CMake/Source/cm_sha2.c
Brad King 8251b20d4b Import sha2 implementation 1.1 from Aaron D. Gifford
Update cm_sha2.[hc] from sha2.[hc] in "sha2-1.1-ALPHA.tgz" downloaded
today from

  http://www.aarongifford.com/computers/sha.html

with trivial whitespace cleanup.  This adds SHA-224 support.
2011-06-27 14:55:30 -04:00

1606 lines
45 KiB
C

/*
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford
* http://www.aarongifford.com/computers/sha.html
*
* Copyright (c) 2000-2003, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $
*/
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h> /* assert() */
#include "cm_sha2.h" /* "sha2.h" -> "cm_sha2.h" renamed for CMake */
/*
* ASSERT NOTE:
* Some sanity checking code is included using assert(). On my FreeBSD
* system, this additional code can be removed by compiling with NDEBUG
* defined. Check your own systems manpage on assert() to see how to
* compile WITHOUT the sanity checking code on your system.
*
* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* #define SHA2_UNROLL_TRANSFORM
*
*/
/*** SHA-224/256/384/512 Machine Architecture Definitions *************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivilent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
/*
* Define the following sha_* types to types of the correct length on
* the native archtecture. Most BSD systems and Linux define u_intXX_t
* types. Machines with very recent ANSI C headers, can use the
* uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
* during compile or in the sha.h header file.
*
* Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
* will need to define these three typedefs below (and the appropriate
* ones in sha.h too) by hand according to their system architecture.
*
* Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
* types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
*/
#ifdef SHA2_USE_INTTYPES_H
typedef uint8_t sha_byte; /* Exactly 1 byte */
typedef uint32_t sha_word32; /* Exactly 4 bytes */
typedef uint64_t sha_word64; /* Exactly 8 bytes */
#else /* SHA2_USE_INTTYPES_H */
typedef u_int8_t sha_byte; /* Exactly 1 byte */
typedef u_int32_t sha_word32; /* Exactly 4 bytes */
typedef u_int64_t sha_word64; /* Exactly 8 bytes */
#endif /* SHA2_USE_INTTYPES_H */
/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x) { \
sha_word32 tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x) { \
sha_word64 tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (sha_word64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*
* Macros for copying blocks of memory and for zeroing out ranges
* of memory. Using these macros makes it easy to switch from
* using memset()/memcpy() and using bzero()/bcopy().
*
* Please define either SHA2_USE_MEMSET_MEMCPY or define
* SHA2_USE_BZERO_BCOPY depending on which function set you
* choose to use:
*/
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define SHA2_USE_MEMSET_MEMCPY 1
#endif
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif
#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p,l) memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p,l) bzero((p), (l))
#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
#endif
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: In the original SHA-256/384/512 document, the shift-right
* function was named R and the rotate-right function was called S.
* (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
* web.)
*
* The newer NIST FIPS 180-2 document uses a much clearer naming
* scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
* rotate-left. (See:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
* on the web.)
*
* WARNING: These macros must be used cautiously, since they reference
* supplied parameters sometimes more than once, and thus could have
* unexpected side-effects if used without taking this into account.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define SHR(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* 32-bit Rotate-left (used in SHA-1): */
#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b))))
/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Function used in SHA-1: */
#define Parity(x,y,z) ((x) ^ (y) ^ (z))
/* Four logical functions used in SHA-256: */
#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR( 3 , (x)))
#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR( 10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x)))
#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* SHA-224 and SHA-256: */
void SHA256_Internal_Init(SHA_CTX*, const sha_word32*);
void SHA256_Internal_Last(SHA_CTX*);
void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*);
/* SHA-384 and SHA-512: */
void SHA512_Internal_Init(SHA_CTX*, const sha_word64*);
void SHA512_Internal_Last(SHA_CTX*);
void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*);
/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/
/* Hash constant words K for SHA-1: */
#define K1_0_TO_19 0x5a827999UL
#define K1_20_TO_39 0x6ed9eba1UL
#define K1_40_TO_59 0x8f1bbcdcUL
#define K1_60_TO_79 0xca62c1d6UL
/* Initial hash value H for SHA-1: */
const static sha_word32 sha1_initial_hash_value[5] = {
0x67452301UL,
0xefcdab89UL,
0x98badcfeUL,
0x10325476UL,
0xc3d2e1f0UL
};
/* Hash constant words K for SHA-224 and SHA-256: */
const static sha_word32 K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-224: */
const static sha_word32 sha224_initial_hash_value[8] = {
0xc1059ed8UL,
0x367cd507UL,
0x3070dd17UL,
0xf70e5939UL,
0xffc00b31UL,
0x68581511UL,
0x64f98fa7UL,
0xbefa4fa4UL
};
/* Initial hash value H for SHA-256: */
const static sha_word32 sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
const static sha_word64 K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
const static sha_word64 sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
const static sha_word64 sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
/*
* Constant used by SHA224/256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha_hex_digits = "0123456789abcdef";
/*** SHA-1: ***********************************************************/
void SHA1_Init(SHA_CTX* context) {
/* Sanity check: */
assert(context != (SHA_CTX*)0);
MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5);
MEMSET_BZERO(context->s1.buffer, 64);
context->s1.bitcount = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-1 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND1_0_TO_15(a,b,c,d,e) \
REVERSE32(*data++, W1[j]); \
(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
K1_0_TO_19 + W1[j]; \
(b) = ROTL32(30, (b)); \
j++;
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND1_0_TO_15(a,b,c,d,e) \
(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
K1_0_TO_19 + ( W1[j] = *data++ ); \
(b) = ROTL32(30, (b)); \
j++;
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND1_16_TO_19(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
#define ROUND1_20_TO_39(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
#define ROUND1_40_TO_59(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
#define ROUND1_60_TO_79(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
sha_word32 a, b, c, d, e;
sha_word32 T1, *W1;
int j;
W1 = (sha_word32*)context->s1.buffer;
/* Initialize registers with the prev. intermediate value */
a = context->s1.state[0];
b = context->s1.state[1];
c = context->s1.state[2];
d = context->s1.state[3];
e = context->s1.state[4];
j = 0;
/* Rounds 0 to 15 unrolled: */
ROUND1_0_TO_15(a,b,c,d,e);
ROUND1_0_TO_15(e,a,b,c,d);
ROUND1_0_TO_15(d,e,a,b,c);
ROUND1_0_TO_15(c,d,e,a,b);
ROUND1_0_TO_15(b,c,d,e,a);
ROUND1_0_TO_15(a,b,c,d,e);
ROUND1_0_TO_15(e,a,b,c,d);
ROUND1_0_TO_15(d,e,a,b,c);
ROUND1_0_TO_15(c,d,e,a,b);
ROUND1_0_TO_15(b,c,d,e,a);
ROUND1_0_TO_15(a,b,c,d,e);
ROUND1_0_TO_15(e,a,b,c,d);
ROUND1_0_TO_15(d,e,a,b,c);
ROUND1_0_TO_15(c,d,e,a,b);
ROUND1_0_TO_15(b,c,d,e,a);
ROUND1_0_TO_15(a,b,c,d,e);
/* Rounds 16 to 19 unrolled: */
ROUND1_16_TO_19(e,a,b,c,d);
ROUND1_16_TO_19(d,e,a,b,c);
ROUND1_16_TO_19(c,d,e,a,b);
ROUND1_16_TO_19(b,c,d,e,a);
/* Rounds 20 to 39 unrolled: */
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
/* Rounds 40 to 59 unrolled: */
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
/* Rounds 60 to 79 unrolled: */
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
/* Compute the current intermediate hash value */
context->s1.state[0] += a;
context->s1.state[1] += b;
context->s1.state[2] += c;
context->s1.state[3] += d;
context->s1.state[4] += e;
/* Clean up */
a = b = c = d = e = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
sha_word32 a, b, c, d, e;
sha_word32 T1, *W1;
int j;
W1 = (sha_word32*)context->s1.buffer;
/* Initialize registers with the prev. intermediate value */
a = context->s1.state[0];
b = context->s1.state[1];
c = context->s1.state[2];
d = context->s1.state[3];
e = context->s1.state[4];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
T1 = data[j];
/* Copy data while converting to host byte order */
REVERSE32(*data++, W1[j]);
T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 16);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 20);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 40);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 60);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->s1.state[0] += a;
context->s1.state[1] += b;
context->s1.state[2] += c;
context->s1.state[3] += d;
context->s1.state[4] += e;
/* Clean up */
a = b = c = d = e = T1 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
usedspace = (context->s1.bitcount >> 3) % 64;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = 64 - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace);
context->s1.bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len);
context->s1.bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= 64) {
/* Process as many complete blocks as we can */
SHA1_Internal_Transform(context, (sha_word32*)data);
context->s1.bitcount += 512;
len -= 64;
data += 64;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->s1.buffer, data, len);
context->s1.bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void SHA1_Final(sha_byte digest[], SHA_CTX* context) {
sha_word32 *d = (sha_word32*)digest;
unsigned int usedspace;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
if (digest == (sha_byte*)0) {
/*
* No digest buffer, so we can do nothing
* except clean up and go home
*/
MEMSET_BZERO(context, sizeof(context));
return;
}
usedspace = (context->s1.bitcount >> 3) % 64;
if (usedspace == 0) {
/* Set-up for the last transform: */
MEMSET_BZERO(context->s1.buffer, 56);
/* Begin padding with a 1 bit: */
*context->s1.buffer = 0x80;
} else {
/* Begin padding with a 1 bit: */
context->s1.buffer[usedspace++] = 0x80;
if (usedspace <= 56) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace);
} else {
if (usedspace < 64) {
MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace);
}
/* Do second-to-last transform: */
SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->s1.buffer, 56);
}
/* Clean up: */
usedspace = 0;
}
/* Set the bit count: */
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->s1.bitcount,context->s1.bitcount);
#endif
*(sha_word64*)&context->s1.buffer[56] = context->s1.bitcount;
/* Final transform: */
SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) {
REVERSE32(context->s1.state[j],context->s1.state[j]);
*d++ = context->s1.state[j];
}
}
#else
MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH);
#endif
/* Clean up: */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA1_End(SHA_CTX* context, char buffer[]) {
sha_byte digest[SHA1_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
if (buffer != (char*)0) {
SHA1_Final(digest, context);
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH);
return buffer;
}
char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
SHA_CTX context;
SHA1_Init(&context);
SHA1_Update(&context, data, len);
return SHA1_End(&context, digest);
}
/*** SHA-256: *********************************************************/
void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) {
/* Sanity check: */
assert(context != (SHA_CTX*)0);
MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8);
MEMSET_BZERO(context->s256.buffer, 64);
context->s256.bitcount = 0;
}
void SHA256_Init(SHA_CTX* context) {
SHA256_Internal_Init(context, sha256_initial_hash_value);
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE32(*data++, W256[j]); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + (W256[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
sha_word32 a, b, c, d, e, f, g, h, s0, s1;
sha_word32 T1, *W256;
int j;
W256 = (sha_word32*)context->s256.buffer;
/* Initialize registers with the prev. intermediate value */
a = context->s256.state[0];
b = context->s256.state[1];
c = context->s256.state[2];
d = context->s256.state[3];
e = context->s256.state[4];
f = context->s256.state[5];
g = context->s256.state[6];
h = context->s256.state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
context->s256.state[0] += a;
context->s256.state[1] += b;
context->s256.state[2] += c;
context->s256.state[3] += d;
context->s256.state[4] += e;
context->s256.state[5] += f;
context->s256.state[6] += g;
context->s256.state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
sha_word32 a, b, c, d, e, f, g, h, s0, s1;
sha_word32 T1, T2, *W256;
int j;
W256 = (sha_word32*)context->s256.buffer;
/* Initialize registers with the prev. intermediate value */
a = context->s256.state[0];
b = context->s256.state[1];
c = context->s256.state[2];
d = context->s256.state[3];
e = context->s256.state[4];
f = context->s256.state[5];
g = context->s256.state[6];
h = context->s256.state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Copy data while converting to host byte order */
REVERSE32(*data++,W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->s256.state[0] += a;
context->s256.state[1] += b;
context->s256.state[2] += c;
context->s256.state[3] += d;
context->s256.state[4] += e;
context->s256.state[5] += f;
context->s256.state[6] += g;
context->s256.state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
usedspace = (context->s256.bitcount >> 3) % 64;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = 64 - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace);
context->s256.bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len);
context->s256.bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= 64) {
/* Process as many complete blocks as we can */
SHA256_Internal_Transform(context, (sha_word32*)data);
context->s256.bitcount += 512;
len -= 64;
data += 64;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->s256.buffer, data, len);
context->s256.bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void SHA256_Internal_Last(SHA_CTX* context) {
unsigned int usedspace;
usedspace = (context->s256.bitcount >> 3) % 64;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->s256.bitcount,context->s256.bitcount);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->s256.buffer[usedspace++] = 0x80;
if (usedspace <= 56) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace);
} else {
if (usedspace < 64) {
MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace);
}
/* Do second-to-last transform: */
SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->s256.buffer, 56);
}
/* Clean up: */
usedspace = 0;
} else {
/* Set-up for the last transform: */
MEMSET_BZERO(context->s256.buffer, 56);
/* Begin padding with a 1 bit: */
*context->s256.buffer = 0x80;
}
/* Set the bit count: */
*(sha_word64*)&context->s256.buffer[56] = context->s256.bitcount;
/* Final transform: */
SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
}
void SHA256_Final(sha_byte digest[], SHA_CTX* context) {
sha_word32 *d = (sha_word32*)digest;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha_byte*)0) {
SHA256_Internal_Last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) {
REVERSE32(context->s256.state[j],context->s256.state[j]);
*d++ = context->s256.state[j];
}
}
#else
MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH);
#endif
}
/* Clean up state data: */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA256_End(SHA_CTX* context, char buffer[]) {
sha_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
if (buffer != (char*)0) {
SHA256_Final(digest, context);
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
SHA_CTX context;
SHA256_Init(&context);
SHA256_Update(&context, data, len);
return SHA256_End(&context, digest);
}
/*** SHA-224: *********************************************************/
void SHA224_Init(SHA_CTX* context) {
SHA256_Internal_Init(context, sha224_initial_hash_value);
}
void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
SHA256_Internal_Transform(context, data);
}
void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
SHA256_Update(context, data, len);
}
void SHA224_Final(sha_byte digest[], SHA_CTX* context) {
sha_word32 *d = (sha_word32*)digest;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha_byte*)0) {
SHA256_Internal_Last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) {
REVERSE32(context->s256.state[j],context->s256.state[j]);
*d++ = context->s256.state[j];
}
}
#else
MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH);
#endif
}
/* Clean up state data: */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA224_End(SHA_CTX* context, char buffer[]) {
sha_byte digest[SHA224_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
if (buffer != (char*)0) {
SHA224_Final(digest, context);
for (i = 0; i < SHA224_DIGEST_LENGTH; i++) {
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH);
return buffer;
}
char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) {
SHA_CTX context;
SHA224_Init(&context);
SHA224_Update(&context, data, len);
return SHA224_End(&context, digest);
}
/*** SHA-512: *********************************************************/
void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) {
/* Sanity check: */
assert(context != (SHA_CTX*)0);
MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8);
MEMSET_BZERO(context->s512.buffer, 128);
context->s512.bitcount[0] = context->s512.bitcount[1] = 0;
}
void SHA512_Init(SHA_CTX* context) {
SHA512_Internal_Init(context, sha512_initial_hash_value);
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE64(*data++, W512[j]); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + W512[j]; \
(d) += T1, \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + (W512[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
sha_word64 a, b, c, d, e, f, g, h, s0, s1;
sha_word64 T1, *W512 = (sha_word64*)context->s512.buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->s512.state[0];
b = context->s512.state[1];
c = context->s512.state[2];
d = context->s512.state[3];
e = context->s512.state[4];
f = context->s512.state[5];
g = context->s512.state[6];
h = context->s512.state[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
context->s512.state[0] += a;
context->s512.state[1] += b;
context->s512.state[2] += c;
context->s512.state[3] += d;
context->s512.state[4] += e;
context->s512.state[5] += f;
context->s512.state[6] += g;
context->s512.state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
sha_word64 a, b, c, d, e, f, g, h, s0, s1;
sha_word64 T1, T2, *W512 = (sha_word64*)context->s512.buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->s512.state[0];
b = context->s512.state[1];
c = context->s512.state[2];
d = context->s512.state[3];
e = context->s512.state[4];
f = context->s512.state[5];
g = context->s512.state[6];
h = context->s512.state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
REVERSE64(*data++, W512[j]);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-512 compression function to update a..h with copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->s512.state[0] += a;
context->s512.state[1] += b;
context->s512.state[2] += c;
context->s512.state[3] += d;
context->s512.state[4] += e;
context->s512.state[5] += f;
context->s512.state[6] += g;
context->s512.state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
usedspace = (context->s512.bitcount[0] >> 3) % 128;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = 128 - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace);
ADDINC128(context->s512.bitcount, freespace << 3);
len -= freespace;
data += freespace;
SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len);
ADDINC128(context->s512.bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= 128) {
/* Process as many complete blocks as we can */
SHA512_Internal_Transform(context, (sha_word64*)data);
ADDINC128(context->s512.bitcount, 1024);
len -= 128;
data += 128;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->s512.buffer, data, len);
ADDINC128(context->s512.bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
void SHA512_Internal_Last(SHA_CTX* context) {
unsigned int usedspace;
usedspace = (context->s512.bitcount[0] >> 3) % 128;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]);
REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->s512.buffer[usedspace++] = 0x80;
if (usedspace <= 112) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace);
} else {
if (usedspace < 128) {
MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace);
}
/* Do second-to-last transform: */
SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->s512.buffer, 112);
}
/* Clean up: */
usedspace = 0;
} else {
/* Prepare for final transform: */
MEMSET_BZERO(context->s512.buffer, 112);
/* Begin padding with a 1 bit: */
*context->s512.buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(sha_word64*)&context->s512.buffer[112] = context->s512.bitcount[1];
*(sha_word64*)&context->s512.buffer[120] = context->s512.bitcount[0];
/* Final transform: */
SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
}
void SHA512_Final(sha_byte digest[], SHA_CTX* context) {
sha_word64 *d = (sha_word64*)digest;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha_byte*)0) {
SHA512_Internal_Last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) {
REVERSE64(context->s512.state[j],context->s512.state[j]);
*d++ = context->s512.state[j];
}
}
#else
MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA512_End(SHA_CTX* context, char buffer[]) {
sha_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
if (buffer != (char*)0) {
SHA512_Final(digest, context);
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
SHA_CTX context;
SHA512_Init(&context);
SHA512_Update(&context, data, len);
return SHA512_End(&context, digest);
}
/*** SHA-384: *********************************************************/
void SHA384_Init(SHA_CTX* context) {
SHA512_Internal_Init(context, sha384_initial_hash_value);
}
void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) {
SHA512_Update(context, data, len);
}
void SHA384_Final(sha_byte digest[], SHA_CTX* context) {
sha_word64 *d = (sha_word64*)digest;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha_byte*)0) {
SHA512_Internal_Last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) {
REVERSE64(context->s512.state[j],context->s512.state[j]);
*d++ = context->s512.state[j];
}
}
#else
MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA384_End(SHA_CTX* context, char buffer[]) {
sha_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA_CTX*)0);
if (buffer != (char*)0) {
SHA384_Final(digest, context);
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
return buffer;
}
char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
SHA_CTX context;
SHA384_Init(&context);
SHA384_Update(&context, data, len);
return SHA384_End(&context, digest);
}