third_party_vulkan-loader/tests/base_render_test.cpp
Chia-I Wu 3f4ffb324e render_tests: fix constant buffer setup
glm::mat4 has 64 bytes yet we copied 256 bytes from it.  Fix memory view range
and stride.  It worked because

    (OWord Dual Block Read/Write)
    the surface pitch is ignored, the surface is treated as a 1-dimensional
    surface. An element size (pitch) of 16 bytes is used to determine the size
    of the buffer for out-of-bounds checking if using the surface state model.
    [DevSNB+]
2014-10-31 15:29:16 -06:00

988 lines
44 KiB
C++

// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// XGL tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Base rendering test
// The intend of this test is to have all the necessary steps to render
// a textured triangle in straight-line code to simplify debugging
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <iostream>
#include <fstream>
using namespace std;
#include <xgl.h>
#include "gtest-1.7.0/include/gtest/gtest.h"
#include "xgldevice.h"
#include "xglimage.h"
#include "icd-bil.h"
#include "xgltestframework.h"
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
struct Vertex
{
XGL_FLOAT posX, posY, posZ, posW; // Position data
XGL_FLOAT r, g, b, a; // Color
};
#define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f
static const Vertex g_vbData[] =
{
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
};
static const uint32_t gen6_fs[] = {
0x00600001, 0x202003fe, 0x00000000, 0x3f800000, // mov(8) m1<1>F 1F { align1 1Q };
0x00600001, 0x204003fe, 0x00000000, 0x00000000, // mov(8) m2<1>F 0F { align1 1Q };
0x00600001, 0x206003fe, 0x00000000, 0x00000000, // mov(8) m3<1>F 0F { align1 1Q };
0x00600001, 0x208003fe, 0x00000000, 0x3f800000, // mov(8) m4<1>F 1F { align1 1Q };
0x05600032, 0x20001fc8, 0x008d0020, 0x88019400, // sendc(8) null m1<8,8,1>F
// render RT write SIMD8 LastRT Surface = 0 mlen 4 rlen 0 { align1 1Q EOT };
};
static const uint32_t gen6_vs[] = {
0x01600110, 0x200f1ca4, 0x00600020, 0x00000000, // cmp.z.f0(8) null g1<4,4,1>.xD 0D { align16 1Q };
0x00670122, 0x000a108f, 0x000e0004, 0x000e0004, // (+f0.all4h) if(8) JIP: 10 { align16 1Q };
0x00600501, 0x204303fd, 0x00000000, 0xbf800000, // mov(8) g2<1>.xyF -1F { align16 NoDDClr 1Q };
0x00600d01, 0x204403fd, 0x00000000, 0x00000000, // mov(8) g2<1>.zF 0F { align16 NoDDClr,NoDDChk 1Q };
0x00600901, 0x204803fd, 0x00000000, 0x3f800000, // mov(8) g2<1>.wF 1F { align16 NoDDChk 1Q };
0x00600124, 0x0014108f, 0x006e0004, 0x006e0004, // else(8) JIP: 20 { align16 1Q };
0x01600110, 0x200f1ca4, 0x00600020, 0x00000001, // cmp.z.f0(8) null g1<4,4,1>.xD 1D { align16 1Q };
0x00670122, 0x000a108f, 0x000e0004, 0x000e0004, // (+f0.all4h) if(8) JIP: 10 { align16 1Q };
0x00600501, 0x204903fd, 0x00000000, 0x3f800000, // mov(8) g2<1>.xwF 1F { align16 NoDDClr 1Q };
0x00600d01, 0x204203fd, 0x00000000, 0xbf800000, // mov(8) g2<1>.yF -1F { align16 NoDDClr,NoDDChk 1Q };
0x00600901, 0x204403fd, 0x00000000, 0x00000000, // mov(8) g2<1>.zF 0F { align16 NoDDChk 1Q };
0x00600124, 0x0006108f, 0x006e0004, 0x006e0004, // else(8) JIP: 6 { align16 1Q };
0x00600501, 0x204503fd, 0x00000000, 0x00000000, // mov(8) g2<1>.xzF 0F { align16 NoDDClr 1Q };
0x00600901, 0x204a03fd, 0x00000000, 0x3f800000, // mov(8) g2<1>.ywF 1F { align16 NoDDChk 1Q };
0x00600125, 0x0002108f, 0x006e0004, 0x006e0002, // endif(8) JIP: 2 { align16 1Q };
0x00600125, 0x0002108f, 0x006e0004, 0x006e0002, // endif(8) JIP: 2 { align16 1Q };
0x00600101, 0x204f0062, 0x00000000, 0x00000000, // mov(8) m2<1>UD 0x00000000UD { align16 1Q };
0x00600101, 0x206f03be, 0x006e0044, 0x00000000, // mov(8) m3<1>F g2<4,4,1>F { align16 1Q };
0x00600301, 0x202f0022, 0x006e0004, 0x00000000, // mov(8) m1<1>UD g0<4,4,1>UD { align16 WE_all 1Q };
0x06600131, 0x200f1fdc, 0x006e0024, 0x8608c400, // send(8) null m1<4,4,1>F
// urb 0 urb_write interleave used complete mlen 3 rlen 0 { align16 1Q EOT };
};
static const uint32_t gen7_fs[] = {
0x00600001, 0x2e2003fd, 0x00000000, 0x3f800000, // mov(8) g113<1>F 1F { align1 1Q };
0x00600001, 0x2e4003fd, 0x00000000, 0x00000000, // mov(8) g114<1>F 0F { align1 1Q };
0x00600001, 0x2e6003fd, 0x00000000, 0x00000000, // mov(8) g115<1>F 0F { align1 1Q };
0x00600001, 0x2e8003fd, 0x00000000, 0x3f800000, // mov(8) g116<1>F 1F { align1 1Q };
0x05600032, 0x20001fa8, 0x008d0e20, 0x88031400, // sendc(8) null g113<8,8,1>F
// render RT write SIMD8 LastRT Surface = 0 mlen 4 rlen 0 { align1 1Q EOT };
};
static const uint32_t gen7_vs[] = {
0x01608110, 0x200f1ca4, 0x00600020, 0x00000000, // cmp.z.f0(8) null g1<4,4,1>.xD 0D { align16 1Q switch };
0x00670122, 0x200f0c84, 0x000e0004, 0x001c000a, // (+f0.all4h) if(8) JIP: 10 UIP: 28 { align16 1Q };
0x00600501, 0x204303fd, 0x00000000, 0xbf800000, // mov(8) g2<1>.xyF -1F { align16 NoDDClr 1Q };
0x00600d01, 0x204403fd, 0x00000000, 0x00000000, // mov(8) g2<1>.zF 0F { align16 NoDDClr,NoDDChk 1Q };
0x00600901, 0x204803fd, 0x00000000, 0x3f800000, // mov(8) g2<1>.wF 1F { align16 NoDDChk 1Q };
0x00600124, 0x200f0c84, 0x006e0004, 0x00000014, // else(8) JIP: 20 { align16 1Q };
0x01608110, 0x200f1ca4, 0x00600020, 0x00000001, // cmp.z.f0(8) null g1<4,4,1>.xD 1D { align16 1Q switch };
0x00670122, 0x200f0c84, 0x000e0004, 0x000e000a, // (+f0.all4h) if(8) JIP: 10 UIP: 14 { align16 1Q };
0x00600501, 0x204903fd, 0x00000000, 0x3f800000, // mov(8) g2<1>.xwF 1F { align16 NoDDClr 1Q };
0x00600d01, 0x204203fd, 0x00000000, 0xbf800000, // mov(8) g2<1>.yF -1F { align16 NoDDClr,NoDDChk 1Q };
0x00600901, 0x204403fd, 0x00000000, 0x00000000, // mov(8) g2<1>.zF 0F { align16 NoDDChk 1Q };
0x00600124, 0x200f0c84, 0x006e0004, 0x00000006, // else(8) JIP: 6 { align16 1Q };
0x00600501, 0x204503fd, 0x00000000, 0x00000000, // mov(8) g2<1>.xzF 0F { align16 NoDDClr 1Q };
0x00600901, 0x204a03fd, 0x00000000, 0x3f800000, // mov(8) g2<1>.ywF 1F { align16 NoDDChk 1Q };
0x00600125, 0x200f0c84, 0x006e0004, 0x00000002, // endif(8) JIP: 2 { align16 1Q };
0x00600125, 0x200f0c84, 0x006e0004, 0x00000002, // endif(8) JIP: 2 { align16 1Q };
0x00600101, 0x2e4f0061, 0x00000000, 0x00000000, // mov(8) g114<1>UD 0x00000000UD { align16 1Q };
0x00600101, 0x2e6f03bd, 0x006e0044, 0x00000000, // mov(8) g115<1>F g2<4,4,1>F { align16 1Q };
0x00600301, 0x2e2f0021, 0x006e0004, 0x00000000, // mov(8) g113<1>UD g0<4,4,1>UD { align16 WE_all 1Q };
0x00000206, 0x2e340c21, 0x00000014, 0x0000ff00, // or(1) g113.5<1>UD g0.5<0,1,0>UD 0x0000ff00UD { align1 WE_all };
0x06600131, 0x200f1fbc, 0x006e0e24, 0x8608c000, // send(8) null g113<4,4,1>F
// urb 0 write HWord interleave complete mlen 3 rlen 0 { align16 1Q EOT };
};
class XglRenderTest : public XglTestFramework
{
public:
void CreateQueryPool(XGL_QUERY_TYPE type, XGL_UINT slots,
XGL_QUERY_POOL *pPool, XGL_GPU_MEMORY *pMem);
void DestroyQueryPool(XGL_QUERY_POOL pool, XGL_GPU_MEMORY mem);
XGL_DEVICE device() {return m_device->device();}
void InitPipeline();
void InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride, const void* vertices );
void InitConstantBuffer( int constantCount, int constantSize, const void* data );
void DrawTriangleTest();
void DrawRotatedTriangleTest();
protected:
XGL_APPLICATION_INFO app_info;
XGL_PHYSICAL_GPU objs[MAX_GPUS];
XGL_UINT gpu_count;
XGL_GPU_MEMORY m_descriptor_set_mem;
XGL_GPU_MEMORY m_pipe_mem;
XglDevice *m_device;
XGL_CMD_BUFFER m_cmdBuffer;
XGL_UINT32 m_numVertices;
XGL_MEMORY_VIEW_ATTACH_INFO m_vtxBufferView;
XGL_MEMORY_VIEW_ATTACH_INFO m_constantBufferView;
XGL_GPU_MEMORY m_vtxBufferMem;
XGL_GPU_MEMORY m_constantBufferMem;
XGL_UINT32 m_numMemRefs;
XGL_MEMORY_REF m_memRefs[5];
XGL_RASTER_STATE_OBJECT m_stateRaster;
XGL_COLOR_BLEND_STATE_OBJECT m_colorBlend;
XGL_VIEWPORT_STATE_OBJECT m_stateViewport;
XGL_DEPTH_STENCIL_STATE_OBJECT m_stateDepthStencil;
XGL_MSAA_STATE_OBJECT m_stateMsaa;
XGL_DESCRIPTOR_SET m_rsrcDescSet;
virtual void SetUp() {
XGL_RESULT err;
this->app_info.sType = XGL_STRUCTURE_TYPE_APPLICATION_INFO;
this->app_info.pNext = NULL;
this->app_info.pAppName = (const XGL_CHAR *) "base";
this->app_info.appVersion = 1;
this->app_info.pEngineName = (const XGL_CHAR *) "unittest";
this->app_info.engineVersion = 1;
this->app_info.apiVersion = XGL_MAKE_VERSION(0, 22, 0);
memset(&m_vtxBufferView, 0, sizeof(m_vtxBufferView));
m_vtxBufferView.sType = XGL_STRUCTURE_TYPE_MEMORY_VIEW_ATTACH_INFO;
memset(&m_constantBufferView, 0, sizeof(m_constantBufferView));
m_constantBufferView.sType = XGL_STRUCTURE_TYPE_MEMORY_VIEW_ATTACH_INFO;
err = xglInitAndEnumerateGpus(&app_info, NULL,
MAX_GPUS, &this->gpu_count, objs);
ASSERT_XGL_SUCCESS(err);
ASSERT_GE(1, this->gpu_count) << "No GPU available";
m_device = new XglDevice(0, objs[0]);
m_device->get_device_queue();
}
virtual void TearDown() {
xglInitAndEnumerateGpus(&this->app_info, XGL_NULL_HANDLE, 0, &gpu_count, XGL_NULL_HANDLE);
}
};
void XglRenderTest::CreateQueryPool(XGL_QUERY_TYPE type, XGL_UINT slots,
XGL_QUERY_POOL *pPool, XGL_GPU_MEMORY *pMem)
{
XGL_RESULT err;
XGL_QUERY_POOL_CREATE_INFO poolCreateInfo = {};
poolCreateInfo.sType = XGL_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
poolCreateInfo.pNext = NULL;
poolCreateInfo.queryType = type;
poolCreateInfo.slots = slots;
err = xglCreateQueryPool(device(), &poolCreateInfo, pPool);
ASSERT_XGL_SUCCESS(err);
XGL_MEMORY_REQUIREMENTS mem_req;
XGL_UINT data_size = sizeof(mem_req);
err = xglGetObjectInfo(*pPool, XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&data_size, &mem_req);
ASSERT_XGL_SUCCESS(err);
ASSERT_EQ(data_size, sizeof(mem_req));
if (!mem_req.size) {
*pMem = XGL_NULL_HANDLE;
return;
}
XGL_MEMORY_ALLOC_INFO mem_info;
memset(&mem_info, 0, sizeof(mem_info));
mem_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_info.allocationSize = mem_req.size;
mem_info.alignment = mem_req.alignment;
mem_info.heapCount = mem_req.heapCount;
memcpy(mem_info.heaps, mem_req.heaps, sizeof(XGL_UINT)*XGL_MAX_MEMORY_HEAPS);
mem_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
mem_info.flags = XGL_MEMORY_ALLOC_SHAREABLE_BIT;
err = xglAllocMemory(device(), &mem_info, pMem);
ASSERT_XGL_SUCCESS(err);
err = xglBindObjectMemory(*pPool, *pMem, 0);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::DestroyQueryPool(XGL_QUERY_POOL pool, XGL_GPU_MEMORY mem)
{
ASSERT_XGL_SUCCESS(xglBindObjectMemory(pool, XGL_NULL_HANDLE, 0));
ASSERT_XGL_SUCCESS(xglFreeMemory(mem));
ASSERT_XGL_SUCCESS(xglDestroyObject(pool));
}
// this function will create the vertex buffer and fill it with the mesh data
void XglRenderTest::InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride,
const void* vertices )
{
XGL_RESULT err = XGL_SUCCESS;
assert( numVertices * vbStride > 0 );
m_numVertices = numVertices;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
XGL_UINT8 *pData;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = numVertices * vbStride;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(device(), &alloc_info, &m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
err = xglMapMemory(m_vtxBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, vertices, alloc_info.allocationSize);
err = xglUnmapMemory(m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
// set up the memory view for the vertex buffer
this->m_vtxBufferView.stride = vbStride;
this->m_vtxBufferView.range = numVertices * vbStride;
this->m_vtxBufferView.offset = 0;
this->m_vtxBufferView.mem = m_vtxBufferMem;
this->m_vtxBufferView.format.channelFormat = XGL_CH_FMT_UNDEFINED;
this->m_vtxBufferView.format.numericFormat = XGL_NUM_FMT_UNDEFINED;
// open the command buffer
err = xglBeginCommandBuffer( m_cmdBuffer, 0 );
ASSERT_XGL_SUCCESS(err);
XGL_MEMORY_STATE_TRANSITION transition = {};
transition.mem = m_vtxBufferMem;
transition.oldState = XGL_MEMORY_STATE_DATA_TRANSFER;
transition.newState = XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_ONLY;
transition.offset = 0;
transition.regionSize = numVertices * vbStride;
// write transition to the command buffer
xglCmdPrepareMemoryRegions( m_cmdBuffer, 1, &transition );
this->m_vtxBufferView.state = XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_ONLY;
// finish recording the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS(err);
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 1;
m_memRefs[0].flags = 0;
m_memRefs[0].mem = m_vtxBufferMem;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::InitConstantBuffer(int constantCount, int constantSize, const void* data)
{
XGL_RESULT err = XGL_SUCCESS;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
XGL_UINT8 *pData;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = constantCount * constantSize;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(device(), &alloc_info, &m_constantBufferMem);
ASSERT_XGL_SUCCESS(err);
err = xglMapMemory(m_constantBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, data, alloc_info.allocationSize);
err = xglUnmapMemory(m_constantBufferMem);
ASSERT_XGL_SUCCESS(err);
// set up the memory view for the constant buffer
this->m_constantBufferView.stride = 16;
this->m_constantBufferView.range = alloc_info.allocationSize;
this->m_constantBufferView.offset = 0;
this->m_constantBufferView.mem = m_constantBufferMem;
this->m_constantBufferView.format.channelFormat = XGL_CH_FMT_R32G32B32A32;
this->m_constantBufferView.format.numericFormat = XGL_NUM_FMT_FLOAT;
}
void XglRenderTest::DrawRotatedTriangleTest()
{
// TODO : This test will pass a matrix into VS to affect triangle orientation.
}
/**
* DrawTriangleTest deliberately calls each necessary xgl call to
* make it clear what is necessary to render and simplify debugging.
*/
void XglRenderTest::DrawTriangleTest()
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
std::vector<unsigned int> bil;
XGL_SHADER_CREATE_INFO createInfo;
XGL_SHADER shader;
size_t shader_len;
XGL_IMAGE m_image;
XGL_COLOR_ATTACHMENT_VIEW m_targetView;
XGL_IMAGE_VIEW_ATTACH_INFO m_imageInfo;
XGL_GPU_MEMORY m_memory;
int width = 256, height = 256;
// create a raster state (solid, back-face culling)
XGL_RASTER_STATE_CREATE_INFO raster = {};
raster.sType = XGL_STRUCTURE_TYPE_RASTER_STATE_CREATE_INFO;
raster.fillMode = XGL_FILL_SOLID;
raster.cullMode = XGL_CULL_NONE;
raster.frontFace = XGL_FRONT_FACE_CCW;
err = xglCreateRasterState( device(), &raster, &m_stateRaster );
ASSERT_XGL_SUCCESS(err);
XGL_VIEWPORT_STATE_CREATE_INFO viewport = {};
viewport.viewportCount = 1;
viewport.scissorEnable = XGL_FALSE;
viewport.viewports[0].originX = 0;
viewport.viewports[0].originY = 0;
viewport.viewports[0].width = 1.f * width;
viewport.viewports[0].height = 1.f * height;
viewport.viewports[0].minDepth = 0.f;
viewport.viewports[0].maxDepth = 1.f;
err = xglCreateViewportState( device(), &viewport, &m_stateViewport );
ASSERT_XGL_SUCCESS( err );
XGL_COLOR_BLEND_STATE_CREATE_INFO blend = {};
blend.sType = XGL_STRUCTURE_TYPE_COLOR_BLEND_STATE_CREATE_INFO;
err = xglCreateColorBlendState(device(), &blend, &m_colorBlend);
ASSERT_XGL_SUCCESS( err );
XGL_DEPTH_STENCIL_STATE_CREATE_INFO depthStencil = {};
depthStencil.sType = XGL_STRUCTURE_TYPE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = XGL_FALSE;
depthStencil.depthWriteEnable = XGL_FALSE;
depthStencil.depthFunc = XGL_COMPARE_LESS_EQUAL;
depthStencil.depthBoundsEnable = XGL_FALSE;
depthStencil.minDepth = 0.f;
depthStencil.maxDepth = 1.f;
depthStencil.back.stencilDepthFailOp = XGL_STENCIL_OP_KEEP;
depthStencil.back.stencilFailOp = XGL_STENCIL_OP_KEEP;
depthStencil.back.stencilPassOp = XGL_STENCIL_OP_KEEP;
depthStencil.back.stencilRef = 0x00;
depthStencil.back.stencilFunc = XGL_COMPARE_ALWAYS;
depthStencil.front = depthStencil.back;
err = xglCreateDepthStencilState( device(), &depthStencil, &m_stateDepthStencil );
ASSERT_XGL_SUCCESS( err );
XGL_MSAA_STATE_CREATE_INFO msaa = {};
msaa.sType = XGL_STRUCTURE_TYPE_MSAA_STATE_CREATE_INFO;
msaa.sampleMask = 1;
msaa.samples = 1;
err = xglCreateMsaaState( device(), &msaa, &m_stateMsaa );
ASSERT_XGL_SUCCESS( err );
XGL_CMD_BUFFER_CREATE_INFO cmdInfo = {};
cmdInfo.sType = XGL_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO;
cmdInfo.queueType = XGL_QUEUE_TYPE_GRAPHICS;
err = xglCreateCommandBuffer(device(), &cmdInfo, &m_cmdBuffer);
ASSERT_XGL_SUCCESS(err) << "xglCreateCommandBuffer failed";
#if 0
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1; // Vertex buffer only
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// set up the memory view for the vertex buffer
this->m_vtxBufferView.stride = vbStride;
this->m_vtxBufferView.range = numVertices * vbStride;
this->m_vtxBufferView.offset = 0;
this->m_vtxBufferView.mem = m_vtxBufferMem;
this->m_vtxBufferView.format.channelFormat = XGL_CH_FMT_UNDEFINED;
this->m_vtxBufferView.format.numericFormat = XGL_NUM_FMT_UNDEFINED;
// write the vertex buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_vtxBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
#endif
const int constantCount = 4;
const float constants[constantCount] = { 0.5, 0.5, 0.5, 1.0 };
InitConstantBuffer(constantCount, sizeof(constants[0]), (const void*) constants);
// Create descriptor set for a uniform resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
static const char *vertShaderText =
"#version 130\n"
"vec2 vertices[3];\n"
"void main() {\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
createInfo.sType = XGL_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
shader_len = strlen(vertShaderText);
createInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1;
createInfo.pCode = malloc(createInfo.codeSize);
createInfo.flags = 0;
/* try version 0 first: XGL_PIPELINE_SHADER_STAGE followed by GLSL */
((uint32_t *) createInfo.pCode)[0] = ICD_BIL_MAGIC;
((uint32_t *) createInfo.pCode)[1] = 0;
((uint32_t *) createInfo.pCode)[2] = XGL_SHADER_STAGE_VERTEX;
memcpy(((uint32_t *) createInfo.pCode + 3), vertShaderText, shader_len + 1);
err = xglCreateShader(device(), &createInfo, &shader);
if (err) {
free((void *) createInfo.pCode);
// Use Reference GLSL to BIL compiler
GLSLtoBIL(XGL_SHADER_STAGE_VERTEX, vertShaderText, bil);
createInfo.pCode = bil.data();
createInfo.codeSize = bil.size() * sizeof(unsigned int);
createInfo.flags = 0;
err = xglCreateShader(device(), &createInfo, &shader);
}
ASSERT_XGL_SUCCESS(err);
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(1.0, 1.0, 0.0, 1.0);\n"
"}\n";
createInfo.sType = XGL_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
shader_len = strlen(fragShaderText);
createInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1;
createInfo.pCode = malloc(createInfo.codeSize);
createInfo.flags = 0;
/* try version 0 first: XGL_PIPELINE_SHADER_STAGE followed by GLSL */
((uint32_t *) createInfo.pCode)[0] = ICD_BIL_MAGIC;
((uint32_t *) createInfo.pCode)[1] = 0;
((uint32_t *) createInfo.pCode)[2] = XGL_SHADER_STAGE_FRAGMENT;
memcpy(((uint32_t *) createInfo.pCode + 3), fragShaderText, shader_len + 1);
err = xglCreateShader(device(), &createInfo, &ps);
if (err) {
free((void *) createInfo.pCode);
// Use Reference GLSL to BIL compiler
GLSLtoBIL(XGL_SHADER_STAGE_FRAGMENT, fragShaderText, bil);
createInfo.pCode = bil.data();
createInfo.codeSize = bil.size() * sizeof(unsigned int);
createInfo.flags = 0;
err = xglCreateShader(device(), &createInfo, &ps);
}
ASSERT_XGL_SUCCESS(err);
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
const int slots = 1;
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( slots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
slotInfo[0].shaderEntityIndex = 0;
slotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
ps_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 1;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
{XGL_CH_FMT_R8G8B8A8, XGL_NUM_FMT_UNORM}, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, &pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
XGL_QUERY_POOL query;
XGL_GPU_MEMORY query_mem;
ASSERT_NO_FATAL_FAILURE(CreateQueryPool(XGL_QUERY_PIPELINE_STATISTICS, 1, &query, &query_mem));
XglImage *renderTarget;
XGL_FORMAT fmt = {
XGL_CH_FMT_R8G8B8A8,
XGL_NUM_FMT_UNORM
};
renderTarget = new XglImage(m_device);
renderTarget->init(width, height, fmt, XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT |
XGL_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
// ASSERT_NO_FATAL_FAILURE(m_device->CreateImage(width, height, fmt,
// XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT |
// XGL_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
// &renderTarget));
{
XGL_UINT mipCount;
XGL_SIZE size = sizeof(XGL_FORMAT_PROPERTIES);
XGL_FORMAT_PROPERTIES image_fmt;
mipCount = 0;
XGL_UINT _w = width;
XGL_UINT _h = height;
while( ( _w > 0 ) || ( _h > 0 ) )
{
_w >>= 1;
_h >>= 1;
mipCount++;
}
// TODO: Pick known good format rather than just expect common format
/*
* XXX: What should happen if given NULL HANDLE for the pData argument?
* We're not requesting XGL_INFO_TYPE_MEMORY_REQUIREMENTS so there is
* an expectation that pData is a valid pointer.
* However, why include a returned size value? That implies that the
* amount of data may vary and that doesn't work well for using a
* fixed structure.
*/
err = xglGetFormatInfo(this->m_device->device(), fmt,
XGL_INFO_TYPE_FORMAT_PROPERTIES,
&size, &image_fmt);
ASSERT_XGL_SUCCESS(err);
// typedef struct _XGL_IMAGE_CREATE_INFO
// {
// XGL_STRUCTURE_TYPE sType; // Must be XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO
// const XGL_VOID* pNext; // Pointer to next structure.
// XGL_IMAGE_TYPE imageType;
// XGL_FORMAT format;
// XGL_EXTENT3D extent;
// XGL_UINT mipLevels;
// XGL_UINT arraySize;
// XGL_UINT samples;
// XGL_IMAGE_TILING tiling;
// XGL_FLAGS usage; // XGL_IMAGE_USAGE_FLAGS
// XGL_FLAGS flags; // XGL_IMAGE_CREATE_FLAGS
// } XGL_IMAGE_CREATE_INFO;
XGL_IMAGE_CREATE_INFO imageCreateInfo = {};
imageCreateInfo.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = XGL_IMAGE_2D;
imageCreateInfo.format = fmt;
imageCreateInfo.arraySize = 1;
imageCreateInfo.extent.width = width;
imageCreateInfo.extent.height = height;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = mipCount;
imageCreateInfo.samples = 1;
imageCreateInfo.tiling = XGL_LINEAR_TILING;
// Image usage flags
// typedef enum _XGL_IMAGE_USAGE_FLAGS
// {
// XGL_IMAGE_USAGE_SHADER_ACCESS_READ_BIT = 0x00000001,
// XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT = 0x00000002,
// XGL_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000004,
// XGL_IMAGE_USAGE_DEPTH_STENCIL_BIT = 0x00000008,
// } XGL_IMAGE_USAGE_FLAGS;
// imageCreateInfo.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT | XGL_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
imageCreateInfo.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT |
XGL_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// XGL_RESULT XGLAPI xglCreateImage(
// XGL_DEVICE device,
// const XGL_IMAGE_CREATE_INFO* pCreateInfo,
// XGL_IMAGE* pImage);
err = xglCreateImage(device(), &imageCreateInfo, &m_image);
ASSERT_XGL_SUCCESS(err);
XGL_MEMORY_REQUIREMENTS mem_req;
XGL_UINT data_size = sizeof(XGL_MEMORY_REQUIREMENTS);
err = xglGetObjectInfo(m_image, XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&data_size, &mem_req);
ASSERT_XGL_SUCCESS(err);
ASSERT_EQ(data_size, sizeof(mem_req));
ASSERT_NE(0, mem_req.size) << "xglGetObjectInfo (Event): Failed - expect images to require memory";
m_imageInfo.state = XGL_IMAGE_STATE_UNINITIALIZED_TARGET;
// XGL_RESULT XGLAPI xglAllocMemory(
// XGL_DEVICE device,
// const XGL_MEMORY_ALLOC_INFO* pAllocInfo,
// XGL_GPU_MEMORY* pMem);
XGL_MEMORY_ALLOC_INFO mem_info;
memset(&mem_info, 0, sizeof(mem_info));
mem_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_info.allocationSize = mem_req.size;
mem_info.alignment = mem_req.alignment;
mem_info.heapCount = mem_req.heapCount;
memcpy(mem_info.heaps, mem_req.heaps, sizeof(XGL_UINT)*XGL_MAX_MEMORY_HEAPS);
mem_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
mem_info.flags = XGL_MEMORY_ALLOC_SHAREABLE_BIT;
err = xglAllocMemory(device(), &mem_info, &m_memory);
ASSERT_XGL_SUCCESS(err);
err = xglBindObjectMemory(m_image, m_memory, 0);
ASSERT_XGL_SUCCESS(err);
XGL_COLOR_ATTACHMENT_VIEW_CREATE_INFO createView = {
XGL_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO,
XGL_NULL_HANDLE,
m_image,
fmt,
0,
0,
1
};
err = xglCreateColorAttachmentView(device(), &createView, &m_targetView);
ASSERT_XGL_SUCCESS(err);
}
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
// GenerateClearAndPrepareBufferCmds(renderTarget);
{
// whatever we want to do, we do it to the whole buffer
XGL_IMAGE_SUBRESOURCE_RANGE srRange = {};
srRange.aspect = XGL_IMAGE_ASPECT_COLOR;
srRange.baseMipLevel = 0;
srRange.mipLevels = XGL_LAST_MIP_OR_SLICE;
srRange.baseArraySlice = 0;
srRange.arraySize = XGL_LAST_MIP_OR_SLICE;
// prepare the whole back buffer for clear
XGL_IMAGE_STATE_TRANSITION transitionToClear = {};
transitionToClear.image = renderTarget->image();
transitionToClear.oldState = renderTarget->state();
transitionToClear.newState = XGL_IMAGE_STATE_CLEAR;
transitionToClear.subresourceRange = srRange;
xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToClear );
renderTarget->state(( XGL_IMAGE_STATE ) transitionToClear.newState);
// clear the back buffer to dark grey
XGL_UINT clearColor[4] = {64, 64, 64, 0};
xglCmdClearColorImageRaw( m_cmdBuffer, renderTarget->image(), clearColor, 1, &srRange );
// prepare back buffer for rendering
XGL_IMAGE_STATE_TRANSITION transitionToRender = {};
transitionToRender.image = renderTarget->image();
transitionToRender.oldState = renderTarget->state();
transitionToRender.newState = XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL;
transitionToRender.subresourceRange = srRange;
xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToRender );
renderTarget->state(( XGL_IMAGE_STATE ) transitionToClear.newState);
}
{
// bind render target
XGL_COLOR_ATTACHMENT_BIND_INFO colorBind = {};
colorBind.view = renderTarget->targetView();
colorBind.colorAttachmentState = XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL;
xglCmdBindAttachments(m_cmdBuffer, 1, &colorBind, NULL );
}
{
// set all states
xglCmdBindStateObject( m_cmdBuffer, XGL_STATE_BIND_RASTER, m_stateRaster );
xglCmdBindStateObject( m_cmdBuffer, XGL_STATE_BIND_VIEWPORT, m_stateViewport );
xglCmdBindStateObject( m_cmdBuffer, XGL_STATE_BIND_COLOR_BLEND, m_colorBlend);
xglCmdBindStateObject( m_cmdBuffer, XGL_STATE_BIND_DEPTH_STENCIL, m_stateDepthStencil );
xglCmdBindStateObject( m_cmdBuffer, XGL_STATE_BIND_MSAA, m_stateMsaa );
// bind pipeline, vertex buffer (descriptor set) and WVP (dynamic memory view)
xglCmdBindPipeline( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, pipeline );
xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
}
xglCmdResetQueryPool(m_cmdBuffer, query, 0, 1);
xglCmdBeginQuery(m_cmdBuffer, query, 0, 0);
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
xglCmdEndQuery(m_cmdBuffer, query, 0);
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
XGL_PIPELINE_STATISTICS_DATA stats;
XGL_SIZE stats_size = sizeof(stats);
err = xglGetQueryPoolResults(query, 0, 1, &stats_size, &stats);
ASSERT_XGL_SUCCESS( err );
ASSERT_EQ(stats_size, sizeof(stats));
ASSERT_EQ(stats.vsInvocations, 3);
ASSERT_EQ(stats.cPrimitives, 1);
ASSERT_EQ(stats.cInvocations, 1);
DestroyQueryPool(query, query_mem);
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
// renderTarget->WritePPM(test_info->test_case_name());
// m_screen.Display(renderTarget, m_image_mem);
RecordImage(renderTarget);
ASSERT_XGL_SUCCESS(xglDestroyObject(pipeline));
ASSERT_XGL_SUCCESS(xglDestroyObject(m_cmdBuffer));
ASSERT_XGL_SUCCESS(xglDestroyObject(m_stateRaster));
ASSERT_XGL_SUCCESS(xglDestroyObject(m_stateViewport));
ASSERT_XGL_SUCCESS(xglDestroyObject(m_stateDepthStencil));
ASSERT_XGL_SUCCESS(xglDestroyObject(m_stateMsaa));
free(renderTarget);
}
TEST_F(XglRenderTest, TestDrawTriangle) {
DrawTriangleTest();
}
int main(int argc, char **argv) {
int result;
::testing::InitGoogleTest(&argc, argv);
XglTestFramework::InitArgs(&argc, argv);
::testing::Environment* const xgl_test_env = ::testing::AddGlobalTestEnvironment(new TestEnvironment);
result = RUN_ALL_TESTS();
XglTestFramework::Finish();
return result;
}