CMake/Source/cmTarget.cxx
Amitha Perera 4bff970413 - bug fix where paths weren't being output when LIB_OUT_PATH *isn't* used
- test case for above mentioned bug
- more comments. Comments are good.
2002-05-03 00:27:34 -04:00

452 lines
15 KiB
C++

/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile$
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) 2002 Insight Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "cmTarget.h"
#include "cmMakefile.h"
#include <map>
#include <set>
void cmTarget::GenerateSourceFilesFromSourceLists( cmMakefile &mf)
{
// this is only done for non install targets
if ((this->m_TargetType == cmTarget::INSTALL_FILES)
|| (this->m_TargetType == cmTarget::INSTALL_PROGRAMS))
{
return;
}
// for each src lists add the classes
for (std::vector<std::string>::const_iterator s = m_SourceLists.begin();
s != m_SourceLists.end(); ++s)
{
// replace any variables
std::string temps = *s;
mf.ExpandVariablesInString(temps);
// look for a srclist
if (mf.GetSources().find(temps) != mf.GetSources().end())
{
const std::vector<cmSourceFile*> &clsList =
mf.GetSources().find(temps)->second;
// if we ahave a limited build list, use it
m_SourceFiles.insert(m_SourceFiles.end(),
clsList.begin(),
clsList.end());
}
// if one wasn't found then assume it is a single class
else
{
cmSourceFile file;
file.SetIsAnAbstractClass(false);
file.SetName(temps.c_str(), mf.GetCurrentDirectory(),
mf.GetSourceExtensions(),
mf.GetHeaderExtensions());
m_SourceFiles.push_back(mf.AddSource(file));
}
}
// expand any link library variables whle we are at it
LinkLibraries::iterator p = m_LinkLibraries.begin();
for (;p != m_LinkLibraries.end(); ++p)
{
mf.ExpandVariablesInString(p->first);
}
}
void cmTarget::AddLinkLibrary(const std::string& lib,
LinkLibraryType llt)
{
m_LinkLibraries.push_back( std::pair<std::string, cmTarget::LinkLibraryType>(lib,llt) );
}
void cmTarget::AddLinkLibrary(cmMakefile& mf,
const char *target, const char* lib,
LinkLibraryType llt)
{
m_LinkLibraries.push_back( std::pair<std::string, cmTarget::LinkLibraryType>(lib,llt) );
if(llt != cmTarget::GENERAL)
{
std::string linkTypeName = lib;
linkTypeName += "_LINK_TYPE";
switch(llt)
{
case cmTarget::DEBUG:
mf.AddCacheDefinition(linkTypeName.c_str(),
"debug", "Library is used for debug links only",
cmCacheManager::STATIC);
break;
case cmTarget::OPTIMIZED:
mf.AddCacheDefinition(linkTypeName.c_str(),
"optimized", "Library is used for debug links only",
cmCacheManager::STATIC);
break;
}
}
// Add the explicit dependency information for this target. This is
// simply a set of libraries separated by ";". There should always
// be a trailing ";". These library names are not canonical, in that
// they may be "-framework x", "-ly", "/path/libz.a", etc.
std::string targetEntry = target;
targetEntry += "_LIB_DEPENDS";
std::string dependencies;
const char* old_val = mf.GetDefinition( targetEntry.c_str() );
if( old_val )
{
dependencies += old_val;
}
if( dependencies.find( lib ) == std::string::npos )
{
dependencies += lib;
dependencies += ";";
}
mf.AddCacheDefinition( targetEntry.c_str(), dependencies.c_str(),
"Dependencies for the target", cmCacheManager::STATIC );
}
bool cmTarget::HasCxx() const
{
for(std::vector<cmSourceFile*>::const_iterator i = m_SourceFiles.begin();
i != m_SourceFiles.end(); ++i)
{
if((*i)->GetSourceExtension() != "c")
{
return true;
}
}
return false;
}
void
cmTarget::AnalyzeLibDependencies( const cmMakefile& mf )
{
// There are two key parts of the dependency analysis: (1)
// determining the libraries in the link line, and (2) constructing
// the dependency graph for those libraries.
//
// The latter is done using the cache entries that record the
// dependencies of each library.
//
// The former is a more thorny issue, since it is not clear how to
// determine if two libraries listed on the link line refer to the a
// single library or not. For example, consider the link "libraries"
// /usr/lib/libtiff.so -ltiff
// Is this one library or two? The solution implemented here is the
// simplest (and probably the only practical) one: two libraries are
// the same if their "link strings" are identical. Thus, the two
// libraries above are considered distinct. This also means that for
// dependency analysis to be effective, the CMake user must specify
// libraries build by his project without using any linker flags or
// file extensions. That is,
// LINK_LIBRARIES( One Two )
// instead of
// LINK_LIBRARIES( -lOne ${binarypath}/libTwo.a )
// The former is probably what most users would do, but it never
// hurts to document the assumptions. :-) Therefore, in the analysis
// code, the "canonical name" of a library is simply its name as
// given to a LINK_LIBRARIES command.
typedef std::vector< std::string > LinkLine;
// Maps the canonical names to the full objects of m_LinkLibraries.
LibTypeMap lib_map;
// The unique list of libraries on the orginal link line. They
// correspond to lib_map keys. However, lib_map will also get
// further populated by the dependency analysis, while this will be
// unchanged.
LinkLine orig_libs;
// The list canonical names in the order they were orginally
// specified on the link line (m_LinkLibraries).
LinkLine lib_order;
// The dependency maps.
DependencyMap dep_map, dep_map_implicit;
// 1. Determine the list of unique libraries in the original link
// line.
LinkLibraries::iterator lib;
for(lib = m_LinkLibraries.begin(); lib != m_LinkLibraries.end(); ++lib)
{
// skip zero size library entries, this may happen
// if a variable expands to nothing.
if (lib->first.size() == 0) continue;
const std::string& cname = lib->first;
lib_order.push_back( cname );
if( lib_map.end() == lib_map.find( cname ) )
{
lib_map[ cname ] = *lib;
orig_libs.push_back( cname );
}
}
// 2. Gather the dependencies.
// If LIBRARY_OUTPUT_PATH is not set, then we must add search paths
// for all the new libraries added by the dependency analysis.
const char* libOutPath = mf.GetDefinition("LIBRARY_OUTPUT_PATH");
bool addLibDirs = (libOutPath==0 || strcmp(libOutPath,"")==0);
// First, get the explicit dependencies for those libraries that
// have specified them.
for( LinkLine::iterator i = orig_libs.begin(); i != orig_libs.end(); ++i )
{
this->GatherDependencies( mf, *i, dep_map, lib_map, addLibDirs );
}
// For the rest, get implicit dependencies. A library x depends
// implicitly on a library y if x appears before y on the link
// line. However, x does not implicitly depend on y if y
// *explicitly* depends on x [*1]--such cyclic dependencies must be
// explicitly specified. Note that implicit dependency cycles can
// still occur: "-lx -ly -lx" will generate a implicit dependency
// cycle provided that neither x nor y have explicit dependencies.
//
// [*1] This prevents external libraries from depending on libraries
// generated by this project.
for( LinkLine::iterator i = orig_libs.begin(); i != orig_libs.end(); ++i )
{
if( dep_map.find( *i ) == dep_map.end() )
{
LinkLine::iterator pos = std::find( lib_order.begin(), lib_order.end(), *i );
for( ; pos != lib_order.end(); ++pos )
{
std::set<std::string> visited;
if( !DependsOn( *pos, *i, dep_map, visited ) )
{
dep_map_implicit[ *i ].insert( *pos );
}
}
dep_map_implicit[ *i ].erase( *i ); // cannot depend on itself
}
}
// Combine all the depedency information
// dep_map.insert( dep_map_implicit.begin(), dep_map_implicit.end() );
// doesn't work under MSVC++.
for( DependencyMap::iterator i = dep_map_implicit.begin();
i != dep_map_implicit.end(); ++i )
{
dep_map[ i->first ] = i->second;
}
// 3. Create a new link line, trying as much as possible to keep the
// original link line order.
// Get the link line as canonical names.
std::set<std::string> done, visited;
std::vector<std::string> link_line;
for( LinkLine::iterator i = orig_libs.begin(); i != orig_libs.end(); ++i )
{
Emit( *i, dep_map, done, visited, link_line );
}
// Translate the canonical names into internal objects.
m_LinkLibraries.clear();
for( std::vector<std::string>::reverse_iterator i = link_line.rbegin();
i != link_line.rend(); ++i )
{
// Some of the libraries in the new link line may not have been in
// the orginal link line, but were added by the dependency
// analysis.
if( lib_map.find(*i) == lib_map.end() )
{
if( addLibDirs )
{
const char* libpath = mf.GetDefinition( i->c_str() );
if( libpath )
{
// Don't add a link directory that is already present.
if(std::find(m_LinkDirectories.begin(),
m_LinkDirectories.end(), libpath) == m_LinkDirectories.end())
{
m_LinkDirectories.push_back(libpath);
}
}
}
std::string linkType = *i;
linkType += "_LINK_TYPE";
cmTarget::LinkLibraryType llt = cmTarget::GENERAL;
const char* linkTypeString = mf.GetDefinition( linkType.c_str() );
if(linkTypeString)
{
if(strcmp(linkTypeString, "debug") == 0)
{
llt = cmTarget::DEBUG;
}
if(strcmp(linkTypeString, "optimized") == 0)
{
llt = cmTarget::OPTIMIZED;
}
}
m_LinkLibraries.push_back( std::make_pair(*i,llt) );
}
else
{
m_LinkLibraries.push_back( lib_map[ *i ] );
}
}
}
void cmTarget::Emit( const std::string& lib,
const DependencyMap& dep_map,
std::set<std::string>& emitted,
std::set<std::string>& visited,
std::vector<std::string>& link_line ) const
{
// It's already been emitted
if( emitted.find(lib) != emitted.end() )
{
return;
}
// If this library hasn't been visited before, then emit all its
// dependencies before emitting the library itself. If it has been
// visited before, then there is a dependency cycle. Just emit the
// library itself, and let the recursion that got us here deal with
// emitting the dependencies for the library.
if( visited.insert(lib).second )
{
if( dep_map.find(lib) != dep_map.end() ) // does it have dependencies?
{
const std::set<std::string>& dep_on = dep_map.find( lib )->second;
std::set<std::string>::const_iterator i;
for( i = dep_on.begin(); i != dep_on.end(); ++i )
{
Emit( *i, dep_map, emitted, visited, link_line );
}
}
}
link_line.push_back( lib );
emitted.insert(lib);
}
void cmTarget::GatherDependencies( const cmMakefile& mf,
const std::string& lib,
DependencyMap& dep_map,
LibTypeMap& lib_map,
bool addLibDirs )
{
// If the library is already in the dependency map, then it has
// already been fully processed.
if( dep_map.find(lib) != dep_map.end() )
return;
const char* deps = mf.GetDefinition( (lib+"_LIB_DEPENDS").c_str() );
if( deps && strcmp(deps,"") != 0 )
{
// Make sure this library is in the map, even if it has an empty
// set of dependencies. This distinguishes the case of explicitly
// no dependencies with that of unspecified dependencies.
dep_map[lib];
// Parse the dependency information, which is simply a set of
// libraries separated by ";". There is always a trailing ";".
std::string depline = deps;
std::string::size_type start = 0;
std::string::size_type end;
end = depline.find( ";", start );
while( end != std::string::npos )
{
std::string l = depline.substr( start, end-start );
if( l.size() != 0 )
{
if( addLibDirs )
{
const char* libpath = mf.GetDefinition( l.c_str() );
if( libpath )
{
// Don't add a link directory that is already present.
if(std::find(m_LinkDirectories.begin(),
m_LinkDirectories.end(), libpath) == m_LinkDirectories.end())
{
m_LinkDirectories.push_back(libpath);
}
}
}
const std::string& cname = l;
std::string linkType = l;
linkType += "_LINK_TYPE";
cmTarget::LinkLibraryType llt = cmTarget::GENERAL;
const char* linkTypeString = mf.GetDefinition( linkType.c_str() );
if(linkTypeString)
{
if(strcmp(linkTypeString, "debug") == 0)
{
llt = cmTarget::DEBUG;
}
if(strcmp(linkTypeString, "optimized") == 0)
{
llt = cmTarget::OPTIMIZED;
}
}
lib_map[ cname ] = std::make_pair(l,llt);
dep_map[ lib ].insert( cname );
GatherDependencies( mf, cname, dep_map, lib_map, addLibDirs );
}
start = end+1; // skip the ;
end = depline.find( ";", start );
}
dep_map[lib].erase(lib); // cannot depend on itself
}
}
bool cmTarget::DependsOn( const std::string& lib1, const std::string& lib2,
const DependencyMap& dep_map,
std::set<std::string>& visited ) const
{
if( !visited.insert( lib1 ).second )
return false; // already visited here
if( lib1 == lib2 )
return false;
if( dep_map.find(lib1) == dep_map.end() )
return false; // lib1 doesn't have any dependencies
const std::set<std::string>& dep_set = dep_map.find(lib1)->second;
if( dep_set.end() != dep_set.find( lib2 ) )
return true; // lib1 doesn't directly depend on lib2.
// Do a recursive check: does lib1 depend on x which depends on lib2?
for( std::set<std::string>::const_iterator itr = dep_set.begin();
itr != dep_set.end(); ++itr )
{
if( DependsOn( *itr, lib2, dep_map, visited ) )
return true;
}
return false;
}