtensionProperties *vk_ext_prop, const uint32_t count, const VkExtensionProperties *ext_array) { for (uint32_t i = 0; i < count; i++) { if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i])) return true; } return false; } // Search the given ext_list for an extension matching the given vk_ext_prop bool has_vk_extension_property(const VkExtensionProperties *vk_ext_prop, const struct loader_extension_list *ext_list) { for (uint32_t i = 0; i < ext_list->count; i++) { if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop)) return true; } return false; } // Search the given ext_list for a device extension matching the given ext_prop bool has_vk_dev_ext_property(const VkExtensionProperties *ext_prop, const struct loader_device_extension_list *ext_list) { for (uint32_t i = 0; i < ext_list->count; i++) { if (compare_vk_extension_properties(&ext_list->list[i].props, ext_prop)) return true; } return false; } // Get the next unused layer property in the list. Init the property to zero. static struct loader_layer_properties *loader_get_next_layer_property_slot(const struct loader_instance *inst, struct loader_layer_list *layer_list) { if (layer_list->capacity == 0) { layer_list->list = loader_instance_heap_calloc(inst, sizeof(struct loader_layer_properties) * 64, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (layer_list->list == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_next_layer_property_slot: Out of memory can not add any layer properties to list"); return NULL; } layer_list->capacity = sizeof(struct loader_layer_properties) * 64; } // Ensure enough room to add an entry if ((layer_list->count + 1) * sizeof(struct loader_layer_properties) > layer_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, layer_list->list, layer_list->capacity, layer_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_next_layer_property_slot: realloc failed for layer list"); return NULL; } layer_list->list = new_ptr; memset((uint8_t *)layer_list->list + layer_list->capacity, 0, layer_list->capacity); layer_list->capacity *= 2; } layer_list->count++; return &(layer_list->list[layer_list->count - 1]); } // Search the given layer list for a layer property matching the given layer name static struct loader_layer_properties *loader_find_layer_property(const char *name, const struct loader_layer_list *layer_list) { for (uint32_t i = 0; i < layer_list->count; i++) { const VkLayerProperties *item = &layer_list->list[i].info; if (strcmp(name, item->layerName) == 0) return &layer_list->list[i]; } return NULL; } // Search the given layer list for a layer matching the given layer name static bool loader_find_layer_name_in_list(const char *name, const struct loader_layer_list *layer_list) { if (NULL == layer_list) { return false; } if (NULL != loader_find_layer_property(name, layer_list)) { return true; } return false; } // Search the given meta-layer's component list for a layer matching the given layer name static bool loader_find_layer_name_in_meta_layer(const struct loader_instance *inst, const char *layer_name, struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) { for (uint32_t comp_layer = 0; comp_layer < meta_layer_props->num_component_layers; comp_layer++) { if (!strcmp(meta_layer_props->component_layer_names[comp_layer], layer_name)) { return true; } struct loader_layer_properties *comp_layer_props = loader_find_layer_property(meta_layer_props->component_layer_names[comp_layer], layer_list); if (comp_layer_props->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { return loader_find_layer_name_in_meta_layer(inst, layer_name, layer_list, comp_layer_props); } } return false; } // Search the override layer's blacklist for a layer matching the given layer name static bool loader_find_layer_name_in_blacklist(const struct loader_instance *inst, const char *layer_name, struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) { for (uint32_t black_layer = 0; black_layer < meta_layer_props->num_blacklist_layers; ++black_layer) { if (!strcmp(meta_layer_props->blacklist_layer_names[black_layer], layer_name)) { return true; } } return false; } // Remove all layer properties entries from the list void loader_delete_layer_list_and_properties(const struct loader_instance *inst, struct loader_layer_list *layer_list) { uint32_t i; if (!layer_list) return; for (i = 0; i < layer_list->count; i++) { loader_free_layer_properties(inst, &(layer_list->list[i])); } layer_list->count = 0; if (layer_list->capacity > 0) { layer_list->capacity = 0; loader_instance_heap_free(inst, layer_list->list); } } void loader_remove_layer_in_list(const struct loader_instance *inst, struct loader_layer_list *layer_list, uint32_t layer_to_remove) { if (layer_list == NULL || layer_to_remove >= layer_list->count) { return; } loader_free_layer_properties(inst, &(layer_list->list[layer_to_remove])); // Remove the current invalid meta-layer from the layer list. Use memmove since we are // overlapping the source and destination addresses. memmove(&layer_list->list[layer_to_remove], &layer_list->list[layer_to_remove + 1], sizeof(struct loader_layer_properties) * (layer_list->count - 1 - layer_to_remove)); // Decrement the count (because we now have one less) and decrement the loop index since we need to // re-check this index. layer_list->count--; } // Remove all layers in the layer list that are blacklisted by the override layer. // NOTE: This should only be called if an override layer is found and not expired. void loader_remove_layers_in_blacklist(const struct loader_instance *inst, struct loader_layer_list *layer_list) { struct loader_layer_properties *override_prop = loader_find_layer_property(VK_OVERRIDE_LAYER_NAME, layer_list); if (NULL == override_prop) { return; } for (int32_t j = 0; j < (int32_t)(layer_list->count); j++) { struct loader_layer_properties cur_layer_prop = layer_list->list[j]; const char *cur_layer_name = &cur_layer_prop.info.layerName[0]; // Skip the override layer itself. if (!strcmp(VK_OVERRIDE_LAYER_NAME, cur_layer_name)) { continue; } // If found in the override layer's blacklist, remove it if (loader_find_layer_name_in_blacklist(inst, cur_layer_name, layer_list, override_prop)) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "loader_remove_layers_in_blacklist: Override layer is active and layer %s is in the blacklist inside of it. " "Removing that layer from current layer list.", cur_layer_name); loader_remove_layer_in_list(inst, layer_list, j); j--; // Re-do the query for the override layer override_prop = loader_find_layer_property(VK_OVERRIDE_LAYER_NAME, layer_list); } } } // Remove all layers in the layer list that are not found inside any implicit meta-layers. void loader_remove_layers_not_in_implicit_meta_layers(const struct loader_instance *inst, struct loader_layer_list *layer_list) { int32_t i; int32_t j; int32_t layer_count = (int32_t)(layer_list->count); for (i = 0; i < layer_count; i++) { layer_list->list[i].keep = false; } for (i = 0; i < layer_count; i++) { struct loader_layer_properties *cur_layer_prop = &layer_list->list[i]; if (0 == (cur_layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) { cur_layer_prop->keep = true; continue; } for (j = 0; j < layer_count; j++) { struct loader_layer_properties *layer_to_check = &layer_list->list[j]; if (i == j) { continue; } if (layer_to_check->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { // For all layers found in this meta layer, we want to keep them as well. if (loader_find_layer_name_in_meta_layer(inst, cur_layer_prop->info.layerName, layer_list, layer_to_check)) { cur_layer_prop->keep = true; } } } } // Remove any layers we don't want to keep (Don't use layer_count here as we need it to be // dynamically updated if we delete a layer property in the list). for (i = 0; i < (int32_t)(layer_list->count); i++) { struct loader_layer_properties *cur_layer_prop = &layer_list->list[i]; if (!cur_layer_prop->keep) { loader_log( inst, VULKAN_LOADER_DEBUG_BIT, 0, "loader_remove_layers_not_in_implicit_meta_layers : Implicit meta-layers are active, and layer %s is not list " "inside of any. So removing layer from current layer list.", cur_layer_prop->info.layerName); loader_remove_layer_in_list(inst, layer_list, i); i--; } } } static VkResult loader_add_instance_extensions(const struct loader_instance *inst, const PFN_vkEnumerateInstanceExtensionProperties fp_get_props, const char *lib_name, struct loader_extension_list *ext_list) { uint32_t i, count = 0; VkExtensionProperties *ext_props; VkResult res = VK_SUCCESS; if (!fp_get_props) { // No EnumerateInstanceExtensionProperties defined goto out; } res = fp_get_props(NULL, &count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_instance_extensions: Error getting Instance extension count from %s", lib_name); goto out; } if (count == 0) { // No ExtensionProperties to report goto out; } ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties)); if (NULL == ext_props) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } res = fp_get_props(NULL, &count, ext_props); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_instance_extensions: Error getting Instance extensions from %s", lib_name); goto out; } for (i = 0; i < count; i++) { bool ext_unsupported = wsi_unsupported_instance_extension(&ext_props[i]); if (!ext_unsupported) { res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]); if (res != VK_SUCCESS) { goto out; } } } out: return res; } // Initialize ext_list with the physical device extensions. // The extension properties are passed as inputs in count and ext_props. static VkResult loader_init_device_extensions(const struct loader_instance *inst, struct loader_physical_device_term *phys_dev_term, uint32_t count, VkExtensionProperties *ext_props, struct loader_extension_list *ext_list) { VkResult res; uint32_t i; res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { return res; } for (i = 0; i < count; i++) { res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]); if (res != VK_SUCCESS) return res; } return VK_SUCCESS; } VkResult loader_add_device_extensions(const struct loader_instance *inst, PFN_vkEnumerateDeviceExtensionProperties fpEnumerateDeviceExtensionProperties, VkPhysicalDevice physical_device, const char *lib_name, struct loader_extension_list *ext_list) { uint32_t i = 0, count = 0; VkResult res = VK_SUCCESS; VkExtensionProperties *ext_props = NULL; res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_device_extensions: Error getting physical device extension info count from library %s", lib_name); return res; } if (count > 0) { ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties)); if (!ext_props) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_device_extensions: Failed to allocate space for device extension properties from library %s.", lib_name); return VK_ERROR_OUT_OF_HOST_MEMORY; } res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, ext_props); if (res != VK_SUCCESS) { return res; } for (i = 0; i < count; i++) { res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]); if (res != VK_SUCCESS) { return res; } } } return VK_SUCCESS; } VkResult loader_init_generic_list(const struct loader_instance *inst, struct loader_generic_list *list_info, size_t element_size) { size_t capacity = 32 * element_size; list_info->count = 0; list_info->capacity = 0; list_info->list = loader_instance_heap_calloc(inst, capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (list_info->list == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_init_generic_list: Failed to allocate space for generic list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } list_info->capacity = capacity; return VK_SUCCESS; } void loader_destroy_generic_list(const struct loader_instance *inst, struct loader_generic_list *list) { loader_instance_heap_free(inst, list->list); list->count = 0; list->capacity = 0; } // Append non-duplicate extension properties defined in props to the given ext_list. // Return - Vk_SUCCESS on success VkResult loader_add_to_ext_list(const struct loader_instance *inst, struct loader_extension_list *ext_list, uint32_t prop_list_count, const VkExtensionProperties *props) { uint32_t i; const VkExtensionProperties *cur_ext; if (ext_list->list == NULL || ext_list->capacity == 0) { VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { return res; } } for (i = 0; i < prop_list_count; i++) { cur_ext = &props[i]; // look for duplicates if (has_vk_extension_property(cur_ext, ext_list)) { continue; } // add to list at end // check for enough capacity if (ext_list->count * sizeof(VkExtensionProperties) >= ext_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (new_ptr == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_to_ext_list: Failed to reallocate space for extension list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } ext_list->list = new_ptr; // double capacity ext_list->capacity *= 2; } memcpy(&ext_list->list[ext_list->count], cur_ext, sizeof(VkExtensionProperties)); ext_list->count++; } return VK_SUCCESS; } // Append one extension property defined in props with entrypoints defined in entries to the given // ext_list. Do not append if a duplicate. // Return - Vk_SUCCESS on success VkResult loader_add_to_dev_ext_list(const struct loader_instance *inst, struct loader_device_extension_list *ext_list, const VkExtensionProperties *props, uint32_t entry_count, char **entrys) { uint32_t idx; if (ext_list->list == NULL || ext_list->capacity == 0) { VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(struct loader_dev_ext_props)); if (VK_SUCCESS != res) { return res; } } // look for duplicates if (has_vk_dev_ext_property(props, ext_list)) { return VK_SUCCESS; } idx = ext_list->count; // add to list at end // check for enough capacity if (idx * sizeof(struct loader_dev_ext_props) >= ext_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_to_dev_ext_list: Failed to reallocate space for device extension list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } ext_list->list = new_ptr; // double capacity ext_list->capacity *= 2; } memcpy(&ext_list->list[idx].props, props, sizeof(*props)); ext_list->list[idx].entrypoint_count = entry_count; if (entry_count == 0) { ext_list->list[idx].entrypoints = NULL; } else { ext_list->list[idx].entrypoints = loader_instance_heap_alloc(inst, sizeof(char *) * entry_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (ext_list->list[idx].entrypoints == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_to_dev_ext_list: Failed to allocate space for device extension entrypoint list in list %d", idx); ext_list->list[idx].entrypoint_count = 0; return VK_ERROR_OUT_OF_HOST_MEMORY; } for (uint32_t i = 0; i < entry_count; i++) { ext_list->list[idx].entrypoints[i] = loader_instance_heap_alloc(inst, strlen(entrys[i]) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (ext_list->list[idx].entrypoints[i] == NULL) { for (uint32_t j = 0; j < i; j++) { loader_instance_heap_free(inst, ext_list->list[idx].entrypoints[j]); } loader_instance_heap_free(inst, ext_list->list[idx].entrypoints); ext_list->list[idx].entrypoint_count = 0; ext_list->list[idx].entrypoints = NULL; loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_to_dev_ext_list: Failed to allocate space for device extension entrypoint %d name", i); return VK_ERROR_OUT_OF_HOST_MEMORY; } strcpy(ext_list->list[idx].entrypoints[i], entrys[i]); } } ext_list->count++; return VK_SUCCESS; } // Prototypes needed. bool loader_add_meta_layer(const struct loader_instance *inst, const struct loader_layer_properties *prop, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list); // Manage lists of VkLayerProperties static bool loader_init_layer_list(const struct loader_instance *inst, struct loader_layer_list *list) { list->capacity = 32 * sizeof(struct loader_layer_properties); list->list = loader_instance_heap_calloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (list->list == NULL) { return false; } list->count = 0; return true; } // Search the given array of layer names for an entry matching the given VkLayerProperties bool loader_names_array_has_layer_property(const VkLayerProperties *vk_layer_prop, uint32_t layer_info_count, struct activated_layer_info *layer_info) { for (uint32_t i = 0; i < layer_info_count; i++) { if (strcmp(vk_layer_prop->layerName, layer_info[i].name) == 0) { return true; } } return false; } void loader_destroy_layer_list(const struct loader_instance *inst, struct loader_device *device, struct loader_layer_list *layer_list) { if (device) { loader_device_heap_free(device, layer_list->list); } else { loader_instance_heap_free(inst, layer_list->list); } layer_list->count = 0; layer_list->capacity = 0; layer_list->list = NULL; } // Append layer properties defined in prop_list to the given layer_info list VkResult loader_add_layer_properties_to_list(const struct loader_instance *inst, struct loader_layer_list *list, uint32_t prop_list_count, const struct loader_layer_properties *props) { uint32_t i; struct loader_layer_properties *layer; if (list->list == NULL || list->capacity == 0) { if (!loader_init_layer_list(inst, list)) { return VK_ERROR_OUT_OF_HOST_MEMORY; } } if (list->list == NULL) return VK_SUCCESS; for (i = 0; i < prop_list_count; i++) { layer = (struct loader_layer_properties *)&props[i]; // Check for enough capacity if (((list->count + 1) * sizeof(struct loader_layer_properties)) >= list->capacity) { size_t new_capacity = list->capacity * 2; void *new_ptr = loader_instance_heap_realloc(inst, list->list, list->capacity, new_capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_layer_properties_to_list: Realloc failed for when attempting to add new layer"); return VK_ERROR_OUT_OF_HOST_MEMORY; } list->list = new_ptr; list->capacity = new_capacity; } memcpy(&list->list[list->count], layer, sizeof(struct loader_layer_properties)); list->count++; } return VK_SUCCESS; } // Search the given search_list for any layers in the props list. Add these to the // output layer_list. static VkResult loader_add_layer_names_to_list(const struct loader_instance *inst, struct loader_layer_list *output_list, struct loader_layer_list *expanded_output_list, uint32_t name_count, const char *const *names, const struct loader_layer_list *source_list) { struct loader_layer_properties *layer_prop; VkResult err = VK_SUCCESS; for (uint32_t i = 0; i < name_count; i++) { const char *source_name = names[i]; layer_prop = loader_find_layer_property(source_name, source_list); if (NULL == layer_prop) { loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_names_to_list: Unable to find layer %s", source_name); err = VK_ERROR_LAYER_NOT_PRESENT; continue; } // Make sure the layer isn't already in the output_list, skip adding it if it is. if (loader_find_layer_name_in_list(source_name, output_list)) { continue; } // If not a meta-layer, simply add it. if (0 == (layer_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { loader_add_layer_properties_to_list(inst, output_list, 1, layer_prop); loader_add_layer_properties_to_list(inst, expanded_output_list, 1, layer_prop); } else { loader_add_meta_layer(inst, layer_prop, output_list, expanded_output_list, source_list); } } return err; } static bool check_expiration(const struct loader_instance *inst, const struct loader_layer_properties *prop) { time_t current = time(NULL); struct tm tm_current = *localtime(¤t); struct tm tm_expiration; tm_expiration.tm_sec = 0; tm_expiration.tm_min = prop->expiration.minute; tm_expiration.tm_hour = prop->expiration.hour; tm_expiration.tm_mday = prop->expiration.day; tm_expiration.tm_mon = prop->expiration.month - 1; tm_expiration.tm_year = prop->expiration.year - 1900; tm_expiration.tm_isdst = tm_current.tm_isdst; // wday and yday are ignored by mktime time_t expiration = mktime(&tm_expiration); return current < expiration; } // Determine if the provided implicit layer should be enabled by querying the appropriate environmental variables. // For an implicit layer, at least a disable environment variable is required. bool loader_implicit_layer_is_enabled(const struct loader_instance *inst, const struct loader_layer_properties *prop) { bool enable = false; char *env_value = NULL; // If no enable_environment variable is specified, this implicit layer is always be enabled by default. if (prop->enable_env_var.name[0] == 0) { enable = true; } else { // Otherwise, only enable this layer if the enable environment variable is defined env_value = loader_getenv(prop->enable_env_var.name, inst); if (env_value && !strcmp(prop->enable_env_var.value, env_value)) { enable = true; } loader_free_getenv(env_value, inst); } // The disable_environment has priority over everything else. If it is defined, the layer is always // disabled. env_value = loader_getenv(prop->disable_env_var.name, inst); if (NULL != env_value) { enable = false; } loader_free_getenv(env_value, inst); // If this layer has an expiration, check it to determine if this layer has expired. if (prop->has_expiration) { enable = check_expiration(inst, prop); } // Enable this layer if it is included in the override layer if (inst != NULL && inst->override_layer_present) { struct loader_layer_properties *override = NULL; for (uint32_t i = 0; i < inst->instance_layer_list.count; ++i) { if (strcmp(inst->instance_layer_list.list[i].info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) { override = &inst->instance_layer_list.list[i]; break; } } if (override != NULL) { for (uint32_t i = 0; i < override->num_component_layers; ++i) { if (strcmp(override->component_layer_names[i], prop->info.layerName) == 0) { enable = true; break; } } } } return enable; } // Check the individual implicit layer for the enable/disable environment variable settings. Only add it after // every check has passed indicating it should be used. static void loader_add_implicit_layer(const struct loader_instance *inst, const struct loader_layer_properties *prop, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { bool enable = loader_implicit_layer_is_enabled(inst, prop); // If the implicit layer is supposed to be enable, make sure the layer supports at least the same API version // that the application is asking (i.e. layer's API >= app's API). If it's not, disable this layer. if (enable) { loader_api_version prop_version = loader_make_version(prop->info.specVersion); if (!loader_check_version_meets_required(inst->app_api_version, prop_version)) { loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "loader_add_implicit_layer: Disabling implicit layer %s for using an old API version %u.%u versus " "application requested %u.%u", prop->info.layerName, prop_version.major, prop_version.minor, inst->app_api_version.major, inst->app_api_version.minor); enable = false; } } if (enable) { if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { loader_add_layer_properties_to_list(inst, target_list, 1, prop); if (NULL != expanded_target_list) { loader_add_layer_properties_to_list(inst, expanded_target_list, 1, prop); } } else { loader_add_meta_layer(inst, prop, target_list, expanded_target_list, source_list); } } } // Add the component layers of a meta-layer to the active list of layers bool loader_add_meta_layer(const struct loader_instance *inst, const struct loader_layer_properties *prop, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { bool found = true; // We need to add all the individual component layers loader_api_version meta_layer_api_version = loader_make_version(prop->info.specVersion); for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) { const struct loader_layer_properties *search_prop = loader_find_layer_property(prop->component_layer_names[comp_layer], source_list); if (search_prop != NULL) { loader_api_version search_prop_version = loader_make_version(prop->info.specVersion); if (!loader_check_version_meets_required(meta_layer_api_version, search_prop_version)) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_meta_layer: Meta-layer API version %u.%u, component layer %s version %u.%u, may have " "incompatibilities (Policy #LLP_LAYER_8)!", meta_layer_api_version.major, meta_layer_api_version.minor, search_prop->info.layerName, search_prop_version.major, search_prop_version.minor); } // If the component layer is itself an implicit layer, we need to do the implicit layer enable // checks if (0 == (search_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) { loader_add_implicit_layer(inst, search_prop, target_list, expanded_target_list, source_list); } else { if (0 != (search_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { found = loader_add_meta_layer(inst, search_prop, target_list, expanded_target_list, source_list); } else { loader_add_layer_properties_to_list(inst, target_list, 1, search_prop); if (NULL != expanded_target_list) { loader_add_layer_properties_to_list(inst, expanded_target_list, 1, search_prop); } } } } else { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_meta_layer: Failed to find layer name %s component layer %s to activate (Policy #LLP_LAYER_7)", prop->component_layer_names[comp_layer], prop->component_layer_names[comp_layer]); found = false; } } // Add this layer to the overall target list (not the expanded one) if (found) { loader_add_layer_properties_to_list(inst, target_list, 1, prop); } return found; } // Search the source_list for any layer with a name that matches the given name and a type // that matches the given type. Add all matching layers to the target_list. VkResult loader_add_layer_name_to_list(const struct loader_instance *inst, const char *name, const enum layer_type_flags type_flags, const struct loader_layer_list *source_list, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list) { VkResult res = VK_SUCCESS; bool found = false; for (uint32_t i = 0; i < source_list->count; i++) { struct loader_layer_properties *source_prop = &source_list->list[i]; if (0 == strcmp(source_prop->info.layerName, name) && (source_prop->type_flags & type_flags) == type_flags) { // If not a meta-layer, simply add it. if (0 == (source_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { if (VK_SUCCESS == loader_add_layer_properties_to_list(inst, target_list, 1, source_prop)) { found = true; } if (VK_SUCCESS == loader_add_layer_properties_to_list(inst, expanded_target_list, 1, source_prop)) { found = true; } } else { found = loader_add_meta_layer(inst, source_prop, target_list, expanded_target_list, source_list); } } } if (!found) { if (strcmp(name, "VK_LAYER_LUNARG_standard_validation")) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_name_to_list: Failed to find layer name %s to activate", name); } else { res = VK_ERROR_LAYER_NOT_PRESENT; loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Layer VK_LAYER_LUNARG_standard_validation has been changed to VK_LAYER_KHRONOS_validation. Please use the " "new version of the layer."); } } return res; } static VkExtensionProperties *get_extension_property(const char *name, const struct loader_extension_list *list) { for (uint32_t i = 0; i < list->count; i++) { if (strcmp(name, list->list[i].extensionName) == 0) return &list->list[i]; } return NULL; } static VkExtensionProperties *get_dev_extension_property(const char *name, const struct loader_device_extension_list *list) { for (uint32_t i = 0; i < list->count; i++) { if (strcmp(name, list->list[i].props.extensionName) == 0) return &list->list[i].props; } return NULL; } // For Instance extensions implemented within the loader (i.e. DEBUG_REPORT // the extension must provide two entry points for the loader to use: // - "trampoline" entry point - this is the address returned by GetProcAddr // and will always do what's necessary to support a // global call. // - "terminator" function - this function will be put at the end of the // instance chain and will contain the necessary logic // to call / process the extension for the appropriate // ICDs that are available. // There is no generic mechanism for including these functions, the references // must be placed into the appropriate loader entry points. // GetInstanceProcAddr: call extension GetInstanceProcAddr to check for GetProcAddr // requests // loader_coalesce_extensions(void) - add extension records to the list of global // extension available to the app. // instance_disp - add function pointer for terminator function // to this array. // The extension itself should be in a separate file that will be linked directly // with the loader. VkResult loader_get_icd_loader_instance_extensions(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list, struct loader_extension_list *inst_exts) { struct loader_extension_list icd_exts; VkResult res = VK_SUCCESS; char *env_value; bool filter_extensions = true; loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Build ICD instance extension list"); // Check if a user wants to disable the instance extension filtering behavior env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst); if (NULL != env_value && atoi(env_value) != 0) { filter_extensions = false; } loader_free_getenv(env_value, inst); // traverse scanned icd list adding non-duplicate extensions to the list for (uint32_t i = 0; i < icd_tramp_list->count; i++) { res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { goto out; } res = loader_add_instance_extensions(inst, icd_tramp_list->scanned_list[i].EnumerateInstanceExtensionProperties, icd_tramp_list->scanned_list[i].lib_name, &icd_exts); if (VK_SUCCESS == res) { if (filter_extensions) { // Remove any extensions not recognized by the loader for (int32_t j = 0; j < (int32_t)icd_exts.count; j++) { // See if the extension is in the list of supported extensions bool found = false; for (uint32_t k = 0; LOADER_INSTANCE_EXTENSIONS[k] != NULL; k++) { if (strcmp(icd_exts.list[j].extensionName, LOADER_INSTANCE_EXTENSIONS[k]) == 0) { found = true; break; } } // If it isn't in the list, remove it if (!found) { for (uint32_t k = j + 1; k < icd_exts.count; k++) { icd_exts.list[k - 1] = icd_exts.list[k]; } --icd_exts.count; --j; } } } res = loader_add_to_ext_list(inst, inst_exts, icd_exts.count, icd_exts.list); } loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts); if (VK_SUCCESS != res) { goto out; } }; // Traverse loader's extensions, adding non-duplicate extensions to the list add_debug_extensions_to_ext_list(inst, inst_exts); static const VkExtensionProperties portability_enumeration_extension_info[] = { {VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, VK_KHR_PORTABILITY_ENUMERATION_SPEC_VERSION}}; // Add VK_KHR_portability_subset loader_add_to_ext_list(inst, inst_exts, sizeof(portability_enumeration_extension_info) / sizeof(VkExtensionProperties), portability_enumeration_extension_info); out: return res; } struct loader_icd_term *loader_get_icd_and_device(const void *device, struct loader_device **found_dev, uint32_t *icd_index) { *found_dev = NULL; for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) { uint32_t index = 0; for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term; icd_term = icd_term->next) { for (struct loader_device *dev = icd_term->logical_device_list; dev; dev = dev->next) // Value comparison of device prevents object wrapping by layers if (loader_get_dispatch(dev->icd_device) == loader_get_dispatch(device) || (dev->chain_device != VK_NULL_HANDLE && loader_get_dispatch(dev->chain_device) == loader_get_dispatch(device))) { *found_dev = dev; if (NULL != icd_index) { *icd_index = index; } return icd_term; } index++; } } return NULL; } void loader_destroy_logical_device(const struct loader_instance *inst, struct loader_device *dev, const VkAllocationCallbacks *pAllocator) { if (pAllocator) { dev->alloc_callbacks = *pAllocator; } if (NULL != dev->expanded_activated_layer_list.list) { loader_deactivate_layers(inst, dev, &dev->expanded_activated_layer_list); } if (NULL != dev->app_activated_layer_list.list) { loader_destroy_layer_list(inst, dev, &dev->app_activated_layer_list); } loader_device_heap_free(dev, dev); } struct loader_device *loader_create_logical_device(const struct loader_instance *inst, const VkAllocationCallbacks *pAllocator) { struct loader_device *new_dev; new_dev = loader_calloc(pAllocator, sizeof(struct loader_device), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!new_dev) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_logical_device: Failed to alloc struct loader_device"); return NULL; } if (pAllocator) { new_dev->alloc_callbacks = *pAllocator; } return new_dev; } void loader_add_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term, struct loader_device *dev) { dev->next = icd_term->logical_device_list; icd_term->logical_device_list = dev; } void loader_remove_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term, struct loader_device *found_dev, const VkAllocationCallbacks *pAllocator) { struct loader_device *dev, *prev_dev; if (!icd_term || !found_dev) return; prev_dev = NULL; dev = icd_term->logical_device_list; while (dev && dev != found_dev) { prev_dev = dev; dev = dev->next; } if (prev_dev) prev_dev->next = found_dev->next; else icd_term->logical_device_list = found_dev->next; loader_destroy_logical_device(inst, found_dev, pAllocator); } void loader_icd_destroy(struct loader_instance *ptr_inst, struct loader_icd_term *icd_term, const VkAllocationCallbacks *pAllocator) { ptr_inst->total_icd_count--; for (struct loader_device *dev = icd_term->logical_device_list; dev;) { struct loader_device *next_dev = dev->next; loader_destroy_logical_device(ptr_inst, dev, pAllocator); dev = next_dev; } loader_instance_heap_free(ptr_inst, icd_term); } static struct loader_icd_term *loader_icd_add(struct loader_instance *ptr_inst, const struct loader_scanned_icd *scanned_icd) { struct loader_icd_term *icd_term; icd_term = loader_instance_heap_calloc(ptr_inst, sizeof(struct loader_icd_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!icd_term) { return NULL; } icd_term->scanned_icd = scanned_icd; icd_term->this_instance = ptr_inst; // Prepend to the list icd_term->next = ptr_inst->icd_terms; ptr_inst->icd_terms = icd_term; ptr_inst->total_icd_count++; return icd_term; } // Determine the ICD interface version to use. // @param icd // @param pVersion Output parameter indicating which version to use or 0 if // the negotiation API is not supported by the ICD // @return bool indicating true if the selected interface version is supported // by the loader, false indicates the version is not supported bool loader_get_icd_interface_version(PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version, uint32_t *pVersion) { if (fp_negotiate_icd_version == NULL) { // ICD does not support the negotiation API, it supports version 0 or 1 // calling code must determine if it is version 0 or 1 *pVersion = 0; } else { // ICD supports the negotiation API, so call it with the loader's // latest version supported *pVersion = CURRENT_LOADER_ICD_INTERFACE_VERSION; VkResult result = fp_negotiate_icd_version(pVersion); if (result == VK_ERROR_INCOMPATIBLE_DRIVER) { // ICD no longer supports the loader's latest interface version so // fail loading the ICD return false; } } #if MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION > 0 if (*pVersion < MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION) { // Loader no longer supports the ICD's latest interface version so fail // loading the ICD return false; } #endif return true; } void loader_scanned_icd_clear(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) { if (0 != icd_tramp_list->capacity) { for (uint32_t i = 0; i < icd_tramp_list->count; i++) { loader_platform_close_library(icd_tramp_list->scanned_list[i].handle); loader_instance_heap_free(inst, icd_tramp_list->scanned_list[i].lib_name); } loader_instance_heap_free(inst, icd_tramp_list->scanned_list); icd_tramp_list->capacity = 0; icd_tramp_list->count = 0; icd_tramp_list->scanned_list = NULL; } } static VkResult loader_scanned_icd_init(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) { VkResult err = VK_SUCCESS; loader_scanned_icd_clear(inst, icd_tramp_list); icd_tramp_list->capacity = 8 * sizeof(struct loader_scanned_icd); icd_tramp_list->scanned_list = loader_instance_heap_alloc(inst, icd_tramp_list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == icd_tramp_list->scanned_list) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_init: Realloc failed for layer list when attempting to add new layer"); err = VK_ERROR_OUT_OF_HOST_MEMORY; } return err; } static VkResult loader_scanned_icd_add(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list, const char *filename, uint32_t api_version, enum loader_layer_library_status *lib_status) { loader_platform_dl_handle handle; PFN_vkCreateInstance fp_create_inst; PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props; PFN_vkGetInstanceProcAddr fp_get_proc_addr; PFN_GetPhysicalDeviceProcAddr fp_get_phys_dev_proc_addr = NULL; PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version; #if defined(VK_USE_PLATFORM_WIN32_KHR) PFN_vk_icdEnumerateAdapterPhysicalDevices fp_enum_dxgi_adapter_phys_devs = NULL; #endif struct loader_scanned_icd *new_scanned_icd; uint32_t interface_vers; VkResult res = VK_SUCCESS; // TODO implement smarter opening/closing of libraries. For now this // function leaves libraries open and the scanned_icd_clear closes them #if defined(__Fuchsia__) handle = loader_platform_open_driver(filename); #else handle = loader_platform_open_library(filename); #endif if (NULL == handle) { loader_handle_load_library_error(inst, filename, lib_status); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } // Get and settle on an ICD interface version fp_negotiate_icd_version = loader_platform_get_proc_address(handle, "vk_icdNegotiateLoaderICDInterfaceVersion"); if (!loader_get_icd_interface_version(fp_negotiate_icd_version, &interface_vers)) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: ICD %s doesn't support interface version compatible with loader, skip this ICD.", filename); goto out; } fp_get_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr"); if (NULL == fp_get_proc_addr) { if (interface_vers != 0) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: ICD %s reports an interface version of %d but doesn't export " "vk_icdGetInstanceProcAddr, skip " "this ICD.", filename, interface_vers); goto out; } // Use deprecated interface from version 0 fp_get_proc_addr = loader_platform_get_proc_address(handle, "vkGetInstanceProcAddr"); if (NULL == fp_get_proc_addr) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Attempt to retrieve either \'vkGetInstanceProcAddr\' or " "\'vk_icdGetInstanceProcAddr\' from ICD %s failed.", filename); goto out; } else { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "loader_scanned_icd_add: Using deprecated ICD interface of \'vkGetInstanceProcAddr\' instead of " "\'vk_icdGetInstanceProcAddr\' for ICD %s", filename); } fp_create_inst = loader_platform_get_proc_address(handle, "vkCreateInstance"); if (NULL == fp_create_inst) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Failed querying \'vkCreateInstance\' via dlsym/loadlibrary for ICD %s", filename); goto out; } fp_get_inst_ext_props = loader_platform_get_proc_address(handle, "vkEnumerateInstanceExtensionProperties"); if (NULL == fp_get_inst_ext_props) { loader_log( inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Could not get \'vkEnumerateInstanceExtensionProperties\' via dlsym/loadlibrary for ICD %s", filename); goto out; } } else { // Use newer interface version 1 or later if (interface_vers == 0) { interface_vers = 1; } fp_create_inst = (PFN_vkCreateInstance)fp_get_proc_addr(NULL, "vkCreateInstance"); if (NULL == fp_create_inst) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Could not get \'vkCreateInstance\' via \'vk_icdGetInstanceProcAddr\' for ICD %s", filename); goto out; } fp_get_inst_ext_props = (PFN_vkEnumerateInstanceExtensionProperties)fp_get_proc_addr(NULL, "vkEnumerateInstanceExtensionProperties"); if (NULL == fp_get_inst_ext_props) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Could not get \'vkEnumerateInstanceExtensionProperties\' via " "\'vk_icdGetInstanceProcAddr\' for ICD %s", filename); goto out; } fp_get_phys_dev_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetPhysicalDeviceProcAddr"); #if defined(VK_USE_PLATFORM_WIN32_KHR) if (interface_vers >= 6) { fp_enum_dxgi_adapter_phys_devs = loader_platform_get_proc_address(handle, "vk_icdEnumerateAdapterPhysicalDevices"); } #endif } // check for enough capacity if ((icd_tramp_list->count * sizeof(struct loader_scanned_icd)) >= icd_tramp_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, icd_tramp_list->scanned_list, icd_tramp_list->capacity, icd_tramp_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { res = VK_ERROR_OUT_OF_HOST_MEMORY; loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Realloc failed on icd library list for ICD %s", filename); goto out; } icd_tramp_list->scanned_list = new_ptr; // double capacity icd_tramp_list->capacity *= 2; } loader_api_version api_version_struct = loader_make_version(api_version); if (interface_vers <= 4 && loader_check_version_meets_required(LOADER_VERSION_1_1_0, api_version_struct)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "loader_scanned_icd_add: Driver %s supports Vulkan %u.%u, but only supports loader interface version %u." " Interface version 5 or newer required to support this version of Vulkan (Policy #LDP_DRIVER_7)", filename, api_version_struct.major, api_version_struct.minor, interface_vers); } new_scanned_icd = &(icd_tramp_list->scanned_list[icd_tramp_list->count]); new_scanned_icd->handle = handle; new_scanned_icd->api_version = api_version; new_scanned_icd->GetInstanceProcAddr = fp_get_proc_addr; new_scanned_icd->GetPhysicalDeviceProcAddr = fp_get_phys_dev_proc_addr; new_scanned_icd->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props; new_scanned_icd->CreateInstance = fp_create_inst; #if defined(VK_USE_PLATFORM_WIN32_KHR) new_scanned_icd->EnumerateAdapterPhysicalDevices = fp_enum_dxgi_adapter_phys_devs; #endif new_scanned_icd->interface_version = interface_vers; new_scanned_icd->lib_name = (char *)loader_instance_heap_alloc(inst, strlen(filename) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_scanned_icd->lib_name) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Out of memory can't add ICD %s", filename); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(new_scanned_icd->lib_name, filename); icd_tramp_list->count++; out: return res; } void loader_initialize(void) { // initialize mutexes loader_platform_thread_create_mutex(&loader_lock); loader_platform_thread_create_mutex(&loader_json_lock); loader_platform_thread_create_mutex(&loader_preload_icd_lock); // initialize logging loader_debug_init(); #if defined(_WIN32) windows_initialization(); #endif loader_api_version version = loader_make_full_version(VK_HEADER_VERSION_COMPLETE); loader_log(NULL, VULKAN_LOADER_INFO_BIT, 0, "Vulkan Loader Version %d.%d.%d", version.major, version.minor, version.patch); #if defined(GIT_BRANCH_NAME) && defined(GIT_TAG_INFO) loader_log(NULL, VULKAN_LOADER_INFO_BIT, 0, "[Vulkan Loader Git - Tag: " GIT_BRANCH_NAME ", Branch/Commit: " GIT_TAG_INFO "]"); #endif } void loader_release() { // Guarantee release of the preloaded ICD libraries. This may have already been called in vkDestroyInstance. loader_unload_preloaded_icds(); // release mutexes loader_platform_thread_delete_mutex(&loader_lock); loader_platform_thread_delete_mutex(&loader_json_lock); loader_platform_thread_delete_mutex(&loader_preload_icd_lock); } // Preload the ICD libraries that are likely to be needed so we don't repeatedly load/unload them later void loader_preload_icds(void) { loader_platform_thread_lock_mutex(&loader_preload_icd_lock); // Already preloaded, skip loading again. if (scanned_icds.scanned_list != NULL) { loader_platform_thread_unlock_mutex(&loader_preload_icd_lock); return; } memset(&scanned_icds, 0, sizeof(scanned_icds)); VkResult result = loader_icd_scan(NULL, &scanned_icds, NULL); if (result != VK_SUCCESS) { loader_scanned_icd_clear(NULL, &scanned_icds); } loader_platform_thread_unlock_mutex(&loader_preload_icd_lock); } // Release the ICD libraries that were preloaded void loader_unload_preloaded_icds(void) { loader_platform_thread_lock_mutex(&loader_preload_icd_lock); loader_scanned_icd_clear(NULL, &scanned_icds); loader_platform_thread_unlock_mutex(&loader_preload_icd_lock); } #if !defined(_WIN32) __attribute__((constructor)) void loader_init_library() { loader_initialize(); } __attribute__((destructor)) void loader_free_library() { loader_release(); } #endif // Get next file or dirname given a string list or registry key path // // \returns // A pointer to first char in the next path. // The next path (or NULL) in the list is returned in next_path. // Note: input string is modified in some cases. PASS IN A COPY! char *loader_get_next_path(char *path) { uint32_t len; char *next; if (path == NULL) return NULL; next = strchr(path, PATH_SEPARATOR); if (next == NULL) { len = (uint32_t)strlen(path); next = path + len; } else { *next = '\0'; next++; } return next; } // Given a path which is absolute or relative, expand the path if relative or // leave the path unmodified if absolute. The base path to prepend to relative // paths is given in rel_base. // // @return - A string in out_fullpath of the full absolute path static void loader_expand_path(const char *path, const char *rel_base, size_t out_size, char *out_fullpath) { if (loader_platform_is_path_absolute(path)) { // do not prepend a base to an absolute path rel_base = ""; } loader_platform_combine_path(out_fullpath, out_size, rel_base, path, NULL); } // Given a filename (file) and a list of paths (dir), try to find an existing // file in the paths. If filename already is a path then no searching in the given paths. // // @return - A string in out_fullpath of either the full path or file. static void loader_get_fullpath(const char *file, const char *in_dirs, size_t out_size, char *out_fullpath) { if (!loader_platform_is_path(file) && *in_dirs) { char *dirs_copy, *dir, *next_dir; dirs_copy = loader_stack_alloc(strlen(in_dirs) + 1); strcpy(dirs_copy, in_dirs); // find if file exists after prepending paths in given list // for (dir = dirs_copy; *dir && (next_dir = loader_get_next_path(dir)); dir = next_dir) { dir = dirs_copy; next_dir = loader_get_next_path(dir); while (*dir && next_dir) { loader_platform_combine_path(out_fullpath, out_size, dir, file, NULL); if (loader_platform_file_exists(out_fullpath)) { return; } dir = next_dir; next_dir = loader_get_next_path(dir); } } (void)snprintf(out_fullpath, out_size, "%s", file); } // Read a JSON file into a buffer. // // @return - A pointer to a cJSON object representing the JSON parse tree. // This returned buffer should be freed by caller. static VkResult loader_get_json(const struct loader_instance *inst, const char *filename, cJSON **json) { FILE *file = NULL; char *json_buf = NULL; size_t len; VkResult res = VK_SUCCESS; assert(json != NULL); *json = NULL; #if defined(_WIN32) int filename_utf16_size = MultiByteToWideChar(CP_UTF8, 0, filename, -1, NULL, 0); if (filename_utf16_size > 0) { wchar_t *filename_utf16 = (wchar_t *)loader_stack_alloc(filename_utf16_size * sizeof(wchar_t)); if (MultiByteToWideChar(CP_UTF8, 0, filename, -1, filename_utf16, filename_utf16_size) == filename_utf16_size) { file = _wfopen(filename_utf16, L"rb"); } } #else file = fopen(filename, "rb"); #endif if (!file) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Failed to open JSON file %s", filename); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } // NOTE: We can't just use fseek(file, 0, SEEK_END) because that isn't guaranteed to be supported on all systems size_t fread_ret_count = 0; do { char buffer[256]; fread_ret_count = fread(buffer, 1, 256, file); } while (fread_ret_count == 256 && !feof(file)); len = ftell(file); fseek(file, 0, SEEK_SET); json_buf = (char *)loader_instance_heap_alloc(inst, len + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (json_buf == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Failed to allocate space for JSON file %s buffer of length %d", filename, len); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } if (fread(json_buf, sizeof(char), len, file) != len) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Failed to read JSON file %s.", filename); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } json_buf[len] = '\0'; // Can't be a valid json if the string is of length zero if (len == 0) { res = VK_ERROR_INITIALIZATION_FAILED; goto out; } // Parse text from file *json = cJSON_Parse(inst ? &inst->alloc_callbacks : NULL, json_buf); if (*json == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Failed to parse JSON file %s, this is usually because something ran out of memory.", filename); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } out: loader_instance_heap_free(inst, json_buf); if (NULL != file) { fclose(file); } return res; } // Verify that all component layers in a meta-layer are valid. static bool verify_meta_layer_component_layers(const struct loader_instance *inst, struct loader_layer_properties *prop, struct loader_layer_list *instance_layers) { bool success = true; loader_api_version meta_layer_version = loader_make_version(prop->info.specVersion); for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) { struct loader_layer_properties *comp_prop = loader_find_layer_property(prop->component_layer_names[comp_layer], instance_layers); if (comp_prop == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "verify_meta_layer_component_layers: Meta-layer %s can't find component layer %s at index %d." " Skipping this layer.", prop->info.layerName, prop->component_layer_names[comp_layer], comp_layer); success = false; break; } // Check the version of each layer, they need to be at least MAJOR and MINOR loader_api_version comp_prop_version = loader_make_version(comp_prop->info.specVersion); if (!loader_check_version_meets_required(meta_layer_version, comp_prop_version)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "verify_meta_layer_component_layers: Meta-layer uses API version %d.%d, but component " "layer %d has API version %d.%d that is lower. Skipping this layer.", meta_layer_version.major, meta_layer_version.minor, comp_layer, comp_prop_version.major, comp_prop_version.minor); success = false; break; } // Make sure the layer isn't using it's own name if (!strcmp(prop->info.layerName, prop->component_layer_names[comp_layer])) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "verify_meta_layer_component_layers: Meta-layer %s lists itself in its component layer " "list at index %d. Skipping this layer.", prop->info.layerName, comp_layer); success = false; break; } if (comp_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "verify_meta_layer_component_layers: Adding meta-layer %s which also contains meta-layer %s", prop->info.layerName, comp_prop->info.layerName); // Make sure if the layer is using a meta-layer in its component list that we also verify that. if (!verify_meta_layer_component_layers(inst, comp_prop, instance_layers)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Meta-layer %s component layer %s can not find all component layers." " Skipping this layer.", prop->info.layerName, prop->component_layer_names[comp_layer]); success = false; break; } } // Add any instance and device extensions from component layers to this layer // list, so that anyone querying extensions will only need to look at the meta-layer for (uint32_t ext = 0; ext < comp_prop->instance_extension_list.count; ext++) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Meta-layer %s component layer %s adding instance extension %s", prop->info.layerName, prop->component_layer_names[comp_layer], comp_prop->instance_extension_list.list[ext].extensionName); if (!has_vk_extension_property(&comp_prop->instance_extension_list.list[ext], &prop->instance_extension_list)) { loader_add_to_ext_list(inst, &prop->instance_extension_list, 1, &comp_prop->instance_extension_list.list[ext]); } } for (uint32_t ext = 0; ext < comp_prop->device_extension_list.count; ext++) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Meta-layer %s component layer %s adding device extension %s", prop->info.layerName, prop->component_layer_names[comp_layer], comp_prop->device_extension_list.list[ext].props.extensionName); if (!has_vk_dev_ext_property(&comp_prop->device_extension_list.list[ext].props, &prop->device_extension_list)) { loader_add_to_dev_ext_list(inst, &prop->device_extension_list, &comp_prop->device_extension_list.list[ext].props, 0, NULL); } } } if (success) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Meta-layer %s all %d component layers appear to be valid.", prop->info.layerName, prop->num_component_layers); // If layer logging is on, list the internals included in the meta-layer if ((loader_get_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) { for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) { loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " [%d] %s", comp_layer, prop->component_layer_names[comp_layer]); } } } return success; } // Verify that all meta-layers in a layer list are valid. static void verify_all_meta_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers, bool *override_layer_present) { *override_layer_present = false; for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) { struct loader_layer_properties *prop = &instance_layers->list[i]; // If this is a meta-layer, make sure it is valid if ((prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) && !verify_meta_layer_component_layers(inst, prop, instance_layers)) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Removing meta-layer %s from instance layer list since it appears invalid.", prop->info.layerName); loader_remove_layer_in_list(inst, instance_layers, i); i--; } else if (prop->is_override && loader_implicit_layer_is_enabled(inst, prop)) { *override_layer_present = true; } } } // If the current working directory matches any app_key_path of the layers, remove all other override layers. // Otherwise if no matching app_key was found, remove all but the global override layer, which has no app_key_path. static void remove_all_non_valid_override_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) { if (instance_layers == NULL) { return; } char cur_path[MAX_STRING_SIZE]; char *ret = loader_platform_executable_path(cur_path, sizeof(cur_path)); if (ret == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "remove_all_non_valid_override_layers: Failed to get executable path and name"); return; } // Find out if there is an override layer with same the app_key_path as the path to the current executable. // If more than one is found, remove it and use the first layer // Remove any layers which aren't global and do not have the same app_key_path as the path to the current executable. bool found_active_override_layer = false; int global_layer_index = -1; for (uint32_t i = 0; i < instance_layers->count; i++) { struct loader_layer_properties *props = &instance_layers->list[i]; if (strcmp(props->info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) { if (props->num_app_key_paths > 0) { // not the global layer for (uint32_t j = 0; j < props->num_app_key_paths; j++) { if (strcmp(props->app_key_paths[j], cur_path) == 0) { if (!found_active_override_layer) { found_active_override_layer = true; } else { loader_log( inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "remove_all_non_valid_override_layers: Multiple override layers where the same path in app_keys " "was found. Using the first layer found"); // Remove duplicate active override layers that have the same app_key_path loader_remove_layer_in_list(inst, instance_layers, i); i--; } } } if (!found_active_override_layer) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "--Override layer found but not used because app \'%s\' is not in \'app_keys\' list!", cur_path); // Remove non-global override layers that don't have an app_key that matches cur_path loader_remove_layer_in_list(inst, instance_layers, i); i--; } } else { if (global_layer_index == -1) { global_layer_index = i; } else { loader_log( inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "remove_all_non_valid_override_layers: Multiple global override layers found. Using the first global " "layer found"); loader_remove_layer_in_list(inst, instance_layers, i); i--; } } } } // Remove global layer if layer with same the app_key_path as the path to the current executable is found if (found_active_override_layer && global_layer_index >= 0) { loader_remove_layer_in_list(inst, instance_layers, global_layer_index); } // Should be at most 1 override layer in the list now. if (found_active_override_layer) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Using the override layer for app key %s", cur_path); } else if (global_layer_index >= 0) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Using the global override layer"); } } static VkResult loader_read_layer_json(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list, cJSON *layer_node, loader_api_version version, cJSON *item, bool is_implicit, char *filename) { char *temp; char *name, *type, *library_path_str, *api_version; char *implementation_version, *description; cJSON *ext_item; cJSON *library_path; cJSON *component_layers; cJSON *override_paths; cJSON *blacklisted_layers; cJSON *disable_environment = NULL; VkExtensionProperties ext_prop; VkResult result = VK_ERROR_INITIALIZATION_FAILED; struct loader_layer_properties *props = NULL; uint32_t props_index = 0; int i, j; // The following are required in the "layer" object: // (required) "name" // (required) "type" // (required) "library_path" // (required) "api_version" // (required) "implementation_version" // (required) "description" // (required for implicit layers) "disable_environment" #define GET_JSON_OBJECT(node, var) \ { \ var = cJSON_GetObjectItem(node, #var); \ if (var == NULL) { \ loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, \ "Didn't find required layer object %s in manifest " \ "JSON file, skipping this layer", \ #var); \ goto out; \ } \ } #define GET_JSON_ITEM(inst, node, var) \ { \ item = cJSON_GetObjectItem(node, #var); \ if (item == NULL) { \ loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, \ "Didn't find required layer value %s in manifest JSON " \ "file, skipping this layer", \ #var); \ goto out; \ } \ temp = cJSON_Print(item); \ if (temp == NULL) { \ loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, \ "Problem accessing layer value %s in manifest JSON " \ "file, skipping this layer", \ #var); \ result = VK_ERROR_OUT_OF_HOST_MEMORY; \ goto out; \ } \ temp[strlen(temp) - 1] = '\0'; \ var = loader_stack_alloc(strlen(temp) + 1); \ strcpy(var, &temp[1]); \ loader_instance_heap_free(inst, temp); \ } GET_JSON_ITEM(inst, layer_node, name) GET_JSON_ITEM(inst, layer_node, type) GET_JSON_ITEM(inst, layer_node, api_version) GET_JSON_ITEM(inst, layer_node, implementation_version) GET_JSON_ITEM(inst, layer_node, description) // Add list entry if (!strcmp(type, "DEVICE")) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Device layers are deprecated. Skipping this layer"); goto out; } // Allow either GLOBAL or INSTANCE type interchangeably to handle // layers that must work with older loaders if (!strcmp(type, "INSTANCE") || !strcmp(type, "GLOBAL")) { if (layer_instance_list == NULL) { goto out; } props = loader_get_next_layer_property_slot(inst, layer_instance_list); if (NULL == props) { // Error already triggered in loader_get_next_layer_property_slot. result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } props_index = layer_instance_list->count - 1; props->type_flags = VK_LAYER_TYPE_FLAG_INSTANCE_LAYER; if (!is_implicit) { props->type_flags |= VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER; } } else { goto out; } // Expiration date for override layer. Field starte with JSON file 1.1.2 and // is completely optional. So, no check put in place. if (!strcmp(name, VK_OVERRIDE_LAYER_NAME)) { cJSON *expiration; if (!loader_check_version_meets_required(loader_combine_version(1, 1, 2), version)) { loader_log( inst, VULKAN_LOADER_WARN_BIT, 0, "Override layer expiration date not added until version 1.1.2. Please update JSON file version appropriately."); } props->is_override = true; expiration = cJSON_GetObjectItem(layer_node, "expiration_date"); if (NULL != expiration) { char date_copy[32]; uint8_t cur_item = 0; // Get the string for the current item temp = cJSON_Print(expiration); if (temp == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Problem accessing layer value 'expiration_date' in manifest JSON file, skipping this layer"); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strcpy(date_copy, &temp[1]); loader_instance_heap_free(inst, temp); if (strlen(date_copy) == 16) { char *cur_start = &date_copy[0]; char *next_dash = strchr(date_copy, '-'); if (NULL != next_dash) { while (cur_item < 5 && strlen(cur_start)) { if (next_dash != NULL) { *next_dash = '\0'; } switch (cur_item) { case 0: // Year props->expiration.year = (uint16_t)atoi(cur_start); break; case 1: // Month props->expiration.month = (uint8_t)atoi(cur_start); break; case 2: // Day props->expiration.day = (uint8_t)atoi(cur_start); break; case 3: // Hour props->expiration.hour = (uint8_t)atoi(cur_start); break; case 4: // Minute props->expiration.minute = (uint8_t)atoi(cur_start); props->has_expiration = true; break; default: // Ignore break; } if (next_dash != NULL) { cur_start = next_dash + 1; next_dash = strchr(cur_start, '-'); } cur_item++; } } } } } // Library path no longer required unless component_layers is also not defined library_path = cJSON_GetObjectItem(layer_node, "library_path"); component_layers = cJSON_GetObjectItem(layer_node, "component_layers"); if (NULL != library_path) { if (NULL != component_layers) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Indicating meta-layer-specific component_layers, but also defining layer library path. Both are not " "compatible, so skipping this layer"); goto out; } props->num_component_layers = 0; props->component_layer_names = NULL; temp = cJSON_Print(library_path); if (NULL == temp) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Problem accessing layer value library_path in manifest JSON file, skipping this layer"); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; library_path_str = loader_stack_alloc(strlen(temp) + 1); strcpy(library_path_str, &temp[1]); loader_instance_heap_free(inst, temp); strncpy(props->manifest_file_name, filename, MAX_STRING_SIZE); char *fullpath = props->lib_name; char *rel_base; if (NULL != library_path_str) { if (loader_platform_is_path(library_path_str)) { // A relative or absolute path char *name_copy = loader_stack_alloc(strlen(filename) + 1); strcpy(name_copy, filename); rel_base = loader_platform_dirname(name_copy); loader_expand_path(library_path_str, rel_base, MAX_STRING_SIZE, fullpath); } else { // A filename which is assumed in a system directory loader_get_fullpath(library_path_str, "", MAX_STRING_SIZE, fullpath); } } } else if (NULL != component_layers) { if (!loader_check_version_meets_required(LOADER_VERSION_1_1_0, version)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Indicating meta-layer-specific component_layers, but using older JSON file version."); } int count = cJSON_GetArraySize(component_layers); props->num_component_layers = count; // Allocate buffer for layer names props->component_layer_names = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == props->component_layer_names && count > 0) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the component layers into the array for (i = 0; i < count; i++) { cJSON *comp_layer = cJSON_GetArrayItem(component_layers, i); if (NULL != comp_layer) { temp = cJSON_Print(comp_layer); if (NULL == temp) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->component_layer_names[i], temp + 1, MAX_STRING_SIZE - 1); props->component_layer_names[i][MAX_STRING_SIZE - 1] = '\0'; loader_instance_heap_free(inst, temp); } } // This is now, officially, a meta-layer props->type_flags |= VK_LAYER_TYPE_FLAG_META_LAYER; loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Encountered meta-layer %s", name); // Make sure we set up other things so we head down the correct branches below library_path_str = NULL; } else { loader_log( inst, VULKAN_LOADER_WARN_BIT, 0, "Layer missing both library_path and component_layers fields. One or the other MUST be defined. Skipping this layer"); goto out; } props->num_blacklist_layers = 0; props->blacklist_layer_names = NULL; blacklisted_layers = cJSON_GetObjectItem(layer_node, "blacklisted_layers"); if (blacklisted_layers != NULL) { if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Layer %s contains a blacklist, but a blacklist can only be provided by the override metalayer. This " "blacklist will be ignored.", name); } else { props->num_blacklist_layers = cJSON_GetArraySize(blacklisted_layers); if (props->num_blacklist_layers > 0) { // Allocate the blacklist array props->blacklist_layer_names = loader_instance_heap_alloc( inst, sizeof(char[MAX_STRING_SIZE]) * props->num_blacklist_layers, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (props->blacklist_layer_names == NULL && props->num_blacklist_layers > 0) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the blacklisted layers into the array for (i = 0; i < (int)props->num_blacklist_layers; ++i) { cJSON *black_layer = cJSON_GetArrayItem(blacklisted_layers, i); if (black_layer == NULL) { continue; } temp = cJSON_Print(black_layer); if (temp == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->blacklist_layer_names[i], temp + 1, MAX_STRING_SIZE - 1); props->blacklist_layer_names[i][MAX_STRING_SIZE - 1] = '\0'; loader_instance_heap_free(inst, temp); } } } } override_paths = cJSON_GetObjectItem(layer_node, "override_paths"); if (NULL != override_paths) { if (!loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Indicating meta-layer-specific override paths, but using older JSON file version."); } int count = cJSON_GetArraySize(override_paths); props->num_override_paths = count; if (count > 0) { // Allocate buffer for override paths props->override_paths = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == props->override_paths && count > 0) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the override paths into the array for (i = 0; i < count; i++) { cJSON *override_path = cJSON_GetArrayItem(override_paths, i); if (NULL != override_path) { temp = cJSON_Print(override_path); if (NULL == temp) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->override_paths[i], temp + 1, MAX_STRING_SIZE - 1); props->override_paths[i][MAX_STRING_SIZE - 1] = '\0'; loader_instance_heap_free(inst, temp); } } } } if (is_implicit) { GET_JSON_OBJECT(layer_node, disable_environment) } #undef GET_JSON_ITEM #undef GET_JSON_OBJECT strncpy(props->info.layerName, name, sizeof(props->info.layerName)); props->info.layerName[sizeof(props->info.layerName) - 1] = '\0'; if (0 != strncmp(props->info.layerName, "VK_LAYER_", 9)) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Layer name %s does not conform to naming standard (Policy #LLP_LAYER_3)", props->info.layerName); } props->info.specVersion = loader_parse_version_string(api_version); props->info.implementationVersion = atoi(implementation_version); strncpy((char *)props->info.description, description, sizeof(props->info.description)); props->info.description[sizeof(props->info.description) - 1] = '\0'; if (is_implicit) { if (!disable_environment || !disable_environment->child) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Didn't find required layer child value disable_environment in manifest JSON file, skipping this layer " "(Policy #LLP_LAYER_9)"); goto out; } strncpy(props->disable_env_var.name, disable_environment->child->string, sizeof(props->disable_env_var.name)); props->disable_env_var.name[sizeof(props->disable_env_var.name) - 1] = '\0'; strncpy(props->disable_env_var.value, disable_environment->child->valuestring, sizeof(props->disable_env_var.value)); props->disable_env_var.value[sizeof(props->disable_env_var.value) - 1] = '\0'; } // Make sure the layer's manifest doesn't contain a non zero variant value if (VK_API_VERSION_VARIANT(props->info.specVersion) != 0) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Layer %s has an \'api_version\' field which contains a non-zero variant value of %d. " " Skipping Layer.", props->info.layerName, VK_API_VERSION_VARIANT(props->info.specVersion)); goto out; } // Now get all optional items and objects and put in list: // functions // instance_extensions // device_extensions // enable_environment (implicit layers only) // library_arch #define GET_JSON_OBJECT(node, var) \ { var = cJSON_GetObjectItem(node, #var); } #define GET_JSON_ITEM(inst, node, var) \ { \ item = cJSON_GetObjectItem(node, #var); \ if (item != NULL) { \ temp = cJSON_Print(item); \ if (temp != NULL) { \ temp[strlen(temp) - 1] = '\0'; \ var = loader_stack_alloc(strlen(temp) + 1); \ strcpy(var, &temp[1]); \ loader_instance_heap_free(inst, temp); \ } else { \ result = VK_ERROR_OUT_OF_HOST_MEMORY; \ goto out; \ } \ } \ } cJSON *instance_extensions, *device_extensions, *functions, *enable_environment; cJSON *entrypoints = NULL; char *vkGetInstanceProcAddr = NULL; char *vkGetDeviceProcAddr = NULL; char *vkNegotiateLoaderLayerInterfaceVersion = NULL; char *spec_version = NULL; char **entry_array = NULL; char *library_arch = NULL; cJSON *app_keys = NULL; // Layer interface functions // vkGetInstanceProcAddr // vkGetDeviceProcAddr // vkNegotiateLoaderLayerInterfaceVersion (starting with JSON file 1.1.0) GET_JSON_OBJECT(layer_node, functions) if (functions != NULL) { if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) { GET_JSON_ITEM(inst, functions, vkNegotiateLoaderLayerInterfaceVersion) if (vkNegotiateLoaderLayerInterfaceVersion != NULL) strncpy(props->functions.str_negotiate_interface, vkNegotiateLoaderLayerInterfaceVersion, sizeof(props->functions.str_negotiate_interface)); props->functions.str_negotiate_interface[sizeof(props->functions.str_negotiate_interface) - 1] = '\0'; } else { props->functions.str_negotiate_interface[0] = '\0'; } GET_JSON_ITEM(inst, functions, vkGetInstanceProcAddr) GET_JSON_ITEM(inst, functions, vkGetDeviceProcAddr) if (vkGetInstanceProcAddr != NULL) { strncpy(props->functions.str_gipa, vkGetInstanceProcAddr, sizeof(props->functions.str_gipa)); if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) { loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "Layer \"%s\" using deprecated \'vkGetInstanceProcAddr\' tag which was deprecated starting with JSON " "file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for " "compatibility reasons it may be desirable to continue using the deprecated tag.", name); } } props->functions.str_gipa[sizeof(props->functions.str_gipa) - 1] = '\0'; if (vkGetDeviceProcAddr != NULL) { strncpy(props->functions.str_gdpa, vkGetDeviceProcAddr, sizeof(props->functions.str_gdpa)); if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) { loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "Layer \"%s\" using deprecated \'vkGetDeviceProcAddr\' tag which was deprecated starting with JSON " "file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for " "compatibility reasons it may be desirable to continue using the deprecated tag.", name); } } props->functions.str_gdpa[sizeof(props->functions.str_gdpa) - 1] = '\0'; } // instance_extensions // array of { // name // spec_version // } GET_JSON_OBJECT(layer_node, instance_extensions) if (instance_extensions != NULL) { int count = cJSON_GetArraySize(instance_extensions); for (i = 0; i < count; i++) { ext_item = cJSON_GetArrayItem(instance_extensions, i); GET_JSON_ITEM(inst, ext_item, name) if (name != NULL) { strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName)); ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0'; } GET_JSON_ITEM(inst, ext_item, spec_version) if (NULL != spec_version) { ext_prop.specVersion = atoi(spec_version); } else { ext_prop.specVersion = 0; } bool ext_unsupported = wsi_unsupported_instance_extension(&ext_prop); if (!ext_unsupported) { loader_add_to_ext_list(inst, &props->instance_extension_list, 1, &ext_prop); } } } // device_extensions // array of { // name // spec_version // entrypoints // } GET_JSON_OBJECT(layer_node, device_extensions) if (device_extensions != NULL) { int count = cJSON_GetArraySize(device_extensions); for (i = 0; i < count; i++) { ext_item = cJSON_GetArrayItem(device_extensions, i); GET_JSON_ITEM(inst, ext_item, name) GET_JSON_ITEM(inst, ext_item, spec_version) if (name != NULL) { strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName)); ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0'; } if (NULL != spec_version) { ext_prop.specVersion = atoi(spec_version); } else { ext_prop.specVersion = 0; } // entrypoints = cJSON_GetObjectItem(ext_item, "entrypoints"); GET_JSON_OBJECT(ext_item, entrypoints) int entry_count; if (entrypoints == NULL) { loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, 0, NULL); continue; } entry_count = cJSON_GetArraySize(entrypoints); if (entry_count) { entry_array = (char **)loader_stack_alloc(sizeof(char *) * entry_count); } for (j = 0; j < entry_count; j++) { ext_item = cJSON_GetArrayItem(entrypoints, j); if (ext_item != NULL) { temp = cJSON_Print(ext_item); if (NULL == temp) { entry_array[j] = NULL; result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; entry_array[j] = loader_stack_alloc(strlen(temp) + 1); strcpy(entry_array[j], &temp[1]); loader_instance_heap_free(inst, temp); } } loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, entry_count, entry_array); } } if (is_implicit) { GET_JSON_OBJECT(layer_node, enable_environment) // enable_environment is optional if (enable_environment) { strncpy(props->enable_env_var.name, enable_environment->child->string, sizeof(props->enable_env_var.name)); props->enable_env_var.name[sizeof(props->enable_env_var.name) - 1] = '\0'; strncpy(props->enable_env_var.value, enable_environment->child->valuestring, sizeof(props->enable_env_var.value)); props->enable_env_var.value[sizeof(props->enable_env_var.value) - 1] = '\0'; } } // Read in the pre-instance stuff cJSON *pre_instance = cJSON_GetObjectItem(layer_node, "pre_instance_functions"); if (NULL != pre_instance) { // Supported versions started in 1.1.2, so anything newer if (!loader_check_version_meets_required(loader_combine_version(1, 1, 2), version)) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "Found pre_instance_functions section in layer from \"%s\". This section is only valid in manifest version " "1.1.2 or later. The section will be ignored", filename); } else if (!is_implicit) { loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Found pre_instance_functions section in explicit layer from \"%s\". This section is only valid in implicit " "layers. The section will be ignored", filename); } else { cJSON *inst_ext_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceExtensionProperties"); if (NULL != inst_ext_json) { char *inst_ext_name = cJSON_Print(inst_ext_json); if (NULL == inst_ext_name) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t len = strlen(inst_ext_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_ext_name) - 2; strncpy(props->pre_instance_functions.enumerate_instance_extension_properties, inst_ext_name + 1, len); props->pre_instance_functions.enumerate_instance_extension_properties[len] = '\0'; loader_instance_heap_free(inst, inst_ext_name); } cJSON *inst_layer_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceLayerProperties"); if (NULL != inst_layer_json) { char *inst_layer_name = cJSON_Print(inst_layer_json); if (NULL == inst_layer_name) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t len = strlen(inst_layer_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_layer_name) - 2; strncpy(props->pre_instance_functions.enumerate_instance_layer_properties, inst_layer_name + 1, len); props->pre_instance_functions.enumerate_instance_layer_properties[len] = '\0'; loader_instance_heap_free(inst, inst_layer_name); } cJSON *inst_version_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceVersion"); if (NULL != inst_version_json) { char *inst_version_name = cJSON_Print(inst_version_json); if (NULL == inst_version_name) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t len = strlen(inst_version_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_version_name) - 2; strncpy(props->pre_instance_functions.enumerate_instance_version, inst_version_name + 1, len); props->pre_instance_functions.enumerate_instance_version[len] = '\0'; loader_instance_heap_free(inst, inst_version_name); } } } props->num_app_key_paths = 0; props->app_key_paths = NULL; app_keys = cJSON_GetObjectItem(layer_node, "app_keys"); if (app_keys != NULL) { if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Layer %s contains app_keys, but any app_keys can only be provided by the override metalayer. " "These will be ignored.", name); } else { props->num_app_key_paths = cJSON_GetArraySize(app_keys); // Allocate the blacklist array props->app_key_paths = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * props->num_app_key_paths, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (props->app_key_paths == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the app_key_paths into the array for (i = 0; i < (int)props->num_app_key_paths; ++i) { cJSON *app_key_path = cJSON_GetArrayItem(app_keys, i); if (app_key_path == NULL) { continue; } temp = cJSON_Print(app_key_path); if (temp == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->app_key_paths[i], temp + 1, MAX_STRING_SIZE - 1); props->app_key_paths[i][MAX_STRING_SIZE - 1] = '\0'; loader_instance_heap_free(inst, temp); } } } GET_JSON_ITEM(inst, layer_node, library_arch) if (library_arch != NULL) { if ((strncmp(library_arch, "32", 2) == 0 && sizeof(void *) != 4) || (strncmp(library_arch, "64", 2) == 0 && sizeof(void *) != 8)) { loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "Layer library architecture doesn't match the current running architecture, skipping this layer"); goto out; } } result = VK_SUCCESS; out: #undef GET_JSON_ITEM #undef GET_JSON_OBJECT if (VK_SUCCESS != result && NULL != props) { // Make sure to free anything that was allocated loader_remove_layer_in_list(inst, layer_instance_list, props_index); } return result; } static inline bool is_valid_layer_json_version(const loader_api_version *layer_json) { // Supported versions are: 1.0.0, 1.0.1, 1.1.0 - 1.1.2, and 1.2.0 - 1.2.1. if ((layer_json->major == 1 && layer_json->minor == 2 && layer_json->patch < 2) || (layer_json->major == 1 && layer_json->minor == 1 && layer_json->patch < 3) || (layer_json->major == 1 && layer_json->minor == 0 && layer_json->patch < 2)) { return true; } return false; } // Given a cJSON struct (json) of the top level JSON object from layer manifest // file, add entry to the layer_list. Fill out the layer_properties in this list // entry from the input cJSON object. // // \returns // void // layer_list has a new entry and initialized accordingly. // If the json input object does not have all the required fields no entry // is added to the list. static VkResult loader_add_layer_properties(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list, cJSON *json, bool is_implicit, char *filename) { // The following Fields in layer manifest file that are required: // - "file_format_version" // - If more than one "layer" object are used, then the "layers" array is // required VkResult result = VK_ERROR_INITIALIZATION_FAILED; cJSON *item, *layers_node, *layer_node; loader_api_version json_version = {0, 0, 0}; char *file_vers = NULL; // Make sure sure the top level json value is an object if (!json || json->type != 6) { goto out; } item = cJSON_GetObjectItem(json, "file_format_version"); if (item == NULL) { goto out; } file_vers = cJSON_PrintUnformatted(item); if (NULL == file_vers) { goto out; } loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "Found manifest file %s (file version %s)", filename, file_vers); // Get the major/minor/and patch as integers for easier comparison json_version = loader_make_full_version(loader_parse_version_string(file_vers)); if (!is_valid_layer_json_version(&json_version)) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_properties: %s has unknown layer manifest file version %d.%d.%d. May cause errors.", filename, json_version.major, json_version.minor, json_version.patch); } // If "layers" is present, read in the array of layer objects layers_node = cJSON_GetObjectItem(json, "layers"); if (layers_node != NULL) { int numItems = cJSON_GetArraySize(layers_node); // Supported versions started in 1.0.1, so anything newer if (!loader_check_version_meets_required(loader_combine_version(1, 0, 1), json_version)) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_properties: \'layers\' tag not supported until file version 1.0.1, but %s is reporting " "version %s", filename, file_vers); } for (int curLayer = 0; curLayer < numItems; curLayer++) { layer_node = cJSON_GetArrayItem(layers_node, curLayer); if (layer_node == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_properties: Can not find 'layers' array element %d object in manifest JSON file %s. " "Skipping this file", curLayer, filename); goto out; } result = loader_read_layer_json(inst, layer_instance_list, layer_node, json_version, item, is_implicit, filename); } } else { // Otherwise, try to read in individual layers layer_node = cJSON_GetObjectItem(json, "layer"); if (layer_node == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_properties: Can not find 'layer' object in manifest JSON file %s. Skipping this file.", filename); goto out; } // Loop through all "layer" objects in the file to get a count of them // first. uint16_t layer_count = 0; cJSON *tempNode = layer_node; do { tempNode = tempNode->next; layer_count++; } while (tempNode != NULL); // Throw a warning if we encounter multiple "layer" objects in file // versions newer than 1.0.0. Having multiple objects with the same // name at the same level is actually a JSON standard violation. if (layer_count > 1 && loader_check_version_meets_required(loader_combine_version(1, 0, 1), json_version)) { loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_layer_properties: Multiple 'layer' nodes are deprecated starting in file version \"1.0.1\". " "Please use 'layers' : [] array instead in %s.", filename); } else { do { result = loader_read_layer_json(inst, layer_instance_list, layer_node, json_version, item, is_implicit, filename); layer_node = layer_node->next; } while (layer_node != NULL); } } out: loader_instance_heap_free(inst, file_vers); return result; } static inline size_t determine_data_file_path_size(const char *cur_path, size_t relative_path_size) { size_t path_size = 0; if (NULL != cur_path) { // For each folder in cur_path, (detected by finding additional // path separators in the string) we need to add the relative path on // the end. Plus, leave an additional two slots on the end to add an // additional directory slash and path separator if needed path_size += strlen(cur_path) + relative_path_size + 2; for (const char *x = cur_path; *x; ++x) { if (*x == PATH_SEPARATOR) { path_size += relative_path_size + 2; } } } return path_size; } static inline void copy_data_file_info(const char *cur_path, const char *relative_path, size_t relative_path_size, char **output_path) { if (NULL != cur_path) { uint32_t start = 0; uint32_t stop = 0; char *cur_write = *output_path; while (cur_path[start] != '\0') { while (cur_path[start] == PATH_SEPARATOR) { start++; } stop = start; while (cur_path[stop] != PATH_SEPARATOR && cur_path[stop] != '\0') { stop++; } const size_t s = stop - start; if (s) { memcpy(cur_write, &cur_path[start], s); cur_write += s; // If this is a specific JSON file, just add it and don't add any // relative path or directory symbol to it. if (!is_json(cur_write - 5, s)) { // Add the relative directory if present. if (relative_path_size > 0) { // If last symbol written was not a directory symbol, add it. if (*(cur_write - 1) != DIRECTORY_SYMBOL) { *cur_write++ = DIRECTORY_SYMBOL; } memcpy(cur_write, relative_path, relative_path_size); cur_write += relative_path_size; } } *cur_write++ = PATH_SEPARATOR; start = stop; } } *output_path = cur_write; } } // Check to see if there's enough space in the data file list. If not, add some. static inline VkResult check_and_adjust_data_file_list(const struct loader_instance *inst, struct loader_data_files *out_files) { if (out_files->count == 0) { out_files->filename_list = loader_instance_heap_alloc(inst, 64 * sizeof(char *), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == out_files->filename_list) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "check_and_adjust_data_file_list: Failed to allocate space for manifest file name list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } out_files->alloc_count = 64; } else if (out_files->count == out_files->alloc_count) { size_t new_size = out_files->alloc_count * sizeof(char *) * 2; void *new_ptr = loader_instance_heap_realloc(inst, out_files->filename_list, out_files->alloc_count * sizeof(char *), new_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == new_ptr) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "check_and_adjust_data_file_list: Failed to reallocate space for manifest file name list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } out_files->filename_list = new_ptr; out_files->alloc_count *= 2; } return VK_SUCCESS; } // add file_name to the out_files manifest list. Assumes its a valid manifest file name static VkResult add_manifest_file(const struct loader_instance *inst, const char *file_name, struct loader_data_files *out_files) { VkResult vk_result = VK_SUCCESS; // Check and allocate space in the manifest list if necessary vk_result = check_and_adjust_data_file_list(inst, out_files); if (VK_SUCCESS != vk_result) { goto out; } out_files->filename_list[out_files->count] = loader_instance_heap_alloc(inst, strlen(file_name) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (out_files->filename_list[out_files->count] == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "add_manifest_file: Failed to allocate space for manifest file %d list", out_files->count); vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(out_files->filename_list[out_files->count++], file_name); out: return vk_result; } // If the file found is a manifest file name, add it to the out_files manifest list. static VkResult add_if_manifest_file(const struct loader_instance *inst, const char *file_name, struct loader_data_files *out_files) { VkResult vk_result = VK_SUCCESS; assert(NULL != file_name && "add_if_manifest_file: Received NULL pointer for file_name"); assert(NULL != out_files && "add_if_manifest_file: Received NULL pointer for out_files"); // Look for files ending with ".json" suffix size_t name_len = strlen(file_name); const char *name_suffix = file_name + name_len - 5; if (!is_json(name_suffix, name_len)) { // Use incomplete to indicate invalid name, but to keep going. vk_result = VK_INCOMPLETE; goto out; } vk_result = add_manifest_file(inst, file_name, out_files); out: return vk_result; } // Add any files found in the search_path. If any path in the search path points to a specific JSON, attempt to // only open that one JSON. Otherwise, if the path is a folder, search the folder for JSON files. VkResult add_data_files(const struct loader_instance *inst, char *search_path, struct loader_data_files *out_files, bool use_first_found_manifest) { VkResult vk_result = VK_SUCCESS; DIR *dir_stream = NULL; struct dirent *dir_entry; char *cur_file; char *next_file; char *name; char full_path[2048]; #ifndef _WIN32 char temp_path[2048]; #endif // Now, parse the paths next_file = search_path; while (NULL != next_file && *next_file != '\0') { name = NULL; cur_file = next_file; next_file = loader_get_next_path(cur_file); // Is this a JSON file, then try to open it. size_t len = strlen(cur_file); if (is_json(cur_file + len - 5, len)) { #ifdef _WIN32 name = cur_file; #else // Only Linux has relative paths, make a copy of location so it isn't modified size_t str_len; if (NULL != next_file) { str_len = next_file - cur_file + 1; } else { str_len = strlen(cur_file) + 1; } if (str_len > sizeof(temp_path)) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "add_data_files: Path to %s too long\n", cur_file); continue; } strcpy(temp_path, cur_file); name = temp_path; #endif loader_get_fullpath(cur_file, name, sizeof(full_path), full_path); name = full_path; VkResult local_res; local_res = add_if_manifest_file(inst, name, out_files); // Incomplete means this was not a valid data file. if (local_res == VK_INCOMPLETE) { continue; } else if (local_res != VK_SUCCESS) { vk_result = local_res; break; } } else { // Otherwise, treat it as a directory dir_stream = loader_opendir(inst, cur_file); if (NULL == dir_stream) { continue; } while (1) { dir_entry = readdir(dir_stream); if (NULL == dir_entry) { break; } name = &(dir_entry->d_name[0]); loader_get_fullpath(name, cur_file, sizeof(full_path), full_path); name = full_path; VkResult local_res; local_res = add_if_manifest_file(inst, name, out_files); // Incomplete means this was not a valid data file. if (local_res == VK_INCOMPLETE) { continue; } else if (local_res != VK_SUCCESS) { vk_result = local_res; break; } } loader_closedir(inst, dir_stream); if (vk_result != VK_SUCCESS) { goto out; } } if (use_first_found_manifest && out_files->count > 0) { break; } } out: return vk_result; } // Look for data files in the provided paths, but first check the environment override to determine if we should use that // instead. static VkResult read_data_files_in_search_paths(const struct loader_instance *inst, enum loader_data_files_type manifest_type, const char *path_override, bool *override_active, struct loader_data_files *out_files) { VkResult vk_result = VK_SUCCESS; char *override_env = NULL; const char *override_path = NULL; char *relative_location = NULL; char *additional_env = NULL; size_t search_path_size = 0; char *search_path = NULL; char *cur_path_ptr = NULL; bool use_first_found_manifest = false; #ifndef _WIN32 size_t rel_size = 0; // unused in windows, dont declare so no compiler warnings are generated #endif #if defined(_WIN32) char *package_path = NULL; #else // Determine how much space is needed to generate the full search path // for the current manifest files. char *xdg_config_home = loader_secure_getenv("XDG_CONFIG_HOME", inst); char *xdg_config_dirs = loader_secure_getenv("XDG_CONFIG_DIRS", inst); #if !defined(__Fuchsia__) && !defined(__QNXNTO__) if (NULL == xdg_config_dirs || '\0' == xdg_config_dirs[0]) { xdg_config_dirs = FALLBACK_CONFIG_DIRS; } #endif char *xdg_data_home = loader_secure_getenv("XDG_DATA_HOME", inst); char *xdg_data_dirs = loader_secure_getenv("XDG_DATA_DIRS", inst); #if !defined(__Fuchsia__) && !defined(__QNXNTO__) if (NULL == xdg_data_dirs || '\0' == xdg_data_dirs[0]) { xdg_data_dirs = FALLBACK_DATA_DIRS; } #endif char *home = NULL; char *default_data_home = NULL; char *default_config_home = NULL; char *home_data_dir = NULL; char *home_config_dir = NULL; // Only use HOME if XDG_DATA_HOME is not present on the system home = loader_secure_getenv("HOME", inst); if (home != NULL) { if (NULL == xdg_config_home || '\0' == xdg_config_home[0]) { const char config_suffix[] = "/.config"; default_config_home = loader_instance_heap_alloc(inst, strlen(home) + strlen(config_suffix) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (default_config_home == NULL) { vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(default_config_home, home); strcat(default_config_home, config_suffix); } if (NULL == xdg_data_home || '\0' == xdg_data_home[0]) { const char data_suffix[] = "/.local/share"; default_data_home = loader_instance_heap_alloc(inst, strlen(home) + strlen(data_suffix) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (default_data_home == NULL) { vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(default_data_home, home); strcat(default_data_home, data_suffix); } } if (NULL != default_config_home) { home_config_dir = default_config_home; } else { home_config_dir = xdg_config_home; } if (NULL != default_data_home) { home_data_dir = default_data_home; } else { home_data_dir = xdg_data_home; } #endif // !_WIN32 switch (manifest_type) { case LOADER_DATA_FILE_MANIFEST_DRIVER: override_env = loader_secure_getenv(VK_DRIVER_FILES_ENV_VAR, inst); if (NULL == override_env) { // Not there, so fall back to the old name override_env = loader_secure_getenv(VK_ICD_FILENAMES_ENV_VAR, inst); } additional_env = loader_secure_getenv(VK_ADDITIONAL_DRIVER_FILES_ENV_VAR, inst); relative_location = VK_DRIVERS_INFO_RELATIVE_DIR; #if defined(_WIN32) package_path = windows_get_app_package_manifest_path(inst); #endif break; case LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER: relative_location = VK_ILAYERS_INFO_RELATIVE_DIR; break; case LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER: override_env = loader_secure_getenv(VK_LAYER_PATH_ENV_VAR, inst); additional_env = loader_secure_getenv(VK_ADDITIONAL_LAYER_PATH_ENV_VAR, inst); relative_location = VK_ELAYERS_INFO_RELATIVE_DIR; break; default: assert(false && "Shouldn't get here!"); break; } if (path_override != NULL) { override_path = path_override; } else if (override_env != NULL) { override_path = override_env; } // Add two by default for NULL terminator and one path separator on end (just in case) search_path_size = 2; // If there's an override, use that (and the local folder if required) and nothing else if (NULL != override_path) { // Local folder and null terminator search_path_size += strlen(override_path) + 2; } else { // Add the size of any additional search paths defined in the additive environment variable if (NULL != additional_env) { search_path_size += determine_data_file_path_size(additional_env, 0) + 2; #if defined(_WIN32) } if (NULL != package_path) { search_path_size += determine_data_file_path_size(package_path, 0) + 2; } if (search_path_size == 2) { goto out; } #else // !_WIN32 } // Add the general search folders (with the appropriate relative folder added) rel_size = strlen(relative_location); if (rel_size > 0) { #if defined(__APPLE__) search_path_size += MAXPATHLEN; #endif // Only add the home folders if defined if (NULL != home_config_dir) { search_path_size += determine_data_file_path_size(home_config_dir, rel_size); } search_path_size += determine_data_file_path_size(xdg_config_dirs, rel_size); search_path_size += determine_data_file_path_size(SYSCONFDIR, rel_size); #if defined(EXTRASYSCONFDIR) search_path_size += determine_data_file_path_size(EXTRASYSCONFDIR, rel_size); #endif // Only add the home folders if defined if (NULL != home_data_dir) { search_path_size += determine_data_file_path_size(home_data_dir, rel_size); } search_path_size += determine_data_file_path_size(xdg_data_dirs, rel_size); } #endif // !_WIN32 } // Allocate the required space search_path = loader_instance_heap_calloc(inst, search_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == search_path) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "read_data_files_in_search_paths: Failed to allocate space for search path of length %d", (uint32_t)search_path_size); vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } cur_path_ptr = search_path; // Add the remaining paths to the list if (NULL != override_path) { strcpy(cur_path_ptr, override_path); cur_path_ptr += strlen(override_path); } else { // Add any additional search paths defined in the additive environment variable if (NULL != additional_env) { copy_data_file_info(additional_env, NULL, 0, &cur_path_ptr); } #if defined(_WIN32) if (NULL != package_path) { copy_data_file_info(package_path, NULL, 0, &cur_path_ptr); } #else if (rel_size > 0) { #if defined(__APPLE__) // Add the bundle's Resources dir to the beginning of the search path. // Looks for manifests in the bundle first, before any system directories. CFBundleRef main_bundle = CFBundleGetMainBundle(); if (NULL != main_bundle) { CFURLRef ref = CFBundleCopyResourcesDirectoryURL(main_bundle); if (NULL != ref) { if (CFURLGetFileSystemRepresentation(ref, TRUE, (UInt8 *)cur_path_ptr, search_path_size)) { cur_path_ptr += strlen(cur_path_ptr); *cur_path_ptr++ = DIRECTORY_SYMBOL; memcpy(cur_path_ptr, relative_location, rel_size); cur_path_ptr += rel_size; *cur_path_ptr++ = PATH_SEPARATOR; // only for ICD manifests if (override_env != NULL && manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) { use_first_found_manifest = true; } } CFRelease(ref); } } #endif // __APPLE__ // Only add the home folders if not NULL if (NULL != home_config_dir) { copy_data_file_info(home_config_dir, relative_location, rel_size, &cur_path_ptr); } copy_data_file_info(xdg_config_dirs, relative_location, rel_size, &cur_path_ptr); copy_data_file_info(SYSCONFDIR, relative_location, rel_size, &cur_path_ptr); #if defined(EXTRASYSCONFDIR) copy_data_file_info(EXTRASYSCONFDIR, relative_location, rel_size, &cur_path_ptr); #endif // Only add the home folders if not NULL if (NULL != home_data_dir) { copy_data_file_info(home_data_dir, relative_location, rel_size, &cur_path_ptr); } copy_data_file_info(xdg_data_dirs, relative_location, rel_size, &cur_path_ptr); } // Remove the last path separator --cur_path_ptr; assert(cur_path_ptr - search_path < (ptrdiff_t)search_path_size); *cur_path_ptr = '\0'; #endif // !_WIN32 } // Remove duplicate paths, or it would result in duplicate extensions, duplicate devices, etc. // This uses minimal memory, but is O(N^2) on the number of paths. Expect only a few paths. char path_sep_str[2] = {PATH_SEPARATOR, '\0'}; size_t search_path_updated_size = strlen(search_path); for (size_t first = 0; first < search_path_updated_size;) { // If this is an empty path, erase it if (search_path[first] == PATH_SEPARATOR) { memmove(&search_path[first], &search_path[first + 1], search_path_updated_size - first + 1); search_path_updated_size -= 1; continue; } size_t first_end = first + 1; first_end += strcspn(&search_path[first_end], path_sep_str); for (size_t second = first_end + 1; second < search_path_updated_size;) { size_t second_end = second + 1; second_end += strcspn(&search_path[second_end], path_sep_str); if (first_end - first == second_end - second && !strncmp(&search_path[first], &search_path[second], second_end - second)) { // Found duplicate. Include PATH_SEPARATOR in second_end, then erase it from search_path. if (search_path[second_end] == PATH_SEPARATOR) { second_end++; } memmove(&search_path[second], &search_path[second_end], search_path_updated_size - second_end + 1); search_path_updated_size -= second_end - second; } else { second = second_end + 1; } } first = first_end + 1; } search_path_size = search_path_updated_size; // Print out the paths being searched if debugging is enabled uint32_t log_flags = 0; if (search_path_size > 0) { char *tmp_search_path = loader_instance_heap_alloc(inst, search_path_size + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL != tmp_search_path) { strncpy(tmp_search_path, search_path, search_path_size); tmp_search_path[search_path_size] = '\0'; if (manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) { log_flags = VULKAN_LOADER_DRIVER_BIT; loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Searching for driver manifest files"); } else { log_flags = VULKAN_LOADER_LAYER_BIT; loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, "Searching for layer manifest files"); } loader_log(inst, log_flags, 0, " In following folders:"); char *cur_file; char *next_file = tmp_search_path; while (NULL != next_file && *next_file != '\0') { cur_file = next_file; next_file = loader_get_next_path(cur_file); loader_log(inst, log_flags, 0, " %s", cur_file); } loader_instance_heap_free(inst, tmp_search_path); } } // Now, parse the paths and add any manifest files found in them. vk_result = add_data_files(inst, search_path, out_files, use_first_found_manifest); if (log_flags != 0 && out_files->count > 0) { loader_log(inst, log_flags, 0, " Found the following files:"); for (uint32_t cur_file = 0; cur_file < out_files->count; ++cur_file) { loader_log(inst, log_flags, 0, " %s", out_files->filename_list[cur_file]); } } else { loader_log(inst, log_flags, 0, " Found no files"); } if (NULL != override_path) { *override_active = true; } else { *override_active = false; } out: loader_free_getenv(additional_env, inst); loader_free_getenv(override_env, inst); #if defined(_WIN32) loader_instance_heap_free(inst, package_path); #else loader_free_getenv(xdg_config_home, inst); loader_free_getenv(xdg_config_dirs, inst); loader_free_getenv(xdg_data_home, inst); loader_free_getenv(xdg_data_dirs, inst); loader_free_getenv(xdg_data_home, inst); loader_free_getenv(home, inst); loader_instance_heap_free(inst, default_data_home); loader_instance_heap_free(inst, default_config_home); #endif loader_instance_heap_free(inst, search_path); return vk_result; } // Find the Vulkan library manifest files. // // This function scans the appropriate locations for a list of JSON manifest files based on the // "manifest_type". The location is interpreted as Registry path on Windows and a directory path(s) // on Linux. // "home_location" is an additional directory in the users home directory to look at. It is // expanded into the dir path $XDG_DATA_HOME/home_location or $HOME/.local/share/home_location // depending on environment variables. This "home_location" is only used on Linux. // // \returns // VKResult // A string list of manifest files to be opened in out_files param. // List has a pointer to string for each manifest filename. // When done using the list in out_files, pointers should be freed. // Location or override string lists can be either files or directories as // follows: // | location | override // -------------------------------- // Win ICD | files | files // Win Layer | files | dirs // Linux ICD | dirs | files // Linux Layer| dirs | dirs VkResult loader_get_data_files(const struct loader_instance *inst, enum loader_data_files_type manifest_type, const char *path_override, struct loader_data_files *out_files) { VkResult res = VK_SUCCESS; bool override_active = false; // Free and init the out_files information so there's no false data left from uninitialized variables. if (out_files->filename_list != NULL) { for (uint32_t i = 0; i < out_files->count; i++) { if (NULL != out_files->filename_list[i]) { loader_instance_heap_free(inst, out_files->filename_list[i]); out_files->filename_list[i] = NULL; } } loader_instance_heap_free(inst, out_files->filename_list); } out_files->count = 0; out_files->alloc_count = 0; out_files->filename_list = NULL; res = read_data_files_in_search_paths(inst, manifest_type, path_override, &override_active, out_files); if (VK_SUCCESS != res) { goto out; } #ifdef _WIN32 // Read the registry if the override wasn't active. if (!override_active) { bool warn_if_not_present = false; char *registry_location = NULL; switch (manifest_type) { default: goto out; case LOADER_DATA_FILE_MANIFEST_DRIVER: warn_if_not_present = true; registry_location = VK_DRIVERS_INFO_REGISTRY_LOC; break; case LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER: registry_location = VK_ILAYERS_INFO_REGISTRY_LOC; break; case LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER: warn_if_not_present = true; registry_location = VK_ELAYERS_INFO_REGISTRY_LOC; break; } VkResult tmp_res = windows_read_data_files_in_registry(inst, manifest_type, warn_if_not_present, registry_location, out_files); // Only return an error if there was an error this time, and no manifest files from before. if (VK_SUCCESS != tmp_res && out_files->count == 0) { res = tmp_res; goto out; } } #endif out: if (VK_SUCCESS != res && NULL != out_files->filename_list) { for (uint32_t remove = 0; remove < out_files->count; remove++) { loader_instance_heap_free(inst, out_files->filename_list[remove]); } loader_instance_heap_free(inst, out_files->filename_list); out_files->count = 0; out_files->alloc_count = 0; out_files->filename_list = NULL; } return res; } struct ICDManifestInfo { char full_library_path[MAX_STRING_SIZE]; uint32_t version; }; VkResult loader_parse_icd_manifest(const struct loader_instance *inst, char *file_str, struct ICDManifestInfo *icd, bool *skipped_portability_drivers) { VkResult res = VK_SUCCESS; cJSON *json = NULL; cJSON *item = NULL, *itemICD = NULL; char *file_vers_str = NULL; char *library_path = NULL; char *library_arch_str = NULL; char *version_str = NULL; if (file_str == NULL) { goto out; } res = loader_get_json(inst, file_str, &json); if (res != VK_SUCCESS || NULL == json) { goto out; } item = cJSON_GetObjectItem(json, "file_format_version"); if (item == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: ICD JSON %s does not have a \'file_format_version\' field. Skipping ICD JSON.", file_str); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } file_vers_str = cJSON_Print(item); if (NULL == file_vers_str) { // Only reason the print can fail is if there was an allocation issue loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: Failed retrieving ICD JSON %s \'file_format_version\' field. Skipping ICD JSON", file_str); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Found ICD manifest file %s, version %s", file_str, file_vers_str); // Get the version of the driver manifest loader_api_version json_file_version = loader_make_full_version(loader_parse_version_string(file_vers_str)); // Loader only knows versions 1.0.0 and 1.0.1, anything above it is unknown if (loader_check_version_meets_required(loader_combine_version(1, 0, 2), json_file_version)) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: %s has unknown icd manifest file version %d.%d.%d. May cause errors.", file_str, json_file_version.major, json_file_version.minor, json_file_version.patch); } itemICD = cJSON_GetObjectItem(json, "ICD"); if (itemICD == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: Can not find \'ICD\' object in ICD JSON file %s. Skipping ICD JSON", file_str); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } item = cJSON_GetObjectItem(itemICD, "library_path"); if (item == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: Failed to find \'library_path\' object in ICD JSON file %s. Skipping ICD JSON.", file_str); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } library_path = cJSON_Print(item); if (!library_path || strlen(library_path) == 0) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: Failed retrieving ICD JSON %s \'library_path\' field. Skipping ICD JSON.", file_str); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t library_path_len = strlen(library_path); // cJSON prints everything with quotes so they need to be removed. // move every char forward one, so the leading quote is replaced. memmove(library_path, &library_path[1], library_path_len - 2); // replace end quote with null terminator library_path[library_path_len - 2] = '\0'; if (strlen(library_path) == 0) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: ICD JSON %s \'library_path\' field is empty. Skipping ICD JSON.", file_str); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } // Print out the paths being searched if debugging is enabled loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Searching for ICD drivers named %s", library_path); if (loader_platform_is_path(library_path)) { // a relative or absolute path char *name_copy = loader_stack_alloc(strlen(file_str) + 1); char *rel_base; strcpy(name_copy, file_str); rel_base = loader_platform_dirname(name_copy); loader_expand_path(library_path, rel_base, MAX_STRING_SIZE, &icd->full_library_path[0]); } else { // a filename which is assumed in a system directory #if defined(DEFAULT_VK_DRIVERS_PATH) loader_get_fullpath(library_path, DEFAULT_VK_DRIVERS_PATH, MAX_STRING_SIZE, &icd->full_library_path[0]); #else loader_get_fullpath(library_path, "", MAX_STRING_SIZE, &icd->full_library_path[0]); #endif } item = cJSON_GetObjectItem(itemICD, "api_version"); if (item == NULL) { loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: ICD JSON %s does not have an \'api_version\' field. Skipping ICD JSON.", file_str); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } version_str = cJSON_Print(item); if (NULL == version_str) { // Only reason the print can fail is if there was an allocation issue loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: Failed retrieving ICD JSON %s \'api_version\' field. Skipping ICD JSON.", file_str); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } icd->version = loader_parse_version_string(version_str); if (VK_API_VERSION_VARIANT(icd->version) != 0) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_parse_icd_manifest: Driver's ICD JSON %s \'api_version\' field contains a non-zero variant value of %d. " " Skipping ICD JSON.", file_str, VK_API_VERSION_VARIANT(icd->version)); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } // Skip over ICD's which contain a true "is_portability_driver" value whenever the application doesn't enable // portability enumeration. item = cJSON_GetObjectItem(itemICD, "is_portability_driver"); if (item != NULL && item->type == cJSON_True && inst && !inst->portability_enumeration_enabled) { if (skipped_portability_drivers) { *skipped_portability_drivers = true; } res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } item = cJSON_GetObjectItem(itemICD, "library_arch"); if (item != NULL) { library_arch_str = cJSON_Print(item); if (NULL != library_arch_str) { // cJSON includes the quotes by default, so we need to look for those here if ((strncmp(library_arch_str, "\"32\"", 4) == 0 && sizeof(void *) != 4) || (strncmp(library_arch_str, "\"64\"", 4) == 0 && sizeof(void *) != 8)) { loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "loader_parse_icd_manifest: Driver library architecture doesn't match the current running " "architecture, skipping this driver"); res = VK_ERROR_INCOMPATIBLE_DRIVER; goto out; } } } out: cJSON_Delete(json); loader_instance_heap_free(inst, file_vers_str); loader_instance_heap_free(inst, library_path); loader_instance_heap_free(inst, version_str); loader_instance_heap_free(inst, library_arch_str); return res; } // Try to find the Vulkan ICD driver(s). // // This function scans the default system loader path(s) or path specified by either the // VK_DRIVER_FILES or VK_ICD_FILENAMES environment variable in order to find loadable // VK ICDs manifest files. // From these manifest files it finds the ICD libraries. // // skipped_portability_drivers is used to report whether the loader found drivers which report // portability but the application didn't enable the bit to enumerate them // Can be NULL // // \returns // Vulkan result // (on result == VK_SUCCESS) a list of icds that were discovered VkResult loader_icd_scan(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list, bool *skipped_portability_drivers) { struct loader_data_files manifest_files; VkResult res = VK_SUCCESS; bool lockedMutex = false; memset(&manifest_files, 0, sizeof(struct loader_data_files)); res = loader_scanned_icd_init(inst, icd_tramp_list); if (VK_SUCCESS != res) { goto out; } // Get a list of manifest files for ICDs res = loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_DRIVER, NULL, &manifest_files); if (VK_SUCCESS != res || manifest_files.count == 0) { goto out; } loader_platform_thread_lock_mutex(&loader_json_lock); lockedMutex = true; for (uint32_t i = 0; i < manifest_files.count; i++) { VkResult icd_res = VK_SUCCESS; struct ICDManifestInfo icd; memset(&icd, 0, sizeof(struct ICDManifestInfo)); icd_res = loader_parse_icd_manifest(inst, manifest_files.filename_list[i], &icd, skipped_portability_drivers); if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_res) { res = icd_res; goto out; } else if (VK_ERROR_INCOMPATIBLE_DRIVER == icd_res) { continue; } enum loader_layer_library_status lib_status; icd_res = loader_scanned_icd_add(inst, icd_tramp_list, icd.full_library_path, icd.version, &lib_status); if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_res) { res = icd_res; goto out; } else if (VK_ERROR_INCOMPATIBLE_DRIVER == icd_res) { switch (lib_status) { case LOADER_LAYER_LIB_NOT_LOADED: case LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD: loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "loader_icd_scan: Failed loading library associated with ICD JSON %s. Ignoring this JSON", icd.full_library_path); break; case LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE: { loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Requested layer %s was wrong bit-type. Ignoring this JSON", icd.full_library_path); break; } case LOADER_LAYER_LIB_SUCCESS_LOADED: // Shouldn't be able to reach this but if it is, best to report a debug loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "Shouldn't reach this. A valid version of requested ICD %s was loaded but something bad " "happened afterwards.", icd.full_library_path); break; } } } out: if (NULL != manifest_files.filename_list) { for (uint32_t i = 0; i < manifest_files.count; i++) { loader_instance_heap_free(inst, manifest_files.filename_list[i]); } loader_instance_heap_free(inst, manifest_files.filename_list); } if (lockedMutex) { loader_platform_thread_unlock_mutex(&loader_json_lock); } return res; } void loader_scan_for_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) { char *file_str; struct loader_data_files manifest_files; cJSON *json; bool override_layer_valid = false; char *override_paths = NULL; uint32_t total_count = 0; memset(&manifest_files, 0, sizeof(struct loader_data_files)); // Cleanup any previously scanned libraries loader_delete_layer_list_and_properties(inst, instance_layers); loader_platform_thread_lock_mutex(&loader_json_lock); // Get a list of manifest files for any implicit layers if (VK_SUCCESS != loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, NULL, &manifest_files)) { goto out; } if (manifest_files.count != 0) { total_count += manifest_files.count; for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // Parse file into JSON struct VkResult res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } VkResult local_res = loader_add_layer_properties(inst, instance_layers, json, true, file_str); cJSON_Delete(json); // If the error is anything other than out of memory we still want to try to load the other layers if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) { goto out; } } } // Remove any extraneous override layers. remove_all_non_valid_override_layers(inst, instance_layers); // Check to see if the override layer is present, and use it's override paths. for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) { struct loader_layer_properties *prop = &instance_layers->list[i]; if (prop->is_override && loader_implicit_layer_is_enabled(inst, prop) && prop->num_override_paths > 0) { char *cur_write_ptr = NULL; size_t override_path_size = 0; for (uint32_t j = 0; j < prop->num_override_paths; j++) { override_path_size += determine_data_file_path_size(prop->override_paths[j], 0); } override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (override_paths == NULL) { goto out; } cur_write_ptr = &override_paths[0]; for (uint32_t j = 0; j < prop->num_override_paths; j++) { copy_data_file_info(prop->override_paths[j], NULL, 0, &cur_write_ptr); } // Remove the last path separator --cur_write_ptr; assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size); *cur_write_ptr = '\0'; loader_log(NULL, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_scan_for_layers: Override layer has override paths set to %s", override_paths); } } // Get a list of manifest files for explicit layers if (VK_SUCCESS != loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER, override_paths, &manifest_files)) { goto out; } // Make sure we have at least one layer, if not, go ahead and return if (manifest_files.count == 0 && total_count == 0) { goto out; } else { for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // Parse file into JSON struct VkResult res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } VkResult local_res = loader_add_layer_properties(inst, instance_layers, json, false, file_str); cJSON_Delete(json); // If the error is anything other than out of memory we still want to try to load the other layers if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) { goto out; } } } // Verify any meta-layers in the list are valid and all the component layers are // actually present in the available layer list verify_all_meta_layers(inst, instance_layers, &override_layer_valid); if (override_layer_valid) { loader_remove_layers_in_blacklist(inst, instance_layers); if (NULL != inst) { inst->override_layer_present = true; } } out: loader_instance_heap_free(inst, override_paths); if (NULL != manifest_files.filename_list) { for (uint32_t i = 0; i < manifest_files.count; i++) { loader_instance_heap_free(inst, manifest_files.filename_list[i]); } loader_instance_heap_free(inst, manifest_files.filename_list); } loader_platform_thread_unlock_mutex(&loader_json_lock); } void loader_scan_for_implicit_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) { char *file_str; struct loader_data_files manifest_files; cJSON *json; bool override_layer_valid = false; char *override_paths = NULL; bool implicit_metalayer_present = false; bool have_json_lock = false; // Before we begin anything, init manifest_files to avoid a delete of garbage memory if // a failure occurs before allocating the manifest filename_list. memset(&manifest_files, 0, sizeof(struct loader_data_files)); VkResult res = loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, NULL, &manifest_files); if (VK_SUCCESS != res || manifest_files.count == 0) { goto out; } // Cleanup any previously scanned libraries loader_delete_layer_list_and_properties(inst, instance_layers); loader_platform_thread_lock_mutex(&loader_json_lock); have_json_lock = true; for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // parse file into JSON struct res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } res = loader_add_layer_properties(inst, instance_layers, json, true, file_str); loader_instance_heap_free(inst, file_str); manifest_files.filename_list[i] = NULL; cJSON_Delete(json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } } // Remove any extraneous override layers. remove_all_non_valid_override_layers(inst, instance_layers); // Check to see if either the override layer is present, or another implicit meta-layer. // Each of these may require explicit layers to be enabled at this time. for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) { struct loader_layer_properties *prop = &instance_layers->list[i]; if (prop->is_override && loader_implicit_layer_is_enabled(inst, prop)) { override_layer_valid = true; if (prop->num_override_paths > 0) { char *cur_write_ptr = NULL; size_t override_path_size = 0; for (uint32_t j = 0; j < prop->num_override_paths; j++) { override_path_size += determine_data_file_path_size(prop->override_paths[j], 0); } override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (override_paths == NULL) { goto out; } cur_write_ptr = &override_paths[0]; for (uint32_t j = 0; j < prop->num_override_paths; j++) { copy_data_file_info(prop->override_paths[j], NULL, 0, &cur_write_ptr); } // Remove the last path separator --cur_write_ptr; assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size); *cur_write_ptr = '\0'; loader_log(NULL, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_scan_for_implicit_layers: Override layer has override paths set to %s", override_paths); } } else if (!prop->is_override && prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { implicit_metalayer_present = true; } } // If either the override layer or an implicit meta-layer are present, we need to add // explicit layer info as well. Not to worry, though, all explicit layers not included // in the override layer will be removed below in loader_remove_layers_in_blacklist(). if (override_layer_valid || implicit_metalayer_present) { if (VK_SUCCESS != loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER, override_paths, &manifest_files)) { goto out; } for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // parse file into JSON struct res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } res = loader_add_layer_properties(inst, instance_layers, json, false, file_str); loader_instance_heap_free(inst, file_str); manifest_files.filename_list[i] = NULL; cJSON_Delete(json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } } } // Verify any meta-layers in the list are valid and all the component layers are // actually present in the available layer list verify_all_meta_layers(inst, instance_layers, &override_layer_valid); if (override_layer_valid || implicit_metalayer_present) { loader_remove_layers_not_in_implicit_meta_layers(inst, instance_layers); if (override_layer_valid && inst != NULL) { inst->override_layer_present = true; } } out: loader_instance_heap_free(inst, override_paths); for (uint32_t i = 0; i < manifest_files.count; i++) { loader_instance_heap_free(inst, manifest_files.filename_list[i]); } loader_instance_heap_free(inst, manifest_files.filename_list); if (have_json_lock) { loader_platform_thread_unlock_mutex(&loader_json_lock); } } static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_terminator(VkInstance inst, const char *pName) { // inst is not wrapped if (inst == VK_NULL_HANDLE) { return NULL; } VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst; void *addr; if (disp_table == NULL) return NULL; bool found_name; addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name); if (found_name) { return addr; } // Check if any drivers support the function, and if so, add it to the unknown function list addr = loader_phys_dev_ext_gpa_term(loader_get_instance(inst), pName); if (NULL != addr) return addr; // Don't call down the chain, this would be an infinite loop loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpdpa_instance_terminator() unrecognized name %s", pName); return NULL; } static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_instance_terminator(VkInstance inst, const char *pName) { if (!strcmp(pName, "vkGetInstanceProcAddr")) { return (PFN_vkVoidFunction)loader_gpa_instance_terminator; } if (!strcmp(pName, "vk_layerGetPhysicalDeviceProcAddr")) { return (PFN_vkVoidFunction)loader_gpdpa_instance_terminator; } if (!strcmp(pName, "vkCreateInstance")) { return (PFN_vkVoidFunction)terminator_CreateInstance; } if (!strcmp(pName, "vkCreateDevice")) { return (PFN_vkVoidFunction)terminator_CreateDevice; } // The VK_EXT_debug_utils functions need a special case here so the terminators can still be found from vkGetInstanceProcAddr if (!strcmp(pName, "vkSetDebugUtilsObjectNameEXT")) { return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectNameEXT; } if (!strcmp(pName, "vkSetDebugUtilsObjectTagEXT")) { return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectTagEXT; } if (!strcmp(pName, "vkQueueBeginDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_QueueBeginDebugUtilsLabelEXT; } if (!strcmp(pName, "vkQueueEndDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_QueueEndDebugUtilsLabelEXT; } if (!strcmp(pName, "vkQueueInsertDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_QueueInsertDebugUtilsLabelEXT; } if (!strcmp(pName, "vkCmdBeginDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_CmdBeginDebugUtilsLabelEXT; } if (!strcmp(pName, "vkCmdEndDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_CmdEndDebugUtilsLabelEXT; } if (!strcmp(pName, "vkCmdInsertDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_CmdInsertDebugUtilsLabelEXT; } // inst is not wrapped if (inst == VK_NULL_HANDLE) { return NULL; } VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst; void *addr; if (disp_table == NULL) return NULL; bool found_name; addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name); if (found_name) { return addr; } // Check if it is an unknown physical device function, to see if any drivers support it. addr = loader_phys_dev_ext_gpa_term(loader_get_instance(inst), pName); if (addr) { return addr; } // Assume it is an unknown device function, check to see if any drivers support it. addr = loader_dev_ext_gpa_term(loader_get_instance(inst), pName); if (addr) { return addr; } // Don't call down the chain, this would be an infinite loop loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpa_instance_terminator() unrecognized name %s", pName); return NULL; } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_device_terminator(VkDevice device, const char *pName) { struct loader_device *dev; struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL); // Return this function if a layer above here is asking for the vkGetDeviceProcAddr. // This is so we can properly intercept any device commands needing a terminator. if (!strcmp(pName, "vkGetDeviceProcAddr")) { return (PFN_vkVoidFunction)loader_gpa_device_terminator; } // NOTE: Device Funcs needing Trampoline/Terminator. // Overrides for device functions needing a trampoline and // a terminator because certain device entry-points still need to go // through a terminator before hitting the ICD. This could be for // several reasons, but the main one is currently unwrapping an // object before passing the appropriate info along to the ICD. // This is why we also have to override the direct ICD call to // vkGetDeviceProcAddr to intercept those calls. PFN_vkVoidFunction addr = get_extension_device_proc_terminator(dev, pName); if (NULL != addr) { return addr; } return icd_term->dispatch.GetDeviceProcAddr(device, pName); } struct loader_instance *loader_get_instance(const VkInstance instance) { // look up the loader_instance in our list by comparing dispatch tables, as // there is no guarantee the instance is still a loader_instance* after any // layers which wrap the instance object. const VkLayerInstanceDispatchTable *disp; struct loader_instance *ptr_instance = (struct loader_instance *)instance; if (VK_NULL_HANDLE == instance || LOADER_MAGIC_NUMBER != ptr_instance->magic) { return NULL; } else { disp = loader_get_instance_layer_dispatch(instance); for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) { if (&inst->disp->layer_inst_disp == disp) { ptr_instance = inst; break; } } } return ptr_instance; } static loader_platform_dl_handle loader_open_layer_file(const struct loader_instance *inst, const char *chain_type, struct loader_layer_properties *prop) { if ((prop->lib_handle = loader_platform_open_library(prop->lib_name)) == NULL) { loader_handle_load_library_error(inst, prop->lib_name, &prop->lib_status); } else { prop->lib_status = LOADER_LAYER_LIB_SUCCESS_LOADED; loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Loading layer library %s", prop->lib_name); } return prop->lib_handle; } static void loader_close_layer_file(const struct loader_instance *inst, struct loader_layer_properties *prop) { if (prop->lib_handle) { loader_platform_close_library(prop->lib_handle); loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Unloading layer library %s", prop->lib_name); prop->lib_handle = NULL; } } void loader_deactivate_layers(const struct loader_instance *instance, struct loader_device *device, struct loader_layer_list *list) { // Delete instance list of enabled layers and close any layer libraries for (uint32_t i = 0; i < list->count; i++) { struct loader_layer_properties *layer_prop = &list->list[i]; loader_close_layer_file(instance, layer_prop); } loader_destroy_layer_list(instance, device, list); } // Go through the search_list and find any layers which match type. If layer // type match is found in then add it to ext_list. static void loader_add_implicit_layers(const struct loader_instance *inst, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { for (uint32_t src_layer = 0; src_layer < source_list->count; src_layer++) { const struct loader_layer_properties *prop = &source_list->list[src_layer]; if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) { loader_add_implicit_layer(inst, prop, target_list, expanded_target_list, source_list); } } } // Get the layer name(s) from the env_name environment variable. If layer is found in // search_list then add it to layer_list. But only add it to layer_list if type_flags matches. static VkResult loader_add_environment_layers(struct loader_instance *inst, const enum layer_type_flags type_flags, const char *env_name, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { VkResult res = VK_SUCCESS; char *next, *name; char *layer_env = loader_getenv(env_name, inst); if (layer_env == NULL) { goto out; } name = loader_stack_alloc(strlen(layer_env) + 1); if (name == NULL) { goto out; } strcpy(name, layer_env); loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_environment_layers: Env Var %s defined and adding layers %s", env_name, name); while (name && *name) { next = loader_get_next_path(name); res = loader_add_layer_name_to_list(inst, name, type_flags, source_list, target_list, expanded_target_list); if (res != VK_SUCCESS) { goto out; } name = next; } out: if (layer_env != NULL) { loader_free_getenv(layer_env, inst); } return res; } VkResult loader_enable_instance_layers(struct loader_instance *inst, const VkInstanceCreateInfo *pCreateInfo, const struct loader_layer_list *instance_layers) { assert(inst && "Cannot have null instance"); if (!loader_init_layer_list(inst, &inst->app_activated_layer_list)) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_enable_instance_layers: Failed to initialize application version of the layer list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } if (!loader_init_layer_list(inst, &inst->expanded_activated_layer_list)) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_enable_instance_layers: Failed to initialize expanded version of the layer list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } // Add any implicit layers first loader_add_implicit_layers(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers); // Add any layers specified via environment variable next VkResult err = loader_add_environment_layers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, "VK_INSTANCE_LAYERS", &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers); if (err != VK_SUCCESS) { return err; } // Add layers specified by the application err = loader_add_layer_names_to_list(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers); for (uint32_t i = 0; i < inst->expanded_activated_layer_list.count; i++) { // Verify that the layer api version is at least that of the application's request, if not, throw a warning since // undefined behavior could occur. struct loader_layer_properties *prop = inst->expanded_activated_layer_list.list + i; loader_api_version prop_spec_version = loader_make_version(prop->info.specVersion); if (!loader_check_version_meets_required(inst->app_api_version, prop_spec_version)) { loader_log( inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_add_to_layer_list: Explicit layer %s is using an old API version %u.%u versus application requested %u.%u", prop->info.layerName, prop_spec_version.major, prop_spec_version.minor, inst->app_api_version.major, inst->app_api_version.minor); } } return err; } // Determine the layer interface version to use. bool loader_get_layer_interface_version(PFN_vkNegotiateLoaderLayerInterfaceVersion fp_negotiate_layer_version, VkNegotiateLayerInterface *interface_struct) { memset(interface_struct, 0, sizeof(VkNegotiateLayerInterface)); interface_struct->sType = LAYER_NEGOTIATE_INTERFACE_STRUCT; interface_struct->loaderLayerInterfaceVersion = 1; interface_struct->pNext = NULL; if (fp_negotiate_layer_version != NULL) { // Layer supports the negotiation API, so call it with the loader's // latest version supported interface_struct->loaderLayerInterfaceVersion = CURRENT_LOADER_LAYER_INTERFACE_VERSION; VkResult result = fp_negotiate_layer_version(interface_struct); if (result != VK_SUCCESS) { // Layer no longer supports the loader's latest interface version so // fail loading the Layer return false; } } if (interface_struct->loaderLayerInterfaceVersion < MIN_SUPPORTED_LOADER_LAYER_INTERFACE_VERSION) { // Loader no longer supports the layer's latest interface version so // fail loading the layer return false; } return true; } VKAPI_ATTR VkResult VKAPI_CALL loader_layer_create_device(VkInstance instance, VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, PFN_vkGetInstanceProcAddr layerGIPA, PFN_vkGetDeviceProcAddr *nextGDPA) { VkResult res; VkPhysicalDevice internal_device = VK_NULL_HANDLE; struct loader_device *dev = NULL; struct loader_instance *inst = NULL; if (instance != VK_NULL_HANDLE) { inst = loader_get_instance(instance); internal_device = physicalDevice; } else { struct loader_physical_device_tramp *phys_dev = (struct loader_physical_device_tramp *)physicalDevice; internal_device = phys_dev->phys_dev; inst = (struct loader_instance *)phys_dev->this_instance; } // Get the physical device (ICD) extensions struct loader_extension_list icd_exts; icd_exts.list = NULL; res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to create ICD extension list"); goto out; } PFN_vkEnumerateDeviceExtensionProperties enumDeviceExtensionProperties = NULL; if (layerGIPA != NULL) { enumDeviceExtensionProperties = (PFN_vkEnumerateDeviceExtensionProperties)layerGIPA(instance, "vkEnumerateDeviceExtensionProperties"); } else { enumDeviceExtensionProperties = inst->disp->layer_inst_disp.EnumerateDeviceExtensionProperties; } res = loader_add_device_extensions(inst, enumDeviceExtensionProperties, internal_device, "Unknown", &icd_exts); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to add extensions to list"); goto out; } // Make sure requested extensions to be enabled are supported res = loader_validate_device_extensions(inst, &inst->expanded_activated_layer_list, &icd_exts, pCreateInfo); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to validate extensions in list"); goto out; } dev = loader_create_logical_device(inst, pAllocator); if (dev == NULL) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the application enabled instance layer list into the device if (NULL != inst->app_activated_layer_list.list) { dev->app_activated_layer_list.capacity = inst->app_activated_layer_list.capacity; dev->app_activated_layer_list.count = inst->app_activated_layer_list.count; dev->app_activated_layer_list.list = loader_device_heap_alloc(dev, inst->app_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (dev->app_activated_layer_list.list == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to allocate application activated layer list of size %d.", inst->app_activated_layer_list.capacity); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(dev->app_activated_layer_list.list, inst->app_activated_layer_list.list, sizeof(*dev->app_activated_layer_list.list) * dev->app_activated_layer_list.count); } else { dev->app_activated_layer_list.capacity = 0; dev->app_activated_layer_list.count = 0; dev->app_activated_layer_list.list = NULL; } // Copy the expanded enabled instance layer list into the device if (NULL != inst->expanded_activated_layer_list.list) { dev->expanded_activated_layer_list.capacity = inst->expanded_activated_layer_list.capacity; dev->expanded_activated_layer_list.count = inst->expanded_activated_layer_list.count; dev->expanded_activated_layer_list.list = loader_device_heap_alloc(dev, inst->expanded_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (dev->expanded_activated_layer_list.list == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to allocate expanded activated layer list of size %d.", inst->expanded_activated_layer_list.capacity); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(dev->expanded_activated_layer_list.list, inst->expanded_activated_layer_list.list, sizeof(*dev->expanded_activated_layer_list.list) * dev->expanded_activated_layer_list.count); } else { dev->expanded_activated_layer_list.capacity = 0; dev->expanded_activated_layer_list.count = 0; dev->expanded_activated_layer_list.list = NULL; } res = loader_create_device_chain(internal_device, pCreateInfo, pAllocator, inst, dev, layerGIPA, nextGDPA); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to create device chain."); goto out; } *pDevice = dev->chain_device; // Initialize any device extension dispatch entry's from the instance list loader_init_dispatch_dev_ext(inst, dev); // Initialize WSI device extensions as part of core dispatch since loader // has dedicated trampoline code for these loader_init_device_extension_dispatch_table(&dev->loader_dispatch, inst->disp->layer_inst_disp.GetInstanceProcAddr, dev->loader_dispatch.core_dispatch.GetDeviceProcAddr, inst->instance, *pDevice); out: // Failure cleanup if (VK_SUCCESS != res) { if (NULL != dev) { // Find the icd_term this device belongs to then remove it from that icd_term. // Need to iterate the linked lists and remove the device from it. Don't delete // the device here since it may not have been added to the icd_term and there // are other allocations attached to it. struct loader_icd_term *icd_term = inst->icd_terms; bool found = false; while (!found && NULL != icd_term) { struct loader_device *cur_dev = icd_term->logical_device_list; struct loader_device *prev_dev = NULL; while (NULL != cur_dev) { if (cur_dev == dev) { if (cur_dev == icd_term->logical_device_list) { icd_term->logical_device_list = cur_dev->next; } else if (prev_dev) { prev_dev->next = cur_dev->next; } found = true; break; } prev_dev = cur_dev; cur_dev = cur_dev->next; } icd_term = icd_term->next; } // Now destroy the device and the allocations associated with it. loader_destroy_logical_device(inst, dev, pAllocator); } } if (NULL != icd_exts.list) { loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts); } return res; } VKAPI_ATTR void VKAPI_CALL loader_layer_destroy_device(VkDevice device, const VkAllocationCallbacks *pAllocator, PFN_vkDestroyDevice destroyFunction) { struct loader_device *dev; if (device == VK_NULL_HANDLE) { return; } struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL); const struct loader_instance *inst = icd_term->this_instance; destroyFunction(device, pAllocator); dev->chain_device = NULL; dev->icd_device = NULL; loader_remove_logical_device(inst, icd_term, dev, pAllocator); } // Given the list of layers to activate in the loader_instance // structure. This function will add a VkLayerInstanceCreateInfo // structure to the VkInstanceCreateInfo.pNext pointer. // Each activated layer will have it's own VkLayerInstanceLink // structure that tells the layer what Get*ProcAddr to call to // get function pointers to the next layer down. // Once the chain info has been created this function will // execute the CreateInstance call chain. Each layer will // then have an opportunity in it's CreateInstance function // to setup it's dispatch table when the lower layer returns // successfully. // Each layer can wrap or not-wrap the returned VkInstance object // as it sees fit. // The instance chain is terminated by a loader function // that will call CreateInstance on all available ICD's and // cache those VkInstance objects for future use. VkResult loader_create_instance_chain(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, struct loader_instance *inst, VkInstance *created_instance) { uint32_t num_activated_layers = 0; struct activated_layer_info *activated_layers = NULL; VkLayerInstanceCreateInfo chain_info; VkLayerInstanceLink *layer_instance_link_info = NULL; VkInstanceCreateInfo loader_create_info; VkResult res; PFN_vkGetInstanceProcAddr next_gipa = loader_gpa_instance_terminator; PFN_vkGetInstanceProcAddr cur_gipa = loader_gpa_instance_terminator; PFN_vkGetDeviceProcAddr cur_gdpa = loader_gpa_device_terminator; PFN_GetPhysicalDeviceProcAddr next_gpdpa = loader_gpdpa_instance_terminator; PFN_GetPhysicalDeviceProcAddr cur_gpdpa = loader_gpdpa_instance_terminator; memcpy(&loader_create_info, pCreateInfo, sizeof(VkInstanceCreateInfo)); if (inst->expanded_activated_layer_list.count > 0) { chain_info.u.pLayerInfo = NULL; chain_info.pNext = pCreateInfo->pNext; chain_info.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO; chain_info.function = VK_LAYER_LINK_INFO; loader_create_info.pNext = &chain_info; layer_instance_link_info = loader_stack_alloc(sizeof(VkLayerInstanceLink) * inst->expanded_activated_layer_list.count); if (!layer_instance_link_info) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_instance_chain: Failed to alloc Instance objects for layer"); return VK_ERROR_OUT_OF_HOST_MEMORY; } activated_layers = loader_stack_alloc(sizeof(struct activated_layer_info) * inst->expanded_activated_layer_list.count); if (!activated_layers) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_instance_chain: Failed to alloc activated layer storage array"); return VK_ERROR_OUT_OF_HOST_MEMORY; } // Create instance chain of enabled layers for (int32_t i = inst->expanded_activated_layer_list.count - 1; i >= 0; i--) { struct loader_layer_properties *layer_prop = &inst->expanded_activated_layer_list.list[i]; loader_platform_dl_handle lib_handle; // Skip it if a Layer with the same name has been already successfully activated if (loader_names_array_has_layer_property(&layer_prop->info, num_activated_layers, activated_layers)) { continue; } lib_handle = loader_open_layer_file(inst, "instance", layer_prop); if (!lib_handle) { continue; } if (NULL == layer_prop->functions.negotiate_layer_interface) { PFN_vkNegotiateLoaderLayerInterfaceVersion negotiate_interface = NULL; bool functions_in_interface = false; if (strlen(layer_prop->functions.str_negotiate_interface) == 0) { negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address( lib_handle, "vkNegotiateLoaderLayerInterfaceVersion"); } else { negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address( lib_handle, layer_prop->functions.str_negotiate_interface); } // If we can negotiate an interface version, then we can also // get everything we need from the one function call, so try // that first, and see if we can get all the function pointers // necessary from that one call. if (NULL != negotiate_interface) { layer_prop->functions.negotiate_layer_interface = negotiate_interface; VkNegotiateLayerInterface interface_struct; if (loader_get_layer_interface_version(negotiate_interface, &interface_struct)) { // Go ahead and set the properties version to the // correct value. layer_prop->interface_version = interface_struct.loaderLayerInterfaceVersion; // If the interface is 2 or newer, we have access to the // new GetPhysicalDeviceProcAddr function, so grab it, // and the other necessary functions, from the // structure. if (interface_struct.loaderLayerInterfaceVersion > 1) { cur_gipa = interface_struct.pfnGetInstanceProcAddr; cur_gdpa = interface_struct.pfnGetDeviceProcAddr; cur_gpdpa = interface_struct.pfnGetPhysicalDeviceProcAddr; if (cur_gipa != NULL) { // We've set the functions, so make sure we // don't do the unnecessary calls later. functions_in_interface = true; } } } } if (!functions_in_interface) { if ((cur_gipa = layer_prop->functions.get_instance_proc_addr) == NULL) { if (strlen(layer_prop->functions.str_gipa) == 0) { cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr"); layer_prop->functions.get_instance_proc_addr = cur_gipa; if (NULL == cur_gipa) { loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_create_instance_chain: Failed to find \'vkGetInstanceProcAddr\' in layer %s", layer_prop->lib_name); continue; } } else { cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa); if (NULL == cur_gipa) { loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_create_instance_chain: Failed to find \'%s\' in layer %s", layer_prop->functions.str_gipa, layer_prop->lib_name); continue; } } } } } layer_instance_link_info[num_activated_layers].pNext = chain_info.u.pLayerInfo; layer_instance_link_info[num_activated_layers].pfnNextGetInstanceProcAddr = next_gipa; layer_instance_link_info[num_activated_layers].pfnNextGetPhysicalDeviceProcAddr = next_gpdpa; next_gipa = cur_gipa; if (layer_prop->interface_version > 1 && cur_gpdpa != NULL) { layer_prop->functions.get_physical_device_proc_addr = cur_gpdpa; next_gpdpa = cur_gpdpa; } if (layer_prop->interface_version > 1 && cur_gipa != NULL) { layer_prop->functions.get_instance_proc_addr = cur_gipa; } if (layer_prop->interface_version > 1 && cur_gdpa != NULL) { layer_prop->functions.get_device_proc_addr = cur_gdpa; } chain_info.u.pLayerInfo = &layer_instance_link_info[num_activated_layers]; activated_layers[num_activated_layers].name = layer_prop->info.layerName; activated_layers[num_activated_layers].manifest = layer_prop->manifest_file_name; activated_layers[num_activated_layers].library = layer_prop->lib_name; activated_layers[num_activated_layers].is_implicit = !(layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER); if (activated_layers[num_activated_layers].is_implicit) { activated_layers[num_activated_layers].disable_env = layer_prop->disable_env_var.name; } loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Insert instance layer %s (%s)", layer_prop->info.layerName, layer_prop->lib_name); num_activated_layers++; } } // Make sure each layer requested by the application was actually loaded for (uint32_t exp = 0; exp < inst->expanded_activated_layer_list.count; ++exp) { struct loader_layer_properties *exp_layer_prop = &inst->expanded_activated_layer_list.list[exp]; bool found = false; for (uint32_t act = 0; act < num_activated_layers; ++act) { if (!strcmp(activated_layers[act].name, exp_layer_prop->info.layerName)) { found = true; break; } } // If it wasn't found, we want to at least log an error. However, if it was enabled by the application directly, // we want to return a bad layer error. if (!found) { bool app_requested = false; for (uint32_t act = 0; act < pCreateInfo->enabledLayerCount; ++act) { if (!strcmp(pCreateInfo->ppEnabledLayerNames[act], exp_layer_prop->info.layerName)) { app_requested = true; break; } } VkFlags log_flag = VULKAN_LOADER_LAYER_BIT; char ending = '.'; if (app_requested) { log_flag |= VULKAN_LOADER_ERROR_BIT; ending = '!'; } else { log_flag |= VULKAN_LOADER_INFO_BIT; } switch (exp_layer_prop->lib_status) { case LOADER_LAYER_LIB_NOT_LOADED: loader_log(inst, log_flag, 0, "Requested layer %s was not loaded%c", exp_layer_prop->info.layerName, ending); break; case LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE: { loader_log(inst, log_flag, 0, "Requested layer %s was wrong bit-type%c", exp_layer_prop->info.layerName, ending); break; } case LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD: loader_log(inst, log_flag, 0, "Requested layer %s failed to load%c", exp_layer_prop->info.layerName, ending); break; case LOADER_LAYER_LIB_SUCCESS_LOADED: // Shouldn't be able to reach this but if it is, best to report a debug loader_log(inst, log_flag, 0, "Shouldn't reach this. A valid version of requested layer %s was loaded but was not found in the " "list of activated layers%c", exp_layer_prop->info.layerName, ending); break; } if (app_requested) { return VK_ERROR_LAYER_NOT_PRESENT; } } } VkLoaderFeatureFlags feature_flags = 0; #if defined(_WIN32) feature_flags = windows_initialize_dxgi(); #endif PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)next_gipa(*created_instance, "vkCreateInstance"); if (fpCreateInstance) { VkLayerInstanceCreateInfo instance_dispatch; instance_dispatch.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO; instance_dispatch.pNext = loader_create_info.pNext; instance_dispatch.function = VK_LOADER_DATA_CALLBACK; instance_dispatch.u.pfnSetInstanceLoaderData = vkSetInstanceDispatch; VkLayerInstanceCreateInfo device_callback; device_callback.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO; device_callback.pNext = &instance_dispatch; device_callback.function = VK_LOADER_LAYER_CREATE_DEVICE_CALLBACK; device_callback.u.layerDevice.pfnLayerCreateDevice = loader_layer_create_device; device_callback.u.layerDevice.pfnLayerDestroyDevice = loader_layer_destroy_device; VkLayerInstanceCreateInfo loader_features; loader_features.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO; loader_features.pNext = &device_callback; loader_features.function = VK_LOADER_FEATURES; loader_features.u.loaderFeatures = feature_flags; loader_create_info.pNext = &loader_features; // If layer debugging is enabled, let's print out the full callstack with layers in their // defined order. if ((loader_get_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) { loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, "vkCreateInstance layer callstack setup to:"); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " "); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||"); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " "); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||"); for (uint32_t cur_layer = 0; cur_layer < num_activated_layers; ++cur_layer) { uint32_t index = num_activated_layers - cur_layer - 1; loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " %s", activated_layers[index].name); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Type: %s", activated_layers[index].is_implicit ? "Implicit" : "Explicit"); if (activated_layers[index].is_implicit) { loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Disable Env Var: %s", activated_layers[index].disable_env); } loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Manifest: %s", activated_layers[index].manifest); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Library: %s", activated_layers[index].library); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||"); } loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " \n"); } res = fpCreateInstance(&loader_create_info, pAllocator, created_instance); } else { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_instance_chain: Failed to find \'vkCreateInstance\'"); // Couldn't find CreateInstance function! res = VK_ERROR_INITIALIZATION_FAILED; } if (res == VK_SUCCESS) { loader_init_instance_core_dispatch_table(&inst->disp->layer_inst_disp, next_gipa, *created_instance); inst->instance = *created_instance; } return res; } void loader_activate_instance_layer_extensions(struct loader_instance *inst, VkInstance created_inst) { loader_init_instance_extension_dispatch_table(&inst->disp->layer_inst_disp, inst->disp->layer_inst_disp.GetInstanceProcAddr, created_inst); } VkResult loader_create_device_chain(const VkPhysicalDevice pd, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, const struct loader_instance *inst, struct loader_device *dev, PFN_vkGetInstanceProcAddr callingLayer, PFN_vkGetDeviceProcAddr *layerNextGDPA) { uint32_t num_activated_layers = 0; struct activated_layer_info *activated_layers = NULL; VkLayerDeviceLink *layer_device_link_info; VkLayerDeviceCreateInfo chain_info; VkDeviceCreateInfo loader_create_info; VkDeviceGroupDeviceCreateInfoKHR *original_device_group_create_info_struct = NULL; VkResult res; PFN_vkGetDeviceProcAddr fpGDPA = NULL, nextGDPA = loader_gpa_device_terminator; PFN_vkGetInstanceProcAddr fpGIPA = NULL, nextGIPA = loader_gpa_instance_terminator; memcpy(&loader_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo)); // Before we continue, we need to find out if the KHR_device_group extension is in the enabled list. If it is, we then // need to look for the corresponding VkDeviceGroupDeviceCreateInfoKHR struct in the device list. This is because we // need to replace all the incoming physical device values (which are really loader trampoline physical device values) // with the layer/ICD version. { VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext; VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info; while (NULL != pNext) { if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) { VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext; if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) { VkDeviceGroupDeviceCreateInfoKHR *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfoKHR)); VkPhysicalDevice *phys_dev_array = NULL; if (NULL == temp_struct) { return VK_ERROR_OUT_OF_HOST_MEMORY; } memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfoKHR)); phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount); if (NULL == phys_dev_array) { return VK_ERROR_OUT_OF_HOST_MEMORY; } // Before calling down, replace the incoming physical device values (which are really loader trampoline // physical devices) with the next layer (or possibly even the terminator) physical device values. struct loader_physical_device_tramp *cur_tramp; for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) { cur_tramp = (struct loader_physical_device_tramp *)cur_struct->pPhysicalDevices[phys_dev]; phys_dev_array[phys_dev] = cur_tramp->phys_dev; } temp_struct->pPhysicalDevices = phys_dev_array; original_device_group_create_info_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pPrev->pNext; // Replace the old struct in the pNext chain with this one. pPrev->pNext = (VkBaseOutStructure *)temp_struct; } break; } pPrev = pNext; pNext = pNext->pNext; } } if (dev->expanded_activated_layer_list.count > 0) { layer_device_link_info = loader_stack_alloc(sizeof(VkLayerDeviceLink) * dev->expanded_activated_layer_list.count); if (!layer_device_link_info) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_device_chain: Failed to alloc Device objects for layer. Skipping Layer."); return VK_ERROR_OUT_OF_HOST_MEMORY; } activated_layers = loader_stack_alloc(sizeof(struct activated_layer_info) * inst->expanded_activated_layer_list.count); if (!activated_layers) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_device_chain: Failed to alloc activated layer storage array"); return VK_ERROR_OUT_OF_HOST_MEMORY; } chain_info.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO; chain_info.function = VK_LAYER_LINK_INFO; chain_info.u.pLayerInfo = NULL; chain_info.pNext = loader_create_info.pNext; loader_create_info.pNext = &chain_info; bool done = false; // Create instance chain of enabled layers for (int32_t i = dev->expanded_activated_layer_list.count - 1; i >= 0; i--) { struct loader_layer_properties *layer_prop = &dev->expanded_activated_layer_list.list[i]; loader_platform_dl_handle lib_handle; // Skip it if a Layer with the same name has been already successfully activated if (loader_names_array_has_layer_property(&layer_prop->info, num_activated_layers, activated_layers)) { continue; } lib_handle = loader_open_layer_file(inst, "device", layer_prop); if (!lib_handle || done) { continue; } // The Get*ProcAddr pointers will already be filled in if they were received from either the json file or the // version negotiation if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) == NULL) { if (strlen(layer_prop->functions.str_gipa) == 0) { fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr"); layer_prop->functions.get_instance_proc_addr = fpGIPA; } else fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa); if (!fpGIPA) { loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0, "loader_create_device_chain: Failed to find \'vkGetInstanceProcAddr\' in layer %s. Skipping layer.", layer_prop->lib_name); continue; } } if (fpGIPA == callingLayer) { if (layerNextGDPA != NULL) { *layerNextGDPA = nextGDPA; } done = true; continue; } if ((fpGDPA = layer_prop->functions.get_device_proc_addr) == NULL) { if (strlen(layer_prop->functions.str_gdpa) == 0) { fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetDeviceProcAddr"); layer_prop->functions.get_device_proc_addr = fpGDPA; } else fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gdpa); if (!fpGDPA) { loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Failed to find vkGetDeviceProcAddr in layer %s", layer_prop->lib_name); continue; } } layer_device_link_info[num_activated_layers].pNext = chain_info.u.pLayerInfo; layer_device_link_info[num_activated_layers].pfnNextGetInstanceProcAddr = nextGIPA; layer_device_link_info[num_activated_layers].pfnNextGetDeviceProcAddr = nextGDPA; chain_info.u.pLayerInfo = &layer_device_link_info[num_activated_layers]; nextGIPA = fpGIPA; nextGDPA = fpGDPA; activated_layers[num_activated_layers].name = layer_prop->info.layerName; activated_layers[num_activated_layers].manifest = layer_prop->manifest_file_name; activated_layers[num_activated_layers].library = layer_prop->lib_name; activated_layers[num_activated_layers].is_implicit = !(layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER); if (activated_layers[num_activated_layers].is_implicit) { activated_layers[num_activated_layers].disable_env = layer_prop->disable_env_var.name; } loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Inserted device layer %s (%s)", layer_prop->info.layerName, layer_prop->lib_name); num_activated_layers++; } } VkDevice created_device = (VkDevice)dev; PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)nextGIPA(inst->instance, "vkCreateDevice"); if (fpCreateDevice) { VkLayerDeviceCreateInfo create_info_disp; create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO; create_info_disp.function = VK_LOADER_DATA_CALLBACK; create_info_disp.u.pfnSetDeviceLoaderData = vkSetDeviceDispatch; // If layer debugging is enabled, let's print out the full callstack with layers in their // defined order. uint32_t layer_driver_bits = VULKAN_LOADER_LAYER_BIT | VULKAN_LOADER_DRIVER_BIT; if ((loader_get_debug_level() & layer_driver_bits) != 0) { loader_log(inst, layer_driver_bits, 0, "vkCreateDevice layer callstack setup to:"); loader_log(inst, layer_driver_bits, 0, " "); loader_log(inst, layer_driver_bits, 0, " ||"); loader_log(inst, layer_driver_bits, 0, " "); loader_log(inst, layer_driver_bits, 0, " ||"); if ((loader_get_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) { for (uint32_t cur_layer = 0; cur_layer < num_activated_layers; ++cur_layer) { uint32_t index = num_activated_layers - cur_layer - 1; loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " %s", activated_layers[index].name); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Type: %s", activated_layers[index].is_implicit ? "Implicit" : "Explicit"); if (activated_layers[index].is_implicit) { loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Disable Env Var: %s", activated_layers[index].disable_env); } loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Manifest: %s", activated_layers[index].manifest); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Library: %s", activated_layers[index].library); loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||"); } } loader_log(inst, layer_driver_bits, 0, " "); } create_info_disp.pNext = loader_create_info.pNext; loader_create_info.pNext = &create_info_disp; res = fpCreateDevice(pd, &loader_create_info, pAllocator, &created_device); if (res != VK_SUCCESS) { return res; } dev->chain_device = created_device; // Because we changed the pNext chain to use our own VkDeviceGroupDeviceCreateInfoKHR, we need to fixup the chain to point // back at the original VkDeviceGroupDeviceCreateInfoKHR. VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext; VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info; while (NULL != pNext) { if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) { VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext; if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) { pPrev->pNext = (VkBaseOutStructure *)original_device_group_create_info_struct; } break; } pPrev = pNext; pNext = pNext->pNext; } } else { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_device_chain: Failed to find \'vkCreateDevice\' in layers or ICD"); // Couldn't find CreateDevice function! return VK_ERROR_INITIALIZATION_FAILED; } // Initialize device dispatch table loader_init_device_dispatch_table(&dev->loader_dispatch, nextGDPA, dev->chain_device); return res; } VkResult loader_validate_layers(const struct loader_instance *inst, const uint32_t layer_count, const char *const *ppEnabledLayerNames, const struct loader_layer_list *list) { struct loader_layer_properties *prop; if (layer_count > 0 && ppEnabledLayerNames == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_instance_layers: ppEnabledLayerNames is NULL but enabledLayerCount is greater than zero"); return VK_ERROR_LAYER_NOT_PRESENT; } for (uint32_t i = 0; i < layer_count; i++) { VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, ppEnabledLayerNames[i]); if (result != VK_STRING_ERROR_NONE) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_layers: ppEnabledLayerNames contains string that is too long or is badly formed"); return VK_ERROR_LAYER_NOT_PRESENT; } prop = loader_find_layer_property(ppEnabledLayerNames[i], list); if (NULL == prop) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_layers: Layer %d does not exist in the list of available layers", i); return VK_ERROR_LAYER_NOT_PRESENT; } } return VK_SUCCESS; } VkResult loader_validate_instance_extensions(struct loader_instance *inst, const struct loader_extension_list *icd_exts, const struct loader_layer_list *instance_layers, const VkInstanceCreateInfo *pCreateInfo) { VkExtensionProperties *extension_prop; char *env_value; bool check_if_known = true; VkResult res = VK_SUCCESS; struct loader_layer_list active_layers; struct loader_layer_list expanded_layers; memset(&active_layers, 0, sizeof(active_layers)); memset(&expanded_layers, 0, sizeof(expanded_layers)); if (pCreateInfo->enabledExtensionCount > 0 && pCreateInfo->ppEnabledExtensionNames == NULL) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_instance_extensions: Instance ppEnabledExtensionNames is NULL but enabledExtensionCount is " "greater than zero"); return VK_ERROR_EXTENSION_NOT_PRESENT; } if (!loader_init_layer_list(inst, &active_layers)) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } if (!loader_init_layer_list(inst, &expanded_layers)) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Build the lists of active layers (including metalayers) and expanded layers (with metalayers resolved to their // components) loader_add_implicit_layers(inst, &active_layers, &expanded_layers, instance_layers); res = loader_add_environment_layers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, ENABLED_LAYERS_ENV, &active_layers, &expanded_layers, instance_layers); if (res != VK_SUCCESS) { goto out; } res = loader_add_layer_names_to_list(inst, &active_layers, &expanded_layers, pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers); if (VK_SUCCESS != res) { goto out; } for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]); if (result != VK_STRING_ERROR_NONE) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_instance_extensions: Instance ppEnabledExtensionNames contains " "string that is too long or is badly formed"); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } // Check if a user wants to disable the instance extension filtering behavior env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst); if (NULL != env_value && atoi(env_value) != 0) { check_if_known = false; } loader_free_getenv(env_value, inst); if (check_if_known) { // See if the extension is in the list of supported extensions bool found = false; for (uint32_t j = 0; LOADER_INSTANCE_EXTENSIONS[j] != NULL; j++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], LOADER_INSTANCE_EXTENSIONS[j]) == 0) { found = true; break; } } // If it isn't in the list, return an error if (!found) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_instance_extensions: Extension %s not found in list of known instance extensions.", pCreateInfo->ppEnabledExtensionNames[i]); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } } extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], icd_exts); if (extension_prop) { continue; } extension_prop = NULL; // Not in global list, search layer extension lists struct loader_layer_properties *layer_prop = NULL; for (uint32_t j = 0; NULL == extension_prop && j < expanded_layers.count; ++j) { extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], &expanded_layers.list[j].instance_extension_list); if (extension_prop) { // Found the extension in one of the layers enabled by the app. break; } layer_prop = loader_find_layer_property(expanded_layers.list[j].info.layerName, instance_layers); if (NULL == layer_prop) { // Should NOT get here, loader_validate_layers should have already filtered this case out. continue; } } if (!extension_prop) { // Didn't find extension name in any of the global layers, error out loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_instance_extensions: Instance extension %s not supported by available ICDs or enabled " "layers.", pCreateInfo->ppEnabledExtensionNames[i]); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } } out: loader_destroy_layer_list(inst, NULL, &active_layers); loader_destroy_layer_list(inst, NULL, &expanded_layers); return res; } VkResult loader_validate_device_extensions(struct loader_instance *this_instance, const struct loader_layer_list *activated_device_layers, const struct loader_extension_list *icd_exts, const VkDeviceCreateInfo *pCreateInfo) { VkExtensionProperties *extension_prop; struct loader_layer_properties *layer_prop; for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]); if (result != VK_STRING_ERROR_NONE) { loader_log(this_instance, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_device_extensions: Device ppEnabledExtensionNames contains " "string that is too long or is badly formed"); return VK_ERROR_EXTENSION_NOT_PRESENT; } const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i]; extension_prop = get_extension_property(extension_name, icd_exts); if (extension_prop) { continue; } // Not in global list, search activated layer extension lists for (uint32_t j = 0; j < activated_device_layers->count; j++) { layer_prop = &activated_device_layers->list[j]; extension_prop = get_dev_extension_property(extension_name, &layer_prop->device_extension_list); if (extension_prop) { // Found the extension in one of the layers enabled by the app. break; } } if (!extension_prop) { // Didn't find extension name in any of the device layers, error out loader_log(this_instance, VULKAN_LOADER_ERROR_BIT, 0, "loader_validate_device_extensions: Device extension %s not supported by selected physical device " "or enabled layers.", pCreateInfo->ppEnabledExtensionNames[i]); return VK_ERROR_EXTENSION_NOT_PRESENT; } } return VK_SUCCESS; } // Terminator functions for the Instance chain // All named terminator_ VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) { struct loader_icd_term *icd_term; VkExtensionProperties *prop; char **filtered_extension_names = NULL; VkInstanceCreateInfo icd_create_info; VkResult res = VK_SUCCESS; bool one_icd_successful = false; struct loader_instance *ptr_instance = (struct loader_instance *)*pInstance; if (NULL == ptr_instance) { loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0, "terminator_CreateInstance: Loader instance pointer null encountered. Possibly set by active layer. (Policy " "#LLP_LAYER_21)"); } else if (LOADER_MAGIC_NUMBER != ptr_instance->magic) { loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0, "terminator_CreateInstance: Instance pointer (%p) has invalid MAGIC value 0x%08x. Instance value possibly " "corrupted by active layer (Policy #LLP_LAYER_21). ", ptr_instance->magic); } memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info)); icd_create_info.enabledLayerCount = 0; icd_create_info.ppEnabledLayerNames = NULL; // NOTE: Need to filter the extensions to only those supported by the ICD. // No ICD will advertise support for layers. An ICD library could // support a layer, but it would be independent of the actual ICD, // just in the same library. uint32_t extension_count = pCreateInfo->enabledExtensionCount; #ifdef LOADER_ENABLE_LINUX_SORT extension_count += 1; #endif // LOADER_ENABLE_LINUX_SORT filtered_extension_names = loader_stack_alloc(extension_count * sizeof(char *)); if (!filtered_extension_names) { loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT, 0, "terminator_CreateInstance: Failed create extension name array for %d extensions", extension_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } icd_create_info.ppEnabledExtensionNames = (const char *const *)filtered_extension_names; // Determine if Get Physical Device Properties 2 is available to this Instance if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion >= VK_API_VERSION_1_1) { ptr_instance->supports_get_dev_prop_2 = true; } else { for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) { if (!strcmp(pCreateInfo->ppEnabledExtensionNames[j], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) { ptr_instance->supports_get_dev_prop_2 = true; break; } } } for (uint32_t i = 0; i < ptr_instance->icd_tramp_list.count; i++) { icd_term = loader_icd_add(ptr_instance, &ptr_instance->icd_tramp_list.scanned_list[i]); if (NULL == icd_term) { loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT, 0, "terminator_CreateInstance: Failed to add ICD %d to ICD trampoline list.", i); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // If any error happens after here, we need to remove the ICD from the list, // because we've already added it, but haven't validated it // Make sure that we reset the pApplicationInfo so we don't get an old pointer icd_create_info.pApplicationInfo = pCreateInfo->pApplicationInfo; icd_create_info.enabledExtensionCount = 0; struct loader_extension_list icd_exts; loader_log(ptr_instance, VULKAN_LOADER_DEBUG_BIT, 0, "Build ICD instance extension list"); // traverse scanned icd list adding non-duplicate extensions to the list res = loader_init_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { // If out of memory, bail immediately. goto out; } else if (VK_SUCCESS != res) { // Something bad happened with this ICD, so free it and try the // next. ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } res = loader_add_instance_extensions(ptr_instance, icd_term->scanned_icd->EnumerateInstanceExtensionProperties, icd_term->scanned_icd->lib_name, &icd_exts); if (VK_SUCCESS != res) { loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { // If out of memory, bail immediately. goto out; } else { // Something bad happened with this ICD, so free it and try the next. ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } } for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) { prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[j], &icd_exts); if (prop) { filtered_extension_names[icd_create_info.enabledExtensionCount] = (char *)pCreateInfo->ppEnabledExtensionNames[j]; icd_create_info.enabledExtensionCount++; } } #ifdef LOADER_ENABLE_LINUX_SORT // Force on "VK_KHR_get_physical_device_properties2" for Linux as we use it for GPU sorting. This // should be done if the API version of either the application or the driver does not natively support // the core version of vkGetPhysicalDeviceProperties2 entrypoint. if ((ptr_instance->app_api_version.major == 1 && ptr_instance->app_api_version.minor == 0) || (VK_API_VERSION_MAJOR(icd_term->scanned_icd->api_version) == 1 && VK_API_VERSION_MINOR(icd_term->scanned_icd->api_version) == 0)) { prop = get_extension_property(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, &icd_exts); if (prop) { filtered_extension_names[icd_create_info.enabledExtensionCount] = (char *)VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME; icd_create_info.enabledExtensionCount++; // At least one ICD supports this, so the instance should be able to support it ptr_instance->supports_get_dev_prop_2 = true; } } #endif // LOADER_ENABLE_LINUX_SORT // Determine if vkGetPhysicalDeviceProperties2 is available to this Instance if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) { icd_term->supports_get_dev_prop_2 = true; } else { for (uint32_t j = 0; j < icd_create_info.enabledExtensionCount; j++) { if (!strcmp(filtered_extension_names[j], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) { icd_term->supports_get_dev_prop_2 = true; break; } } } loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts); // Get the driver version from vkEnumerateInstanceVersion uint32_t icd_version = VK_API_VERSION_1_0; VkResult icd_result = VK_SUCCESS; if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) { PFN_vkEnumerateInstanceVersion icd_enumerate_instance_version = (PFN_vkEnumerateInstanceVersion)icd_term->scanned_icd->GetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion"); if (icd_enumerate_instance_version != NULL) { icd_result = icd_enumerate_instance_version(&icd_version); if (icd_result != VK_SUCCESS) { icd_version = VK_API_VERSION_1_0; loader_log(ptr_instance, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "terminator_CreateInstance: ICD \"%s\" vkEnumerateInstanceVersion returned error. The ICD will be " "treated as a 1.0 ICD", icd_term->scanned_icd->lib_name); } } } // Remove the portability enumeration flag bit if the ICD doesn't support the extension if ((pCreateInfo->flags & VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR) == 1) { bool supports_portability_enumeration = false; for (uint32_t j = 0; j < icd_create_info.enabledExtensionCount; j++) { if (strcmp(filtered_extension_names[j], VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME) == 0) { supports_portability_enumeration = true; break; } } // If the icd supports the extension, use the flags as given, otherwise remove the portability bit icd_create_info.flags = supports_portability_enumeration ? pCreateInfo->flags : pCreateInfo->flags & (~VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR); } // Create an instance, substituting the version to 1.0 if necessary VkApplicationInfo icd_app_info; uint32_t icd_version_nopatch = VK_MAKE_API_VERSION(0, VK_API_VERSION_MAJOR(icd_version), VK_API_VERSION_MINOR(icd_version), 0); uint32_t requested_version = (pCreateInfo == NULL || pCreateInfo->pApplicationInfo == NULL) ? VK_API_VERSION_1_0 : pCreateInfo->pApplicationInfo->apiVersion; if ((requested_version != 0) && (icd_version_nopatch == VK_API_VERSION_1_0)) { if (icd_create_info.pApplicationInfo == NULL) { memset(&icd_app_info, 0, sizeof(icd_app_info)); } else { memmove(&icd_app_info, icd_create_info.pApplicationInfo, sizeof(icd_app_info)); } icd_app_info.apiVersion = icd_version; icd_create_info.pApplicationInfo = &icd_app_info; } icd_result = ptr_instance->icd_tramp_list.scanned_list[i].CreateInstance(&icd_create_info, pAllocator, &(icd_term->instance)); if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_result) { // If out of memory, bail immediately. res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } else if (VK_SUCCESS != icd_result) { loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0, "terminator_CreateInstance: Failed to CreateInstance in ICD %d. Skipping ICD.", i); ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } if (!loader_icd_init_entries(icd_term, icd_term->instance, ptr_instance->icd_tramp_list.scanned_list[i].GetInstanceProcAddr)) { loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0, "terminator_CreateInstance: Failed to CreateInstance and find entrypoints with ICD. Skipping ICD."); ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } if (ptr_instance->icd_tramp_list.scanned_list[i].interface_version < 3 && ( #ifdef VK_USE_PLATFORM_XLIB_KHR NULL != icd_term->dispatch.CreateXlibSurfaceKHR || #endif // VK_USE_PLATFORM_XLIB_KHR #ifdef VK_USE_PLATFORM_XCB_KHR NULL != icd_term->dispatch.CreateXcbSurfaceKHR || #endif // VK_USE_PLATFORM_XCB_KHR #ifdef VK_USE_PLATFORM_WAYLAND_KHR NULL != icd_term->dispatch.CreateWaylandSurfaceKHR || #endif // VK_USE_PLATFORM_WAYLAND_KHR #ifdef VK_USE_PLATFORM_ANDROID_KHR NULL != icd_term->dispatch.CreateAndroidSurfaceKHR || #endif // VK_USE_PLATFORM_ANDROID_KHR #ifdef VK_USE_PLATFORM_WIN32_KHR NULL != icd_term->dispatch.CreateWin32SurfaceKHR || #endif // VK_USE_PLATFORM_WIN32_KHR NULL != icd_term->dispatch.DestroySurfaceKHR)) { loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0, "terminator_CreateInstance: Driver %s supports interface version %u but still exposes VkSurfaceKHR" " create/destroy entrypoints (Policy #LDP_DRIVER_8)", ptr_instance->icd_tramp_list.scanned_list[i].lib_name, ptr_instance->icd_tramp_list.scanned_list[i].interface_version); } // If we made it this far, at least one ICD was successful one_icd_successful = true; } // For vkGetPhysicalDeviceProperties2, at least one ICD needs to support the extension for the // instance to have it if (ptr_instance->supports_get_dev_prop_2) { bool at_least_one_supports = false; icd_term = ptr_instance->icd_terms; while (icd_term != NULL) { if (icd_term->supports_get_dev_prop_2) { at_least_one_supports = true; break; } icd_term = icd_term->next; } if (!at_least_one_supports) { ptr_instance->supports_get_dev_prop_2 = false; } } // If no ICDs were added to instance list and res is unchanged from it's initial value, the loader was unable to // find a suitable ICD. if (VK_SUCCESS == res && (ptr_instance->icd_terms == NULL || !one_icd_successful)) { loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "terminator_CreateInstance: Found no drivers!"); res = VK_ERROR_INCOMPATIBLE_DRIVER; } out: ptr_instance->create_terminator_invalid_extension = false; if (VK_SUCCESS != res) { if (VK_ERROR_EXTENSION_NOT_PRESENT == res) { ptr_instance->create_terminator_invalid_extension = true; } while (NULL != ptr_instance->icd_terms) { icd_term = ptr_instance->icd_terms; ptr_instance->icd_terms = icd_term->next; if (NULL != icd_term->instance) { icd_term->dispatch.DestroyInstance(icd_term->instance, pAllocator); } loader_icd_destroy(ptr_instance, icd_term, pAllocator); } } else { // Check for enabled extensions here to setup the loader structures so the loader knows what extensions // it needs to worry about. // We do it here and again above the layers in the trampoline function since the trampoline function // may think different extensions are enabled than what's down here. // This is why we don't clear inside of these function calls. // The clearing should actually be handled by the overall memset of the pInstance structure in the // trampoline. wsi_create_instance(ptr_instance, pCreateInfo); check_for_enabled_debug_extensions(ptr_instance, pCreateInfo); extensions_create_instance(ptr_instance, pCreateInfo); } return res; } VKAPI_ATTR void VKAPI_CALL terminator_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) { struct loader_instance *ptr_instance = loader_get_instance(instance); if (NULL == ptr_instance) { return; } struct loader_icd_term *icd_terms = ptr_instance->icd_terms; struct loader_icd_term *next_icd_term; // Remove this instance from the list of instances: struct loader_instance *prev = NULL; struct loader_instance *next = loader.instances; while (next != NULL) { if (next == ptr_instance) { // Remove this instance from the list: if (prev) prev->next = next->next; else loader.instances = next->next; break; } prev = next; next = next->next; } while (NULL != icd_terms) { if (icd_terms->instance) { icd_terms->dispatch.DestroyInstance(icd_terms->instance, pAllocator); } next_icd_term = icd_terms->next; icd_terms->instance = VK_NULL_HANDLE; loader_icd_destroy(ptr_instance, icd_terms, pAllocator); icd_terms = next_icd_term; } loader_delete_layer_list_and_properties(ptr_instance, &ptr_instance->instance_layer_list); loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_tramp_list); loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&ptr_instance->ext_list); if (NULL != ptr_instance->phys_devs_term) { for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) { for (uint32_t j = i + 1; j < ptr_instance->phys_dev_count_term; j++) { if (ptr_instance->phys_devs_term[i] == ptr_instance->phys_devs_term[j]) { ptr_instance->phys_devs_term[j] = NULL; } } } for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) { loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term[i]); } loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term); } if (NULL != ptr_instance->phys_dev_groups_term) { for (uint32_t i = 0; i < ptr_instance->phys_dev_group_count_term; i++) { loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term[i]); } loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term); } loader_free_dev_ext_table(ptr_instance); loader_free_phys_dev_ext_table(ptr_instance); } VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) { VkResult res = VK_SUCCESS; struct loader_physical_device_term *phys_dev_term; phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; struct loader_device *dev = (struct loader_device *)*pDevice; PFN_vkCreateDevice fpCreateDevice = icd_term->dispatch.CreateDevice; struct loader_extension_list icd_exts; VkBaseOutStructure *caller_dgci_container = NULL; VkDeviceGroupDeviceCreateInfoKHR *caller_dgci = NULL; dev->phys_dev_term = phys_dev_term; icd_exts.list = NULL; if (fpCreateDevice == NULL) { loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "terminator_CreateDevice: No vkCreateDevice command exposed by ICD %s", icd_term->scanned_icd->lib_name); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } VkDeviceCreateInfo localCreateInfo; memcpy(&localCreateInfo, pCreateInfo, sizeof(localCreateInfo)); // NOTE: Need to filter the extensions to only those supported by the ICD. // No ICD will advertise support for layers. An ICD library could support a layer, // but it would be independent of the actual ICD, just in the same library. char **filtered_extension_names = NULL; if (0 < pCreateInfo->enabledExtensionCount) { filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *)); if (NULL == filtered_extension_names) { loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT, 0, "terminator_CreateDevice: Failed to create extension name storage for %d extensions", pCreateInfo->enabledExtensionCount); return VK_ERROR_OUT_OF_HOST_MEMORY; } } localCreateInfo.enabledLayerCount = 0; localCreateInfo.ppEnabledLayerNames = NULL; localCreateInfo.enabledExtensionCount = 0; localCreateInfo.ppEnabledExtensionNames = (const char *const *)filtered_extension_names; // Get the physical device (ICD) extensions res = loader_init_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { goto out; } res = loader_add_device_extensions(icd_term->this_instance, icd_term->dispatch.EnumerateDeviceExtensionProperties, phys_dev_term->phys_dev, icd_term->scanned_icd->lib_name, &icd_exts); if (res != VK_SUCCESS) { goto out; } for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i]; VkExtensionProperties *prop = get_extension_property(extension_name, &icd_exts); if (prop) { filtered_extension_names[localCreateInfo.enabledExtensionCount] = (char *)extension_name; localCreateInfo.enabledExtensionCount++; } else { loader_log(icd_term->this_instance, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "vkCreateDevice extension %s not available for devices associated with ICD %s", extension_name, icd_term->scanned_icd->lib_name); } } // Before we continue, If KHX_device_group is the list of enabled and viable extensions, then we then need to look for the // corresponding VkDeviceGroupDeviceCreateInfo struct in the device list and replace all the physical device values (which // are really loader physical device terminator values) with the ICD versions. // if (icd_term->this_instance->enabled_known_extensions.khr_device_group_creation == 1) { { VkBaseOutStructure *pNext = (VkBaseOutStructure *)localCreateInfo.pNext; VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&localCreateInfo; while (NULL != pNext) { if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) { VkDeviceGroupDeviceCreateInfo *cur_struct = (VkDeviceGroupDeviceCreateInfo *)pNext; if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) { VkDeviceGroupDeviceCreateInfo *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfo)); VkPhysicalDevice *phys_dev_array = NULL; if (NULL == temp_struct) { return VK_ERROR_OUT_OF_HOST_MEMORY; } memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfo)); phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount); if (NULL == phys_dev_array) { return VK_ERROR_OUT_OF_HOST_MEMORY; } // Before calling down, replace the incoming physical device values (which are really loader terminator // physical devices) with the ICDs physical device values. struct loader_physical_device_term *cur_term; for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) { cur_term = (struct loader_physical_device_term *)cur_struct->pPhysicalDevices[phys_dev]; phys_dev_array[phys_dev] = cur_term->phys_dev; } temp_struct->pPhysicalDevices = phys_dev_array; // Keep track of pointers to restore pNext chain before returning caller_dgci_container = pPrev; caller_dgci = cur_struct; // Replace the old struct in the pNext chain with this one. pPrev->pNext = (VkBaseOutStructure *)temp_struct; } break; } pPrev = pNext; pNext = pNext->pNext; } } // Handle loader emulation for structs that are not supported by the ICD: // Presently, the emulation leaves the pNext chain alone. This means that the ICD will receive items in the chain which // are not recognized by the ICD. If this causes the ICD to fail, then the items would have to be removed here. The current // implementation does not remove them because copying the pNext chain would be impossible if the loader does not recognize // the any of the struct types, as the loader would not know the size to allocate and copy. // if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) { { const void *pNext = localCreateInfo.pNext; while (pNext != NULL) { switch (*(VkStructureType *)pNext) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: { const VkPhysicalDeviceFeatures2KHR *features = pNext; if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) { loader_log(icd_term->this_instance, VULKAN_LOADER_INFO_BIT, 0, "vkCreateDevice: Emulating handling of VkPhysicalDeviceFeatures2 in pNext chain for ICD \"%s\"", icd_term->scanned_icd->lib_name); // Verify that VK_KHR_get_physical_device_properties2 is enabled if (icd_term->this_instance->enabled_known_extensions.khr_get_physical_device_properties2) { localCreateInfo.pEnabledFeatures = &features->features; } } // Leave this item in the pNext chain for now pNext = features->pNext; break; } case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: { const VkDeviceGroupDeviceCreateInfoKHR *group_info = pNext; if (icd_term->dispatch.EnumeratePhysicalDeviceGroups == NULL && icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR == NULL) { loader_log(icd_term->this_instance, VULKAN_LOADER_INFO_BIT, 0, "vkCreateDevice: Emulating handling of VkPhysicalDeviceGroupProperties in pNext chain for " "ICD \"%s\"", icd_term->scanned_icd->lib_name); // The group must contain only this one device, since physical device groups aren't actually supported if (group_info->physicalDeviceCount != 1) { loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Emulation failed to create device from device group info"); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } } // Nothing needs to be done here because we're leaving the item in the pNext chain and because the spec // states that the physicalDevice argument must be included in the device group, and we've already checked // that it is pNext = group_info->pNext; break; } // Multiview properties are also allowed, but since VK_KHX_multiview is a device extension, we'll just let the // ICD handle that error when the user enables the extension here default: { const VkBaseInStructure *header = pNext; pNext = header->pNext; break; } } } } // Every extension that has a loader-defined terminator needs to be marked as enabled or disabled so that we know whether or // not to return that terminator when vkGetDeviceProcAddr is called for (uint32_t i = 0; i < localCreateInfo.enabledExtensionCount; ++i) { if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { dev->extensions.khr_swapchain_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME)) { dev->extensions.khr_display_swapchain_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DEVICE_GROUP_EXTENSION_NAME)) { dev->extensions.khr_device_group_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) { dev->extensions.ext_debug_marker_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], "VK_EXT_full_screen_exclusive")) { dev->extensions.ext_full_screen_exclusive_enabled = true; } } dev->extensions.ext_debug_utils_enabled = icd_term->this_instance->enabled_known_extensions.ext_debug_utils; VkPhysicalDeviceProperties properties; icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &properties); if (!dev->extensions.khr_device_group_enabled) { if (properties.apiVersion >= VK_API_VERSION_1_1) { dev->extensions.khr_device_group_enabled = true; } } loader_log(icd_term->this_instance, VULKAN_LOADER_LAYER_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Using \"%s\" with driver: \"%s\"\n", properties.deviceName, icd_term->scanned_icd->lib_name); res = fpCreateDevice(phys_dev_term->phys_dev, &localCreateInfo, pAllocator, &dev->icd_device); if (res != VK_SUCCESS) { loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "terminator_CreateDevice: Failed in ICD %s vkCreateDevice call", icd_term->scanned_icd->lib_name); goto out; } *pDevice = dev->icd_device; loader_add_logical_device(icd_term->this_instance, icd_term, dev); // Init dispatch pointer in new device object loader_init_dispatch(*pDevice, &dev->loader_dispatch); out: if (NULL != icd_exts.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts); } // Restore pNext pointer to old VkDeviceGroupDeviceCreateInfoKHX // in the chain to maintain consistency for the caller. if (caller_dgci_container != NULL) { caller_dgci_container->pNext = (VkBaseOutStructure *)caller_dgci; } return res; } // Update the trampoline physical devices with the wrapped version. // We always want to re-use previous physical device pointers since they may be used by an application // after returning previously. VkResult setup_loader_tramp_phys_devs(struct loader_instance *inst, uint32_t phys_dev_count, VkPhysicalDevice *phys_devs) { VkResult res = VK_SUCCESS; uint32_t found_count = 0; uint32_t old_count = inst->phys_dev_count_tramp; uint32_t new_count = inst->total_gpu_count; struct loader_physical_device_tramp **new_phys_devs = NULL; if (0 == phys_dev_count) { return VK_SUCCESS; } if (phys_dev_count > new_count) { new_count = phys_dev_count; } // We want an old to new index array and a new to old index array int32_t *old_to_new_index = (int32_t *)loader_stack_alloc(sizeof(int32_t) * old_count); int32_t *new_to_old_index = (int32_t *)loader_stack_alloc(sizeof(int32_t) * new_count); if (NULL == old_to_new_index || NULL == new_to_old_index) { return VK_ERROR_OUT_OF_HOST_MEMORY; } // Initialize both for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) { old_to_new_index[cur_idx] = -1; } for (uint32_t cur_idx = 0; cur_idx < new_count; ++cur_idx) { new_to_old_index[cur_idx] = -1; } // Figure out the old->new and new->old indices for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) { for (uint32_t new_idx = 0; new_idx < phys_dev_count; ++new_idx) { if (inst->phys_devs_tramp[cur_idx]->phys_dev == phys_devs[new_idx]) { old_to_new_index[cur_idx] = (int32_t)new_idx; new_to_old_index[new_idx] = (int32_t)cur_idx; found_count++; break; } } } // If we found exactly the number of items we were looking for as we had before. Then everything // we already have is good enough and we just need to update the array that was passed in with // the loader values. if (found_count == phys_dev_count && 0 != old_count && old_count == new_count) { for (uint32_t new_idx = 0; new_idx < phys_dev_count; ++new_idx) { for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) { if (old_to_new_index[cur_idx] == (int32_t)new_idx) { phys_devs[new_idx] = (VkPhysicalDevice)inst->phys_devs_tramp[cur_idx]; break; } } } // Nothing else to do for this path res = VK_SUCCESS; } else { // Something is different, so do the full path of checking every device and creating a new array to use. // This can happen if a device was added, or removed, or we hadn't previously queried all the data and we // have more to store. new_phys_devs = loader_instance_heap_calloc(inst, sizeof(struct loader_physical_device_tramp *) * new_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_tramp_phys_devs: Failed to allocate new physical device array of size %d", new_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } if (new_count > phys_dev_count) { found_count = phys_dev_count; } else { found_count = new_count; } // First try to see if an old item exists that matches the new item. If so, just copy it over. for (uint32_t new_idx = 0; new_idx < found_count; ++new_idx) { bool old_item_found = false; for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) { if (old_to_new_index[cur_idx] == (int32_t)new_idx) { // Copy over old item to correct spot in the new array new_phys_devs[new_idx] = inst->phys_devs_tramp[cur_idx]; old_item_found = true; break; } } // Something wasn't found, so it's new so add it to the new list if (!old_item_found) { new_phys_devs[new_idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_tramp), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs[new_idx]) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_tramp_phys_devs: Failed to allocate new trampoline physical device"); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Initialize the new physicalDevice object loader_set_dispatch((void *)new_phys_devs[new_idx], inst->disp); new_phys_devs[new_idx]->this_instance = inst; new_phys_devs[new_idx]->phys_dev = phys_devs[new_idx]; new_phys_devs[new_idx]->magic = PHYS_TRAMP_MAGIC_NUMBER; } phys_devs[new_idx] = (VkPhysicalDevice)new_phys_devs[new_idx]; } // We usually get here if the user array is smaller than the total number of devices, so copy the // remaining devices we have over to the new array. uint32_t start = found_count; for (uint32_t new_idx = start; new_idx < new_count; ++new_idx) { for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) { if (old_to_new_index[cur_idx] == -1) { new_phys_devs[new_idx] = inst->phys_devs_tramp[cur_idx]; old_to_new_index[cur_idx] = new_idx; found_count++; break; } } } } out: if (NULL != new_phys_devs) { if (VK_SUCCESS != res) { for (uint32_t new_idx = 0; new_idx < found_count; ++new_idx) { // If an OOM occurred inside the copying of the new physical devices into the existing array // will leave some of the old physical devices in the array which may have been copied into // the new array, leading to them being freed twice. To avoid this we just make sure to not // delete physical devices which were copied. bool found = false; for (uint32_t cur_idx = 0; cur_idx < inst->phys_dev_count_tramp; cur_idx++) { if (new_phys_devs[new_idx] == inst->phys_devs_tramp[cur_idx]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, new_phys_devs[new_idx]); } } loader_instance_heap_free(inst, new_phys_devs); } else { if (new_count > inst->total_gpu_count) { inst->total_gpu_count = new_count; } // Free everything in the old array that was not copied into the new array // here. We can't attempt to do that before here since the previous loop // looking before the "out:" label may hit an out of memory condition resulting // in memory leaking. if (NULL != inst->phys_devs_tramp) { for (uint32_t i = 0; i < inst->phys_dev_count_tramp; i++) { bool found = false; for (uint32_t j = 0; j < inst->total_gpu_count; j++) { if (inst->phys_devs_tramp[i] == new_phys_devs[j]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, inst->phys_devs_tramp[i]); } } loader_instance_heap_free(inst, inst->phys_devs_tramp); } inst->phys_devs_tramp = new_phys_devs; inst->phys_dev_count_tramp = found_count; } } if (VK_SUCCESS != res) { inst->total_gpu_count = 0; } return res; } #ifdef LOADER_ENABLE_LINUX_SORT bool is_linux_sort_enabled(struct loader_instance *inst) { bool sort_items = inst->supports_get_dev_prop_2; char *env_value = loader_getenv("VK_LOADER_DISABLE_SELECT", inst); if (NULL != env_value) { int32_t int_env_val = atoi(env_value); loader_free_getenv(env_value, inst); if (int_env_val != 0) { sort_items = false; } } return sort_items; } #endif // LOADER_ENABLE_LINUX_SORT // Check if this physical device is already in the old buffer void check_if_phys_dev_already_present(struct loader_instance *inst, VkPhysicalDevice physical_device, uint32_t idx, struct loader_physical_device_term **new_phys_devs) { if (NULL != inst->phys_devs_term) { for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) { if (physical_device == inst->phys_devs_term[old_idx]->phys_dev) { new_phys_devs[idx] = inst->phys_devs_term[old_idx]; break; } } } } VkResult allocate_new_phys_dev_at_idx(struct loader_instance *inst, VkPhysicalDevice physical_device, struct loader_phys_dev_per_icd *dev_array, uint32_t idx, struct loader_physical_device_term **new_phys_devs) { if (NULL == new_phys_devs[idx]) { new_phys_devs[idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs[idx]) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "allocate_new_phys_dev_at_idx: Failed to allocate physical device terminator object %d", idx); return VK_ERROR_OUT_OF_HOST_MEMORY; } loader_set_dispatch((void *)new_phys_devs[idx], inst->disp); new_phys_devs[idx]->this_icd_term = dev_array->icd_term; new_phys_devs[idx]->icd_index = (uint8_t)(dev_array->icd_index); new_phys_devs[idx]->phys_dev = physical_device; } return VK_SUCCESS; } /* Enumerate all physical devices from ICDs and add them to inst->phys_devs_term * * There are two methods to find VkPhysicalDevices - vkEnumeratePhysicalDevices and vkEnumerateAdapterPhysicalDevices * The latter is supported on windows only and on devices supporting ICD Interface Version 6 and greater. * * Once all physical devices are acquired, they need to be pulled into a single list of `loader_physical_device_term`'s. * They also need to be setup - the icd_term, icd_index, phys_dev, and disp (dispatch table) all need the correct data. * Additionally, we need to keep using already setup physical devices as they may be in use, thus anything enumerated * that is already in inst->phys_devs_term will be carried over. */ VkResult setup_loader_term_phys_devs(struct loader_instance *inst) { VkResult res = VK_SUCCESS; struct loader_icd_term *icd_term; uint32_t icd_idx = 0; uint32_t windows_sorted_devices_count = 0; struct loader_phys_dev_per_icd *windows_sorted_devices_array = NULL; uint32_t icd_count = 0; struct loader_phys_dev_per_icd *icd_phys_dev_array = NULL; uint32_t new_phys_devs_count = 0; struct loader_physical_device_term **new_phys_devs = NULL; #if defined(_WIN32) // Get the physical devices supported by platform sorting mechanism into a separate list res = windows_read_sorted_physical_devices(inst, &windows_sorted_devices_count, &windows_sorted_devices_array); if (VK_SUCCESS != res) { goto out; } #endif icd_count = inst->total_icd_count; // Allocate something to store the physical device characteristics that we read from each ICD. icd_phys_dev_array = (struct loader_phys_dev_per_icd *)loader_stack_alloc(sizeof(struct loader_phys_dev_per_icd) * icd_count); if (NULL == icd_phys_dev_array) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_term_phys_devs: Failed to allocate temporary ICD Physical device info array of size %d", icd_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(icd_phys_dev_array, 0, sizeof(struct loader_phys_dev_per_icd) * icd_count); // For each ICD, query the number of physical devices, and then get an // internal value for those physical devices. icd_term = inst->icd_terms; while (NULL != icd_term) { // This is the legacy behavior which should be skipped if EnumerateAdapterPhysicalDevices is available // and we successfully enumerated sorted adapters using windows_read_sorted_physical_devices. #if defined(VK_USE_PLATFORM_WIN32_KHR) if (icd_term->scanned_icd->EnumerateAdapterPhysicalDevices != NULL) { icd_term = icd_term->next; ++icd_idx; continue; } #endif res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &icd_phys_dev_array[icd_idx].device_count, NULL); if (VK_SUCCESS != res) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_term_phys_devs: Call to ICD %d's \'vkEnumeratePhysicalDevices\' failed with error 0x%08x", icd_idx, res); goto out; } icd_phys_dev_array[icd_idx].physical_devices = (VkPhysicalDevice *)loader_stack_alloc(icd_phys_dev_array[icd_idx].device_count * sizeof(VkPhysicalDevice)); if (NULL == icd_phys_dev_array[icd_idx].physical_devices) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_term_phys_devs: Failed to allocate temporary ICD Physical device array for ICD %d of size %d", icd_idx, icd_phys_dev_array[icd_idx].device_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &(icd_phys_dev_array[icd_idx].device_count), icd_phys_dev_array[icd_idx].physical_devices); if (VK_SUCCESS != res) { goto out; } icd_phys_dev_array[icd_idx].icd_term = icd_term; icd_phys_dev_array[icd_idx].icd_index = icd_idx; icd_term = icd_term->next; ++icd_idx; } // Add up both the windows sorted and non windows found physical device counts for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) { new_phys_devs_count += windows_sorted_devices_array[i].device_count; } for (uint32_t i = 0; i < icd_count; ++i) { new_phys_devs_count += icd_phys_dev_array[i].device_count; } // Bail out if there are no physical devices reported if (0 == new_phys_devs_count) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_term_phys_devs: Failed to detect any valid GPUs in the current config"); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } // Create an allocation large enough to hold both the windows sorting enumeration and non-windows physical device enumeration new_phys_devs = loader_instance_heap_calloc(inst, sizeof(struct loader_physical_device_term *) * new_phys_devs_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_term_phys_devs: Failed to allocate new physical device array of size %d", new_phys_devs_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Current index into the new_phys_devs array - increment whenever we've written in. uint32_t idx = 0; // Copy over everything found through sorted enumeration for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) { for (uint32_t j = 0; j < windows_sorted_devices_array[i].device_count; ++j) { check_if_phys_dev_already_present(inst, windows_sorted_devices_array[i].physical_devices[j], idx, new_phys_devs); res = allocate_new_phys_dev_at_idx(inst, windows_sorted_devices_array[i].physical_devices[j], &windows_sorted_devices_array[i], idx, new_phys_devs); if (res == VK_ERROR_OUT_OF_HOST_MEMORY) { goto out; } // Increment the count of new physical devices idx++; } } // Now go through the rest of the physical devices and add them to new_phys_devs #ifdef LOADER_ENABLE_LINUX_SORT if (is_linux_sort_enabled(inst)) { for (uint32_t dev = idx; dev < new_phys_devs_count; ++dev) { new_phys_devs[dev] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs[dev]) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "setup_loader_term_phys_devs: Failed to allocate physical device terminator object %d", dev); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } } // Get the physical devices supported by platform sorting mechanism into a separate list // Pass in a sublist to the function so it only operates on the correct elements. This means passing in a pointer to the // current next element in new_phys_devs and passing in a `count` of currently unwritten elements res = linux_read_sorted_physical_devices(inst, icd_count, icd_phys_dev_array, new_phys_devs_count - idx, &new_phys_devs[idx]); if (res == VK_ERROR_OUT_OF_HOST_MEMORY) { goto out; } // Keep previously allocated physical device info since apps may already be using that! for (uint32_t new_idx = idx; new_idx < new_phys_devs_count; new_idx++) { for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) { if (new_phys_devs[new_idx]->phys_dev == inst->phys_devs_term[old_idx]->phys_dev) { loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "Copying old device %u into new device %u", old_idx, new_idx); // Free the old new_phys_devs info since we're not using it before we assign the new info loader_instance_heap_free(inst, new_phys_devs[new_idx]); new_phys_devs[new_idx] = inst->phys_devs_term[old_idx]; break; } } } // We want the following code to run if either linux sorting is disabled at compile time or runtime } else { #endif // LOADER_ENABLE_LINUX_SORT // Copy over everything found through the non-sorted means. for (uint32_t i = 0; i < icd_count; ++i) { for (uint32_t j = 0; j < icd_phys_dev_array[i].device_count; ++j) { check_if_phys_dev_already_present(inst, icd_phys_dev_array[i].physical_devices[j], idx, new_phys_devs); // If this physical device isn't in the old buffer, then we need to create it. res = allocate_new_phys_dev_at_idx(inst, icd_phys_dev_array[i].physical_devices[j], &icd_phys_dev_array[i], idx, new_phys_devs); if (res == VK_ERROR_OUT_OF_HOST_MEMORY) { goto out; } // Increment the count of new physical devices idx++; } } #ifdef LOADER_ENABLE_LINUX_SORT } #endif // LOADER_ENABLE_LINUX_SORT out: if (VK_SUCCESS != res) { if (NULL != new_phys_devs) { // We've encountered an error, so we should free the new buffers. for (uint32_t i = 0; i < new_phys_devs_count; i++) { // If an OOM occurred inside the copying of the new physical devices into the existing array // will leave some of the old physical devices in the array which may have been copied into // the new array, leading to them being freed twice. To avoid this we just make sure to not // delete physical devices which were copied. bool found = false; if (NULL != inst->phys_devs_term) { for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) { if (new_phys_devs[i] == inst->phys_devs_term[old_idx]) { found = true; break; } } } if (!found) { loader_instance_heap_free(inst, new_phys_devs[i]); } } loader_instance_heap_free(inst, new_phys_devs); } inst->total_gpu_count = 0; } else { if (NULL != inst->phys_devs_term) { // Free everything in the old array that was not copied into the new array // here. We can't attempt to do that before here since the previous loop // looking before the "out:" label may hit an out of memory condition resulting // in memory leaking. for (uint32_t i = 0; i < inst->phys_dev_count_term; i++) { bool found = false; for (uint32_t j = 0; j < new_phys_devs_count; j++) { if (new_phys_devs != NULL && inst->phys_devs_term[i] == new_phys_devs[j]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, inst->phys_devs_term[i]); } } loader_instance_heap_free(inst, inst->phys_devs_term); } // Swap out old and new devices list inst->phys_dev_count_term = new_phys_devs_count; inst->phys_devs_term = new_phys_devs; inst->total_gpu_count = new_phys_devs_count; } if (windows_sorted_devices_array != NULL) { for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) { if (windows_sorted_devices_array[i].device_count > 0 && windows_sorted_devices_array[i].physical_devices != NULL) { loader_instance_heap_free(inst, windows_sorted_devices_array[i].physical_devices); } } loader_instance_heap_free(inst, windows_sorted_devices_array); } return res; } VkResult setup_loader_tramp_phys_dev_groups(struct loader_instance *inst, uint32_t group_count, VkPhysicalDeviceGroupProperties *groups) { VkResult res = VK_SUCCESS; uint32_t cur_idx; uint32_t dev_idx; if (0 == group_count) { return VK_SUCCESS; } // Generate a list of all the devices and convert them to the loader ID uint32_t phys_dev_count = 0; for (cur_idx = 0; cur_idx < group_count; ++cur_idx) { phys_dev_count += groups[cur_idx].physicalDeviceCount; } VkPhysicalDevice *devices = (VkPhysicalDevice *)loader_stack_alloc(sizeof(VkPhysicalDevice) * phys_dev_count); if (NULL == devices) { return VK_ERROR_OUT_OF_HOST_MEMORY; } uint32_t cur_device = 0; for (cur_idx = 0; cur_idx < group_count; ++cur_idx) { for (dev_idx = 0; dev_idx < groups[cur_idx].physicalDeviceCount; ++dev_idx) { devices[cur_device++] = groups[cur_idx].physicalDevices[dev_idx]; } } // Update the devices based on the loader physical device values. res = setup_loader_tramp_phys_devs(inst, phys_dev_count, devices); if (VK_SUCCESS != res) { return res; } // Update the devices in the group structures now cur_device = 0; for (cur_idx = 0; cur_idx < group_count; ++cur_idx) { for (dev_idx = 0; dev_idx < groups[cur_idx].physicalDeviceCount; ++dev_idx) { groups[cur_idx].physicalDevices[dev_idx] = devices[cur_device++]; } } return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount, VkPhysicalDevice *pPhysicalDevices) { struct loader_instance *inst = (struct loader_instance *)instance; VkResult res = VK_SUCCESS; // Always call the setup loader terminator physical devices because they may // have changed at any point. res = setup_loader_term_phys_devs(inst); if (VK_SUCCESS != res) { goto out; } uint32_t copy_count = inst->phys_dev_count_term; if (NULL != pPhysicalDevices) { if (copy_count > *pPhysicalDeviceCount) { copy_count = *pPhysicalDeviceCount; loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "terminator_EnumeratePhysicalDevices : Trimming device count from %d to %d.", inst->phys_dev_count_term, copy_count); res = VK_INCOMPLETE; } for (uint32_t i = 0; i < copy_count; i++) { pPhysicalDevices[i] = (VkPhysicalDevice)inst->phys_devs_term[i]; } } *pPhysicalDeviceCount = copy_count; out: return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { struct loader_physical_device_term *phys_dev_term; struct loader_layer_list implicit_layer_list = {0}; struct loader_extension_list all_exts = {0}; struct loader_extension_list icd_exts = {0}; // Any layer or trampoline wrapping should be removed at this point in time can just cast to the expected // type for VkPhysicalDevice. phys_dev_term = (struct loader_physical_device_term *)physicalDevice; // if we got here with a non-empty pLayerName, look up the extensions // from the json if (pLayerName != NULL && strlen(pLayerName) > 0) { uint32_t count; uint32_t copy_size; const struct loader_instance *inst = phys_dev_term->this_icd_term->this_instance; struct loader_device_extension_list *dev_ext_list = NULL; struct loader_device_extension_list local_ext_list; memset(&local_ext_list, 0, sizeof(local_ext_list)); if (vk_string_validate(MaxLoaderStringLength, pLayerName) == VK_STRING_ERROR_NONE) { for (uint32_t i = 0; i < inst->instance_layer_list.count; i++) { struct loader_layer_properties *props = &inst->instance_layer_list.list[i]; if (strcmp(props->info.layerName, pLayerName) == 0) { dev_ext_list = &props->device_extension_list; } } count = (dev_ext_list == NULL) ? 0 : dev_ext_list->count; if (pProperties == NULL) { *pPropertyCount = count; loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list); return VK_SUCCESS; } copy_size = *pPropertyCount < count ? *pPropertyCount : count; for (uint32_t i = 0; i < copy_size; i++) { memcpy(&pProperties[i], &dev_ext_list->list[i].props, sizeof(VkExtensionProperties)); } *pPropertyCount = copy_size; loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list); if (copy_size < count) { return VK_INCOMPLETE; } } else { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkEnumerateDeviceExtensionProperties: pLayerName is too long or is badly formed"); return VK_ERROR_EXTENSION_NOT_PRESENT; } return VK_SUCCESS; } // This case is during the call down the instance chain with pLayerName == NULL struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; uint32_t icd_ext_count = *pPropertyCount; VkExtensionProperties *icd_props_list = pProperties; VkResult res; if (NULL == icd_props_list) { // We need to find the count without duplicates. This requires querying the driver for the names of the extensions. // A small amount of storage is then needed to facilitate the de-duplication. res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, NULL); if (res != VK_SUCCESS) { goto out; } if (icd_ext_count > 0) { icd_props_list = loader_instance_heap_alloc(icd_term->this_instance, sizeof(VkExtensionProperties) * icd_ext_count, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == icd_props_list) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } } } // Get the available device extension count, and if pProperties is not NULL, the extensions as well res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, icd_props_list); if (res != VK_SUCCESS) { goto out; } if (!loader_init_layer_list(icd_term->this_instance, &implicit_layer_list)) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } loader_add_implicit_layers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list); // Initialize dev_extension list within the physicalDevice object res = loader_init_device_extensions(icd_term->this_instance, phys_dev_term, icd_ext_count, icd_props_list, &icd_exts); if (res != VK_SUCCESS) { goto out; } // We need to determine which implicit layers are active, and then add their extensions. This can't be cached as // it depends on results of environment variables (which can change). res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, icd_exts.count, icd_exts.list); if (res != VK_SUCCESS) { goto out; } loader_add_implicit_layers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list); for (uint32_t i = 0; i < implicit_layer_list.count; i++) { for (uint32_t j = 0; j < implicit_layer_list.list[i].device_extension_list.count; j++) { res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, 1, &implicit_layer_list.list[i].device_extension_list.list[j].props); if (res != VK_SUCCESS) { goto out; } } } uint32_t capacity = *pPropertyCount; VkExtensionProperties *props = pProperties; res = VK_SUCCESS; if (NULL != pProperties) { for (uint32_t i = 0; i < all_exts.count && i < capacity; i++) { props[i] = all_exts.list[i]; } // Wasn't enough space for the extensions, we did partial copy now return VK_INCOMPLETE if (capacity < all_exts.count) { res = VK_INCOMPLETE; } else { *pPropertyCount = all_exts.count; } } else { *pPropertyCount = all_exts.count; } out: if (NULL != implicit_layer_list.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&implicit_layer_list); } if (NULL != all_exts.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&all_exts); } if (NULL != icd_exts.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts); } if (NULL == pProperties && NULL != icd_props_list) { loader_instance_heap_free(icd_term->this_instance, icd_props_list); } return res; } VkStringErrorFlags vk_string_validate(const int max_length, const char *utf8) { VkStringErrorFlags result = VK_STRING_ERROR_NONE; int num_char_bytes = 0; int i, j; if (utf8 == NULL) { return VK_STRING_ERROR_NULL_PTR; } for (i = 0; i <= max_length; i++) { if (utf8[i] == 0) { break; } else if (i == max_length) { result |= VK_STRING_ERROR_LENGTH; break; } else if ((utf8[i] >= 0x20) && (utf8[i] < 0x7f)) { num_char_bytes = 0; } else if ((utf8[i] & UTF8_ONE_BYTE_MASK) == UTF8_ONE_BYTE_CODE) { num_char_bytes = 1; } else if ((utf8[i] & UTF8_TWO_BYTE_MASK) == UTF8_TWO_BYTE_CODE) { num_char_bytes = 2; } else if ((utf8[i] & UTF8_THREE_BYTE_MASK) == UTF8_THREE_BYTE_CODE) { num_char_bytes = 3; } else { result = VK_STRING_ERROR_BAD_DATA; } // Validate the following num_char_bytes of data for (j = 0; (j < num_char_bytes) && (i < max_length); j++) { if (++i == max_length) { result |= VK_STRING_ERROR_LENGTH; break; } if ((utf8[i] & UTF8_DATA_BYTE_MASK) != UTF8_DATA_BYTE_CODE) { result |= VK_STRING_ERROR_BAD_DATA; } } } return result; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceVersion(const VkEnumerateInstanceVersionChain *chain, uint32_t *pApiVersion) { // NOTE: The Vulkan WG doesn't want us checking pApiVersion for NULL, but instead // prefers us crashing. *pApiVersion = VK_HEADER_VERSION_COMPLETE; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceExtensionProperties(const VkEnumerateInstanceExtensionPropertiesChain *chain, const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { struct loader_extension_list *global_ext_list = NULL; struct loader_layer_list instance_layers; struct loader_extension_list local_ext_list; struct loader_icd_tramp_list icd_tramp_list; uint32_t copy_size; VkResult res = VK_SUCCESS; memset(&local_ext_list, 0, sizeof(local_ext_list)); memset(&instance_layers, 0, sizeof(instance_layers)); memset(&icd_tramp_list, 0, sizeof(icd_tramp_list)); // Get layer libraries if needed if (pLayerName && strlen(pLayerName) != 0) { if (vk_string_validate(MaxLoaderStringLength, pLayerName) != VK_STRING_ERROR_NONE) { assert(VK_FALSE && "vkEnumerateInstanceExtensionProperties: pLayerName is too long or is badly formed"); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } loader_scan_for_layers(NULL, &instance_layers); for (uint32_t i = 0; i < instance_layers.count; i++) { struct loader_layer_properties *props = &instance_layers.list[i]; if (strcmp(props->info.layerName, pLayerName) == 0) { global_ext_list = &props->instance_extension_list; break; } } } else { // Preload ICD libraries so subsequent calls to EnumerateInstanceExtensionProperties don't have to load them loader_preload_icds(); // Scan/discover all ICD libraries res = loader_icd_scan(NULL, &icd_tramp_list, NULL); // EnumerateInstanceExtensionProperties can't return anything other than OOM or VK_ERROR_LAYER_NOT_PRESENT if ((VK_SUCCESS != res && icd_tramp_list.count > 0) || res == VK_ERROR_OUT_OF_HOST_MEMORY) { goto out; } // Get extensions from all ICD's, merge so no duplicates res = loader_get_icd_loader_instance_extensions(NULL, &icd_tramp_list, &local_ext_list); if (VK_SUCCESS != res) { goto out; } loader_scanned_icd_clear(NULL, &icd_tramp_list); // Append enabled implicit layers. loader_scan_for_implicit_layers(NULL, &instance_layers); for (uint32_t i = 0; i < instance_layers.count; i++) { if (!loader_implicit_layer_is_enabled(NULL, &instance_layers.list[i])) { continue; } struct loader_extension_list *ext_list = &instance_layers.list[i].instance_extension_list; loader_add_to_ext_list(NULL, &local_ext_list, ext_list->count, ext_list->list); } global_ext_list = &local_ext_list; } if (global_ext_list == NULL) { res = VK_ERROR_LAYER_NOT_PRESENT; goto out; } if (pProperties == NULL) { *pPropertyCount = global_ext_list->count; goto out; } copy_size = *pPropertyCount < global_ext_list->count ? *pPropertyCount : global_ext_list->count; for (uint32_t i = 0; i < copy_size; i++) { memcpy(&pProperties[i], &global_ext_list->list[i], sizeof(VkExtensionProperties)); } *pPropertyCount = copy_size; if (copy_size < global_ext_list->count) { res = VK_INCOMPLETE; goto out; } out: loader_destroy_generic_list(NULL, (struct loader_generic_list *)&icd_tramp_list); loader_destroy_generic_list(NULL, (struct loader_generic_list *)&local_ext_list); loader_delete_layer_list_and_properties(NULL, &instance_layers); return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceLayerProperties(const VkEnumerateInstanceLayerPropertiesChain *chain, uint32_t *pPropertyCount, VkLayerProperties *pProperties) { VkResult result = VK_SUCCESS; struct loader_layer_list instance_layer_list; LOADER_PLATFORM_THREAD_ONCE(&once_init, loader_initialize); uint32_t copy_size; // Get layer libraries memset(&instance_layer_list, 0, sizeof(instance_layer_list)); loader_scan_for_layers(NULL, &instance_layer_list); if (pProperties == NULL) { *pPropertyCount = instance_layer_list.count; goto out; } copy_size = (*pPropertyCount < instance_layer_list.count) ? *pPropertyCount : instance_layer_list.count; for (uint32_t i = 0; i < copy_size; i++) { memcpy(&pProperties[i], &instance_layer_list.list[i].info, sizeof(VkLayerProperties)); } *pPropertyCount = copy_size; if (copy_size < instance_layer_list.count) { result = VK_INCOMPLETE; goto out; } out: loader_delete_layer_list_and_properties(NULL, &instance_layer_list); return result; } // ---- Vulkan Core 1.1 terminators VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDeviceGroups( VkInstance instance, uint32_t *pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties) { struct loader_instance *inst = (struct loader_instance *)instance; VkResult res = VK_SUCCESS; struct loader_icd_term *icd_term; uint32_t total_count = 0; uint32_t cur_icd_group_count = 0; VkPhysicalDeviceGroupPropertiesKHR **new_phys_dev_groups = NULL; struct loader_physical_device_group_term *local_phys_dev_groups = NULL; PFN_vkEnumeratePhysicalDeviceGroups fpEnumeratePhysicalDeviceGroups = NULL; struct loader_phys_dev_per_icd *sorted_phys_dev_array = NULL; uint32_t sorted_count = 0; // For each ICD, query the number of physical device groups, and then get an // internal value for those physical devices. icd_term = inst->icd_terms; for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) { // Get the function pointer to use to call into the ICD. This could be the core or KHR version if (inst->enabled_known_extensions.khr_device_group_creation) { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR; } else { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups; } cur_icd_group_count = 0; if (NULL == fpEnumeratePhysicalDeviceGroups) { // Treat each ICD's GPU as it's own group if the extension isn't supported res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &cur_icd_group_count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of \'EnumeratePhysicalDevices\' " "to ICD %d to get plain phys dev count.", icd_idx); continue; } } else { // Query the actual group info res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &cur_icd_group_count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get count.", icd_idx); continue; } } total_count += cur_icd_group_count; } // If GPUs not sorted yet, look through them and generate list of all available GPUs if (0 == total_count || 0 == inst->total_gpu_count) { res = setup_loader_term_phys_devs(inst); if (VK_SUCCESS != res) { goto out; } } if (NULL != pPhysicalDeviceGroupProperties) { // Create an array for the new physical device groups, which will be stored // in the instance for the Terminator code. new_phys_dev_groups = (VkPhysicalDeviceGroupProperties **)loader_instance_heap_calloc( inst, total_count * sizeof(VkPhysicalDeviceGroupProperties *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_dev_groups) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed to allocate new physical device group array of size %d", total_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Create a temporary array (on the stack) to keep track of the // returned VkPhysicalDevice values. local_phys_dev_groups = loader_stack_alloc(sizeof(struct loader_physical_device_group_term) * total_count); // Initialize the memory to something valid memset(local_phys_dev_groups, 0, sizeof(struct loader_physical_device_group_term) * total_count); #if defined(_WIN32) // Get the physical devices supported by platform sorting mechanism into a separate list res = windows_read_sorted_physical_devices(inst, &sorted_count, &sorted_phys_dev_array); if (VK_SUCCESS != res) { goto out; } #endif cur_icd_group_count = 0; icd_term = inst->icd_terms; for (uint8_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) { uint32_t count_this_time = total_count - cur_icd_group_count; // Get the function pointer to use to call into the ICD. This could be the core or KHR version if (inst->enabled_known_extensions.khr_device_group_creation) { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR; } else { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups; } if (NULL == fpEnumeratePhysicalDeviceGroups) { icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, NULL); VkPhysicalDevice *phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * count_this_time); if (NULL == phys_dev_array) { loader_log( inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed to allocate local physical device array of size %d", count_this_time); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, phys_dev_array); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of " "\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.", icd_idx); goto out; } // Add each GPU as it's own group for (uint32_t indiv_gpu = 0; indiv_gpu < count_this_time; indiv_gpu++) { uint32_t cur_index = indiv_gpu + cur_icd_group_count; local_phys_dev_groups[cur_index].this_icd_term = icd_term; local_phys_dev_groups[cur_index].icd_index = icd_idx; local_phys_dev_groups[cur_index].group_props.physicalDeviceCount = 1; local_phys_dev_groups[cur_index].group_props.physicalDevices[0] = phys_dev_array[indiv_gpu]; } } else { res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, NULL); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group count.", icd_idx); goto out; } if (cur_icd_group_count + count_this_time < *pPhysicalDeviceGroupCount) { // The total amount is still less than the amount of physical device group data passed in // by the callee. Therefore, we don't have to allocate any temporary structures and we // can just use the data that was passed in. res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, &pPhysicalDeviceGroupProperties[cur_icd_group_count]); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group information.", icd_idx); goto out; } for (uint32_t group = 0; group < count_this_time; ++group) { uint32_t cur_index = group + cur_icd_group_count; local_phys_dev_groups[cur_index].group_props = pPhysicalDeviceGroupProperties[cur_index]; local_phys_dev_groups[cur_index].this_icd_term = icd_term; local_phys_dev_groups[cur_index].icd_index = icd_idx; } } else { // There's not enough space in the callee's allocated pPhysicalDeviceGroupProperties structs, // so we have to allocate temporary versions to collect all the data. However, we need to make // sure that at least the ones we do query utilize any pNext data in the callee's version. VkPhysicalDeviceGroupProperties *tmp_group_props = loader_stack_alloc(count_this_time * sizeof(VkPhysicalDeviceGroupProperties)); for (uint32_t group = 0; group < count_this_time; group++) { tmp_group_props[group].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR; uint32_t cur_index = group + cur_icd_group_count; if (*pPhysicalDeviceGroupCount > cur_index) { tmp_group_props[group].pNext = pPhysicalDeviceGroupProperties[cur_index].pNext; } else { tmp_group_props[group].pNext = NULL; } tmp_group_props[group].subsetAllocation = false; } res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, tmp_group_props); if (res != VK_SUCCESS) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group information for temp data.", icd_idx); goto out; } for (uint32_t group = 0; group < count_this_time; ++group) { uint32_t cur_index = group + cur_icd_group_count; local_phys_dev_groups[cur_index].group_props = tmp_group_props[group]; local_phys_dev_groups[cur_index].this_icd_term = icd_term; local_phys_dev_groups[cur_index].icd_index = icd_idx; } } if (VK_SUCCESS != res) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get content.", icd_idx); goto out; } } cur_icd_group_count += count_this_time; } #ifdef LOADER_ENABLE_LINUX_SORT if (is_linux_sort_enabled(inst)) { // Get the physical devices supported by platform sorting mechanism into a separate list res = linux_sort_physical_device_groups(inst, total_count, local_phys_dev_groups); } #elif defined(_WIN32) // The Windows sorting information is only on physical devices. We need to take that and convert it to the group // information if it's present. if (sorted_count > 0) { res = windows_sort_physical_device_groups(inst, total_count, local_phys_dev_groups, sorted_count, sorted_phys_dev_array); } #endif // LOADER_ENABLE_LINUX_SORT // Just to be safe, make sure we successfully completed setup_loader_term_phys_devs above // before attempting to do the following. By verifying that setup_loader_term_phys_devs ran // first, it guarantees that each physical device will have a loader-specific handle. if (NULL != inst->phys_devs_term) { for (uint32_t group = 0; group < total_count; group++) { for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].group_props.physicalDeviceCount; group_gpu++) { bool found = false; for (uint32_t term_gpu = 0; term_gpu < inst->phys_dev_count_term; term_gpu++) { if (local_phys_dev_groups[group].group_props.physicalDevices[group_gpu] == inst->phys_devs_term[term_gpu]->phys_dev) { local_phys_dev_groups[group].group_props.physicalDevices[group_gpu] = (VkPhysicalDevice)inst->phys_devs_term[term_gpu]; found = true; break; } } if (!found) { loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed to find GPU %d in group %d returned by " "\'EnumeratePhysicalDeviceGroups\' in list returned by \'EnumeratePhysicalDevices\'", group_gpu, group); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } } } } uint32_t idx = 0; // Copy or create everything to fill the new array of physical device groups for (uint32_t group = 0; group < total_count; group++) { // Skip groups which have been included through sorting if (local_phys_dev_groups[group].group_props.physicalDeviceCount == 0) { continue; } // Find the VkPhysicalDeviceGroupProperties object in local_phys_dev_groups VkPhysicalDeviceGroupProperties *group_properties = &local_phys_dev_groups[group].group_props; // Check if this physical device group with the same contents is already in the old buffer for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) { if (NULL != group_properties && NULL != inst->phys_dev_groups_term[old_idx] && group_properties->physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) { bool found_all_gpus = true; for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) { bool found_gpu = false; for (uint32_t new_gpu = 0; new_gpu < group_properties->physicalDeviceCount; new_gpu++) { if (group_properties->physicalDevices[new_gpu] == inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) { found_gpu = true; break; } } if (!found_gpu) { found_all_gpus = false; break; } } if (!found_all_gpus) { continue; } else { new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx]; break; } } } // If this physical device group isn't in the old buffer, create it if (group_properties != NULL && NULL == new_phys_dev_groups[idx]) { new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR *)loader_instance_heap_alloc( inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_dev_groups[idx]) { loader_log( inst, VULKAN_LOADER_ERROR_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups: Failed to allocate physical device group Terminator object %d", idx); total_count = idx; res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(new_phys_dev_groups[idx], group_properties, sizeof(VkPhysicalDeviceGroupPropertiesKHR)); } ++idx; } } out: if (NULL != pPhysicalDeviceGroupProperties) { if (VK_SUCCESS != res) { if (NULL != new_phys_dev_groups) { // We've encountered an error, so we should free the new buffers. for (uint32_t i = 0; i < total_count; i++) { // If an OOM occurred inside the copying of the new physical device groups into the existing array will leave // some of the old physical device groups in the array which may have been copied into the new array, leading to // them being freed twice. To avoid this we just make sure to not delete physical device groups which were // copied. bool found = false; if (NULL != inst->phys_devs_term) { for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) { if (new_phys_dev_groups[i] == inst->phys_dev_groups_term[old_idx]) { found = true; break; } } } if (!found) { loader_instance_heap_free(inst, new_phys_dev_groups[i]); } } loader_instance_heap_free(inst, new_phys_dev_groups); } } else { if (NULL != inst->phys_dev_groups_term) { // Free everything in the old array that was not copied into the new array // here. We can't attempt to do that before here since the previous loop // looking before the "out:" label may hit an out of memory condition resulting // in memory leaking. for (uint32_t i = 0; i < inst->phys_dev_group_count_term; i++) { bool found = false; for (uint32_t j = 0; j < total_count; j++) { if (inst->phys_dev_groups_term[i] == new_phys_dev_groups[j]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, inst->phys_dev_groups_term[i]); } } loader_instance_heap_free(inst, inst->phys_dev_groups_term); } // Swap in the new physical device group list inst->phys_dev_group_count_term = total_count; inst->phys_dev_groups_term = new_phys_dev_groups; } if (sorted_phys_dev_array != NULL) { for (uint32_t i = 0; i < sorted_count; ++i) { if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) { loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices); } } loader_instance_heap_free(inst, sorted_phys_dev_array); } uint32_t copy_count = inst->phys_dev_group_count_term; if (NULL != pPhysicalDeviceGroupProperties) { if (copy_count > *pPhysicalDeviceGroupCount) { copy_count = *pPhysicalDeviceGroupCount; loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "terminator_EnumeratePhysicalDeviceGroups : Trimming device count from %d to %d.", inst->phys_dev_group_count_term, copy_count); res = VK_INCOMPLETE; } for (uint32_t i = 0; i < copy_count; i++) { memcpy(&pPhysicalDeviceGroupProperties[i], inst->phys_dev_groups_term[i], sizeof(VkPhysicalDeviceGroupProperties)); } } *pPhysicalDeviceGroupCount = copy_count; } else { *pPhysicalDeviceGroupCount = total_count; } return res; }