SCVTF (vector, fixed-point)
Signed fixed-point Convert to Floating-point (vector)
Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.
It has encodings from 2 classes:
Scalar
and
Vector
0
1
0
1
1
1
1
1
0
!= 0000
1
1
1
0
0
1
SCVTF <V><d>, <V><n>, #<fbits>
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh IN {'000x'} || (immh IN {'001x'} && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
integer datasize = esize;
integer elements = 1;
integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR[]);
0
0
0
1
1
1
1
0
!= 0000
1
1
1
0
0
1
SCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE(asimdimm);
if immh IN {'000x'} || (immh IN {'001x'} && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR[]);
<V>
Is a width specifier,
immh
<V>
000x
RESERVED
001x
H
01xx
S
1xxx
D
<d>
Is the number of the SIMD&FP destination register, in the "Rd" field.
<n>
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<Vd>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T>
Is an arrangement specifier,
immh
Q
<T>
0000
x
SEE Advanced SIMD modified immediate
0001
x
RESERVED
001x
0
4H
001x
1
8H
01xx
0
2S
01xx
1
4S
1xxx
0
RESERVED
1xxx
1
2D
<Vn>
Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<fbits>
For the scalar variant: is the number of fractional bits, in the range 1 to the operand width,
immh
<fbits>
000x
RESERVED
001x
(32-Uint(immh:immb))
01xx
(64-UInt(immh:immb))
1xxx
(128-UInt(immh:immb))
<fbits>
For the vector variant: is the number of fractional bits, in the range 1 to the element width,
immh
<fbits>
0000
SEE Advanced SIMD modified immediate
0001
RESERVED
001x
(32-Uint(immh:immb))
01xx
(64-UInt(immh:immb))
1xxx
(128-UInt(immh:immb))
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n, datasize];
bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d, 128] else Zeros(128);
for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, fpcr, rounding, esize);
V[d, 128] = result;