// Copyright 2016 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // This file is shared between executor and csource package. #include #include #include #include #if SYZ_EXECUTOR const int kExtraCoverSize = 256 << 10; struct cover_t; static void cover_reset(cover_t* cov); #endif #if SYZ_EXECUTOR || SYZ_THREADED #include #include typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) fail("event already set"); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64 timeout) { uint64 start = current_time_ms(); uint64 now = start; for (;;) { uint64 remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } #endif #if SYZ_EXECUTOR || SYZ_REPEAT || SYZ_TUN_ENABLE || SYZ_FAULT_INJECTION || SYZ_SANDBOX_NONE || \ SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP || \ SYZ_FAULT_INJECTION || SYZ_ENABLE_LEAK || SYZ_ENABLE_BINFMT_MISC #include #include #include #include #include #include #include static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); debug("write(%s) failed: %d\n", file, err); errno = err; return false; } close(fd); return true; } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV || SYZ_TUN_ENABLE #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct { char* pos; int nesting; struct nlattr* nested[8]; char buf[1024]; } nlmsg; static void netlink_init(int typ, int flags, const void* data, int size) { memset(&nlmsg, 0, sizeof(nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg.pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg.pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; memcpy(attr + 1, data, size); nlmsg.pos += NLMSG_ALIGN(attr->nla_len); } #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV static void netlink_nest(int typ) { struct nlattr* attr = (struct nlattr*)nlmsg.pos; attr->nla_type = typ; nlmsg.pos += sizeof(*attr); nlmsg.nested[nlmsg.nesting++] = attr; } static void netlink_done(void) { struct nlattr* attr = nlmsg.nested[--nlmsg.nesting]; attr->nla_len = nlmsg.pos - (char*)attr; } #endif static int netlink_send(int sock) { if (nlmsg.pos > nlmsg.buf + sizeof(nlmsg.buf) || nlmsg.nesting) fail("nlmsg overflow/bad nesting"); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf; hdr->nlmsg_len = nlmsg.pos - nlmsg.buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; unsigned n = sendto(sock, nlmsg.buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != hdr->nlmsg_len) fail("short netlink write: %d/%d", n, hdr->nlmsg_len); n = recv(sock, nlmsg.buf, sizeof(nlmsg.buf), 0); if (n < sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr)) fail("short netlink read: %d", n); if (hdr->nlmsg_type != NLMSG_ERROR) fail("short netlink ack: %d", hdr->nlmsg_type); return -((struct nlmsgerr*)(hdr + 1))->error; } #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV static void netlink_add_device_impl(const char* type, const char* name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); netlink_init(RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); if (name) netlink_attr(IFLA_IFNAME, name, strlen(name)); netlink_nest(IFLA_LINKINFO); netlink_attr(IFLA_INFO_KIND, type, strlen(type)); } static void netlink_add_device(int sock, const char* type, const char* name) { netlink_add_device_impl(type, name); netlink_done(); int err = netlink_send(sock); debug("netlink: adding device %s type %s: %s\n", name, type, strerror(err)); (void)err; } static void netlink_add_veth(int sock, const char* name, const char* peer) { netlink_add_device_impl("veth", name); netlink_nest(IFLA_INFO_DATA); netlink_nest(VETH_INFO_PEER); nlmsg.pos += sizeof(struct ifinfomsg); netlink_attr(IFLA_IFNAME, peer, strlen(peer)); netlink_done(); netlink_done(); netlink_done(); int err = netlink_send(sock); debug("netlink: adding device %s type veth peer %s: %s\n", name, peer, strerror(err)); (void)err; } static void netlink_add_hsr(int sock, const char* name, const char* slave1, const char* slave2) { netlink_add_device_impl("hsr", name); netlink_nest(IFLA_INFO_DATA); int ifindex1 = if_nametoindex(slave1); netlink_attr(IFLA_HSR_SLAVE1, &ifindex1, sizeof(ifindex1)); int ifindex2 = if_nametoindex(slave2); netlink_attr(IFLA_HSR_SLAVE2, &ifindex2, sizeof(ifindex2)); netlink_done(); netlink_done(); int err = netlink_send(sock); debug("netlink: adding device %s type hsr slave1 %s slave2 %s: %s\n", name, slave1, slave2, strerror(err)); (void)err; } #endif static void netlink_device_change(int sock, const char* name, bool up, const char* master, const void* mac, int macsize) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; netlink_init(RTM_NEWLINK, 0, &hdr, sizeof(hdr)); netlink_attr(IFLA_IFNAME, name, strlen(name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(IFLA_ADDRESS, mac, macsize); int err = netlink_send(sock); debug("netlink: device %s up master %s: %s\n", name, master, strerror(err)); (void)err; } static int netlink_add_addr(int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(IFA_LOCAL, addr, addrsize); netlink_attr(IFA_ADDRESS, addr, addrsize); return netlink_send(sock); } static void netlink_add_addr4(int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(sock, dev, &in_addr, sizeof(in_addr)); debug("netlink: add addr %s dev %s: %s\n", addr, dev, strerror(err)); (void)err; } static void netlink_add_addr6(int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(sock, dev, &in6_addr, sizeof(in6_addr)); debug("netlink: add addr %s dev %s: %s\n", addr, dev, strerror(err)); (void)err; } #if SYZ_EXECUTOR || SYZ_TUN_ENABLE static void netlink_add_neigh(int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(NDA_DST, addr, addrsize); netlink_attr(NDA_LLADDR, mac, macsize); int err = netlink_send(sock); debug("netlink: add neigh %s addr %d lladdr %d: %s\n", name, addrsize, macsize, strerror(err)); (void)err; } #endif #endif #if SYZ_EXECUTOR || SYZ_TUN_ENABLE #include #include #include #include #include #include #include #include #include #include #include #include #include static int tunfd = -1; static int tun_frags_enabled; // We just need this to be large enough to hold headers that we parse (ethernet/ip/tcp). // Rest of the packet (if any) will be silently truncated which is fine. #define SYZ_TUN_MAX_PACKET_SIZE 1000 #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #ifndef IFF_NAPI #define IFF_NAPI 0x0010 #endif #ifndef IFF_NAPI_FRAGS #define IFF_NAPI_FRAGS 0x0020 #endif static void initialize_tun(void) { #if SYZ_EXECUTOR if (!flag_enable_tun) return; #endif tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { #if SYZ_EXECUTOR fail("tun: can't open /dev/net/tun"); #else printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; #endif } // Remap tun onto higher fd number to hide it from fuzzer and to keep // fd numbers stable regardless of whether tun is opened or not (also see kMaxFd). const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) fail("dup2(tunfd, kTunFd) failed"); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { // IFF_NAPI_FRAGS requires root, so try without it. ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) fail("tun: ioctl(TUNSETIFF) failed"); } // If IFF_NAPI_FRAGS is not supported it will be silently dropped, // so query the effective flags. if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) fail("tun: ioctl(TUNGETIFF) failed"); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; debug("tun_frags_enabled=%d\n", tun_frags_enabled); // Disable IPv6 DAD, otherwise the address remains unusable until DAD completes. // Don't panic because this is an optional config. char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); // Disable IPv6 router solicitation to prevent IPv6 spam. // Don't panic because this is an optional config. sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); // There seems to be no way to disable IPv6 MTD to prevent more IPv6 spam. int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) fail("socket(AF_NETLINK) failed"); netlink_add_addr4(sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(sock, TUN_IFACE, LOCAL_IPV6); uint64 macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN); close(sock); } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Addresses are chosen to be in the same subnet as tun addresses. #define DEV_IPV4 "172.20.20.%d" #define DEV_IPV6 "fe80::%02x" #define DEV_MAC 0x00aaaaaaaaaa // We test in a separate namespace, which does not have any network devices initially (even lo). // Create/up as many as we can. static void initialize_netdevices(void) { #if SYZ_EXECUTOR if (!flag_enable_net_dev) return; #endif // TODO: add the following devices: // - vlan // - vxlan // - macvlan // - ipvlan // - macsec // - ipip // - lowpan // - ipoib // - geneve // - vrf // - rmnet // - openvswitch // Naive attempts to add devices of these types fail with various errors. // Also init namespace contains the following devices (which presumably can't be // created in non-init namespace), can we use them somehow? // - ifb0/1 // - wpan0/1 // - hwsim0 // - teql0 // - eql char netdevsim[16]; sprintf(netdevsim, "netdevsim%d", (int)procid); struct { const char* type; const char* dev; } devtypes[] = { // Note: ip6erspan device can't be added if ip6gretap exists in the same namespace. {"ip6gretap", "ip6gretap0"}, {"bridge", "bridge0"}, {"vcan", "vcan0"}, {"bond", "bond0"}, {"team", "team0"}, {"dummy", "dummy0"}, {"nlmon", "nlmon0"}, {"caif", "caif0"}, {"batadv", "batadv0"}, // Note: adding device vxcan0 fails. {"vxcan", "vxcan1"}, // Note: netdevsim devices can't have the same name even in different namespaces. {"netdevsim", netdevsim}, // This adds connected veth0 and veth1 devices. {"veth", 0}, }; const char* devmasters[] = {"bridge", "bond", "team"}; // If you extend this array, also update netdev_addr_id in vnet.txt. struct { const char* name; int macsize; bool noipv6; } devices[] = { {"lo", ETH_ALEN}, {"sit0", 0}, {"bridge0", ETH_ALEN}, {"vcan0", 0, true}, {"tunl0", 0}, {"gre0", 0}, {"gretap0", ETH_ALEN}, {"ip_vti0", 0}, {"ip6_vti0", 0}, {"ip6tnl0", 0}, {"ip6gre0", 0}, {"ip6gretap0", ETH_ALEN}, {"erspan0", ETH_ALEN}, {"bond0", ETH_ALEN}, {"veth0", ETH_ALEN}, {"veth1", ETH_ALEN}, {"team0", ETH_ALEN}, {"veth0_to_bridge", ETH_ALEN}, {"veth1_to_bridge", ETH_ALEN}, {"veth0_to_bond", ETH_ALEN}, {"veth1_to_bond", ETH_ALEN}, {"veth0_to_team", ETH_ALEN}, {"veth1_to_team", ETH_ALEN}, {"veth0_to_hsr", ETH_ALEN}, {"veth1_to_hsr", ETH_ALEN}, {"hsr0", 0}, {"dummy0", ETH_ALEN}, {"nlmon0", 0}, {"vxcan1", 0, true}, {"caif0", ETH_ALEN}, // TODO: up'ing caif fails with ENODEV {"batadv0", ETH_ALEN}, {netdevsim, ETH_ALEN}, }; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) fail("socket(AF_NETLINK) failed"); unsigned i; for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) netlink_add_device(sock, devtypes[i].type, devtypes[i].dev); // This creates connected bridge/bond/team_slave devices of type veth, // and makes them slaves of bridge/bond/team devices, respectively. // Note: slave devices don't need MAC/IP addresses, only master devices. // veth0_to_* is not slave devices, which still need ip addresses. for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) { char master[32], slave0[32], veth0[32], slave1[32], veth1[32]; sprintf(slave0, "%s_slave_0", devmasters[i]); sprintf(veth0, "veth0_to_%s", devmasters[i]); netlink_add_veth(sock, slave0, veth0); sprintf(slave1, "%s_slave_1", devmasters[i]); sprintf(veth1, "veth1_to_%s", devmasters[i]); netlink_add_veth(sock, slave1, veth1); sprintf(master, "%s0", devmasters[i]); netlink_device_change(sock, slave0, false, master, 0, 0); netlink_device_change(sock, slave1, false, master, 0, 0); } // bond/team_slave_* will set up automatically when set their master. // But bridge_slave_* need to set up manually. netlink_device_change(sock, "bridge_slave_0", true, 0, 0, 0); netlink_device_change(sock, "bridge_slave_1", true, 0, 0, 0); // Setup hsr device (slightly different from what we do for devmasters). netlink_add_veth(sock, "hsr_slave_0", "veth0_to_hsr"); netlink_add_veth(sock, "hsr_slave_1", "veth1_to_hsr"); netlink_add_hsr(sock, "hsr0", "hsr_slave_0", "hsr_slave_1"); netlink_device_change(sock, "hsr_slave_0", true, 0, 0, 0); netlink_device_change(sock, "hsr_slave_1", true, 0, 0, 0); for (i = 0; i < sizeof(devices) / (sizeof(devices[0])); i++) { // Assign some unique address to devices. Some devices won't up without this. // Shift addresses by 10 because 0 subnet address can mean special things. char addr[32]; sprintf(addr, DEV_IPV4, i + 10); netlink_add_addr4(sock, devices[i].name, addr); if (!devices[i].noipv6) { sprintf(addr, DEV_IPV6, i + 10); netlink_add_addr6(sock, devices[i].name, addr); } uint64 macaddr = DEV_MAC + ((i + 10ull) << 40); netlink_device_change(sock, devices[i].name, true, 0, &macaddr, devices[i].macsize); } close(sock); } // Same as initialize_netdevices, but called in init net namespace. static void initialize_netdevices_init(void) { #if SYZ_EXECUTOR if (!flag_enable_net_dev) return; #endif int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) fail("socket(AF_NETLINK) failed"); struct { const char* type; int macsize; bool noipv6; bool noup; } devtypes[] = { // NETROM device, see net/netrom/{af_netrom,nr_dev}.c {"nr", 7, true}, // ROSE device, see net/rose/{af_rose,rose_dev}.c // We don't up it yet because it crashes kernel right away: // https://groups.google.com/d/msg/syzkaller/v-4B3zoBC-4/02SCKEzJBwAJ {"rose", 5, true, true}, }; unsigned i; for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) { char dev[32], addr[32]; sprintf(dev, "%s%d", devtypes[i].type, (int)procid); // Note: syscall descriptions know these addresses. sprintf(addr, "172.30.%d.%d", i, (int)procid + 1); netlink_add_addr4(sock, dev, addr); if (!devtypes[i].noipv6) { sprintf(addr, "fe88::%02x:%02x", i, (int)procid + 1); netlink_add_addr6(sock, dev, addr); } int macsize = devtypes[i].macsize; uint64 macaddr = 0xbbbbbb + ((unsigned long long)i << (8 * (macsize - 2))) + (procid << (8 * (macsize - 1))); netlink_device_change(sock, dev, !devtypes[i].noup, 0, &macaddr, macsize); } close(sock); } #endif #if SYZ_EXECUTOR || SYZ_TUN_ENABLE && (__NR_syz_extract_tcp_res || SYZ_REPEAT) #include static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN) return -1; // Tun sometimes returns this, unclear if it's a kernel bug or not. if (errno == EBADFD) return -1; fail("tun: read failed with %d", rv); } return rv; } #endif #if SYZ_EXECUTOR || __NR_syz_emit_ethernet && SYZ_TUN_ENABLE #include #include #define MAX_FRAGS 4 struct vnet_fragmentation { uint32 full; uint32 count; uint32 frags[MAX_FRAGS]; }; static long syz_emit_ethernet(volatile long a0, volatile long a1, volatile long a2) { // syz_emit_ethernet(len len[packet], packet ptr[in, eth_packet], frags ptr[in, vnet_fragmentation, opt]) // vnet_fragmentation { // full int32[0:1] // count int32[1:4] // frags array[int32[0:4096], 4] // } if (tunfd < 0) return (uintptr_t)-1; uint32 length = a0; char* data = (char*)a1; debug_dump_data(data, length); struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2; struct iovec vecs[MAX_FRAGS + 1]; uint32 nfrags = 0; if (!tun_frags_enabled || frags == NULL) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } else { bool full = true; uint32 i, count = 0; NONFAILING(full = frags->full); NONFAILING(count = frags->count); if (count > MAX_FRAGS) count = MAX_FRAGS; for (i = 0; i < count && length != 0; i++) { uint32 size = 0; NONFAILING(size = frags->frags[i]); if (size > length) size = length; vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = size; nfrags++; data += size; length -= size; } if (length != 0 && (full || nfrags == 0)) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } } return writev(tunfd, vecs, nfrags); } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_TUN_ENABLE static void flush_tun() { #if SYZ_EXECUTOR if (!flag_enable_tun) return; #endif char data[SYZ_TUN_MAX_PACKET_SIZE]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #endif #if SYZ_EXECUTOR || __NR_syz_extract_tcp_res && SYZ_TUN_ENABLE #ifndef __ANDROID__ // Can't include , since it causes // conflicts due to some structs redefinition. struct ipv6hdr { __u8 priority : 4, version : 4; __u8 flow_lbl[3]; __be16 payload_len; __u8 nexthdr; __u8 hop_limit; struct in6_addr saddr; struct in6_addr daddr; }; #endif struct tcp_resources { uint32 seq; uint32 ack; }; static long syz_extract_tcp_res(volatile long a0, volatile long a1, volatile long a2) { // syz_extract_tcp_res(res ptr[out, tcp_resources], seq_inc int32, ack_inc int32) if (tunfd < 0) return (uintptr_t)-1; char data[SYZ_TUN_MAX_PACKET_SIZE]; int rv = read_tun(&data[0], sizeof(data)); if (rv == -1) return (uintptr_t)-1; size_t length = rv; debug_dump_data(data, length); struct tcphdr* tcphdr; if (length < sizeof(struct ethhdr)) return (uintptr_t)-1; struct ethhdr* ethhdr = (struct ethhdr*)&data[0]; if (ethhdr->h_proto == htons(ETH_P_IP)) { if (length < sizeof(struct ethhdr) + sizeof(struct iphdr)) return (uintptr_t)-1; struct iphdr* iphdr = (struct iphdr*)&data[sizeof(struct ethhdr)]; if (iphdr->protocol != IPPROTO_TCP) return (uintptr_t)-1; if (length < sizeof(struct ethhdr) + iphdr->ihl * 4 + sizeof(struct tcphdr)) return (uintptr_t)-1; tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + iphdr->ihl * 4]; } else { if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr)) return (uintptr_t)-1; struct ipv6hdr* ipv6hdr = (struct ipv6hdr*)&data[sizeof(struct ethhdr)]; // TODO: parse and skip extension headers. if (ipv6hdr->nexthdr != IPPROTO_TCP) return (uintptr_t)-1; if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) return (uintptr_t)-1; tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr)]; } struct tcp_resources* res = (struct tcp_resources*)a0; NONFAILING(res->seq = htonl((ntohl(tcphdr->seq) + (uint32)a1))); NONFAILING(res->ack = htonl((ntohl(tcphdr->ack_seq) + (uint32)a2))); debug("extracted seq: %08x\n", res->seq); debug("extracted ack: %08x\n", res->ack); return 0; } #endif #if SYZ_EXECUTOR || __NR_syz_usb_connect #include #include #include #include #include #include #include #include #include #include #include "common_usb.h" #endif #if SYZ_EXECUTOR || __NR_syz_open_dev #include #include #include #include static long syz_open_dev(volatile long a0, volatile long a1, volatile long a2) { if (a0 == 0xc || a0 == 0xb) { // syz_open_dev$char(dev const[0xc], major intptr, minor intptr) fd // syz_open_dev$block(dev const[0xb], major intptr, minor intptr) fd char buf[128]; sprintf(buf, "/dev/%s/%d:%d", a0 == 0xc ? "char" : "block", (uint8)a1, (uint8)a2); return open(buf, O_RDWR, 0); } else { // syz_open_dev(dev strconst, id intptr, flags flags[open_flags]) fd char buf[1024]; char* hash; NONFAILING(strncpy(buf, (char*)a0, sizeof(buf) - 1)); buf[sizeof(buf) - 1] = 0; while ((hash = strchr(buf, '#'))) { *hash = '0' + (char)(a1 % 10); // 10 devices should be enough for everyone. a1 /= 10; } return open(buf, a2, 0); } } #endif #if SYZ_EXECUTOR || __NR_syz_open_procfs #include #include #include #include static long syz_open_procfs(volatile long a0, volatile long a1) { // syz_open_procfs(pid pid, file ptr[in, string[procfs_file]]) fd char buf[128]; memset(buf, 0, sizeof(buf)); if (a0 == 0) { NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/%s", (char*)a1)); } else if (a0 == -1) { NONFAILING(snprintf(buf, sizeof(buf), "/proc/thread-self/%s", (char*)a1)); } else { NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/task/%d/%s", (int)a0, (char*)a1)); } int fd = open(buf, O_RDWR); if (fd == -1) fd = open(buf, O_RDONLY); return fd; } #endif #if SYZ_EXECUTOR || __NR_syz_open_pts #include #include #include #include static long syz_open_pts(volatile long a0, volatile long a1) { // syz_openpts(fd fd[tty], flags flags[open_flags]) fd[tty] int ptyno = 0; if (ioctl(a0, TIOCGPTN, &ptyno)) return -1; char buf[128]; sprintf(buf, "/dev/pts/%d", ptyno); return open(buf, a1, 0); } #endif #if SYZ_EXECUTOR || __NR_syz_init_net_socket #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP #include #include #include #include #include const int kInitNetNsFd = 239; // see kMaxFd // syz_init_net_socket opens a socket in init net namespace. // Used for families that can only be created in init net namespace. static long syz_init_net_socket(volatile long domain, volatile long type, volatile long proto) { int netns = open("/proc/self/ns/net", O_RDONLY); if (netns == -1) return netns; if (setns(kInitNetNsFd, 0)) return -1; int sock = syscall(__NR_socket, domain, type, proto); int err = errno; if (setns(netns, 0)) fail("setns(netns) failed"); close(netns); errno = err; return sock; } #else static long syz_init_net_socket(volatile long domain, volatile long type, volatile long proto) { return syscall(__NR_socket, domain, type, proto); } #endif #endif #if SYZ_EXECUTOR || __NR_syz_genetlink_get_family_id #include #include #include #include #include static long syz_genetlink_get_family_id(volatile long name) { char buf[512] = {0}; struct nlmsghdr* hdr = (struct nlmsghdr*)buf; struct genlmsghdr* genlhdr = (struct genlmsghdr*)NLMSG_DATA(hdr); struct nlattr* attr = (struct nlattr*)(genlhdr + 1); hdr->nlmsg_len = sizeof(*hdr) + sizeof(*genlhdr) + sizeof(*attr) + GENL_NAMSIZ; hdr->nlmsg_type = GENL_ID_CTRL; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; genlhdr->cmd = CTRL_CMD_GETFAMILY; attr->nla_type = CTRL_ATTR_FAMILY_NAME; attr->nla_len = sizeof(*attr) + GENL_NAMSIZ; NONFAILING(strncpy((char*)(attr + 1), (char*)name, GENL_NAMSIZ)); struct iovec iov = {hdr, hdr->nlmsg_len}; struct sockaddr_nl addr = {0}; addr.nl_family = AF_NETLINK; debug("syz_genetlink_get_family_id(%s)\n", (char*)(attr + 1)); int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (fd == -1) { debug("syz_genetlink_get_family_id: socket failed: %d\n", errno); return -1; } struct msghdr msg = {&addr, sizeof(addr), &iov, 1, NULL, 0, 0}; if (sendmsg(fd, &msg, 0) == -1) { debug("syz_genetlink_get_family_id: sendmsg failed: %d\n", errno); close(fd); return -1; } ssize_t n = recv(fd, buf, sizeof(buf), 0); close(fd); if (n <= 0) { debug("syz_genetlink_get_family_id: recv failed: %d\n", errno); return -1; } if (hdr->nlmsg_type != GENL_ID_CTRL) { debug("syz_genetlink_get_family_id: wrong reply type: %d\n", hdr->nlmsg_type); return -1; } for (; (char*)attr < buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) return *(uint16*)(attr + 1); } debug("syz_genetlink_get_family_id: no CTRL_ATTR_FAMILY_ID attr\n"); return -1; } #endif #if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table #include #include #include #include #include #include struct fs_image_segment { void* data; uintptr_t size; uintptr_t offset; }; #define IMAGE_MAX_SEGMENTS 4096 #define IMAGE_MAX_SIZE (129 << 20) #if GOARCH_386 #define SYZ_memfd_create 356 #elif GOARCH_amd64 #define SYZ_memfd_create 319 #elif GOARCH_arm #define SYZ_memfd_create 385 #elif GOARCH_arm64 #define SYZ_memfd_create 279 #elif GOARCH_ppc64le #define SYZ_memfd_create 360 #endif #endif #if SYZ_EXECUTOR || __NR_syz_read_part_table // syz_read_part_table(size intptr, nsegs len[segments], segments ptr[in, array[fs_image_segment]]) static long syz_read_part_table(volatile unsigned long size, volatile unsigned long nsegs, volatile long segments) { char loopname[64], linkname[64]; int loopfd, err = 0, res = -1; unsigned long i, j; // See the comment in syz_mount_image. struct fs_image_segment* segs = (struct fs_image_segment*)segments; if (nsegs > IMAGE_MAX_SEGMENTS) nsegs = IMAGE_MAX_SEGMENTS; for (i = 0; i < nsegs; i++) { if (segs[i].size > IMAGE_MAX_SIZE) segs[i].size = IMAGE_MAX_SIZE; segs[i].offset %= IMAGE_MAX_SIZE; if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size) segs[i].offset = IMAGE_MAX_SIZE - segs[i].size; if (size < segs[i].offset + segs[i].offset) size = segs[i].offset + segs[i].offset; } if (size > IMAGE_MAX_SIZE) size = IMAGE_MAX_SIZE; int memfd = syscall(SYZ_memfd_create, "syz_read_part_table", 0); if (memfd == -1) { err = errno; goto error; } if (ftruncate(memfd, size)) { err = errno; goto error_close_memfd; } for (i = 0; i < nsegs; i++) { if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) { debug("syz_read_part_table: pwrite[%u] failed: %d\n", (int)i, errno); } } snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid); loopfd = open(loopname, O_RDWR); if (loopfd == -1) { err = errno; goto error_close_memfd; } if (ioctl(loopfd, LOOP_SET_FD, memfd)) { if (errno != EBUSY) { err = errno; goto error_close_loop; } ioctl(loopfd, LOOP_CLR_FD, 0); usleep(1000); if (ioctl(loopfd, LOOP_SET_FD, memfd)) { err = errno; goto error_close_loop; } } struct loop_info64 info; if (ioctl(loopfd, LOOP_GET_STATUS64, &info)) { err = errno; goto error_clear_loop; } #if SYZ_EXECUTOR cover_reset(0); #endif info.lo_flags |= LO_FLAGS_PARTSCAN; if (ioctl(loopfd, LOOP_SET_STATUS64, &info)) { err = errno; goto error_clear_loop; } res = 0; // If we managed to parse some partitions, symlink them into our work dir. for (i = 1, j = 0; i < 8; i++) { snprintf(loopname, sizeof(loopname), "/dev/loop%llup%d", procid, (int)i); struct stat statbuf; if (stat(loopname, &statbuf) == 0) { snprintf(linkname, sizeof(linkname), "./file%d", (int)j++); if (symlink(loopname, linkname)) { debug("syz_read_part_table: symlink(%s, %s) failed: %d\n", loopname, linkname, errno); } } } error_clear_loop: ioctl(loopfd, LOOP_CLR_FD, 0); error_close_loop: close(loopfd); error_close_memfd: close(memfd); error: errno = err; return res; } #endif #if SYZ_EXECUTOR || __NR_syz_mount_image #include #include //syz_mount_image(fs ptr[in, string[disk_filesystems]], dir ptr[in, filename], size intptr, nsegs len[segments], segments ptr[in, array[fs_image_segment]], flags flags[mount_flags], opts ptr[in, fs_options[vfat_options]]) //fs_image_segment { // data ptr[in, array[int8]] // size len[data, intptr] // offset intptr //} static long syz_mount_image(volatile long fsarg, volatile long dir, volatile unsigned long size, volatile unsigned long nsegs, volatile long segments, volatile long flags, volatile long optsarg) { char loopname[64], fs[32], opts[256]; int loopfd, err = 0, res = -1; unsigned long i; // Strictly saying we ought to do a nonfailing copyout of segments into a local var. // But some filesystems have large number of segments (2000+), // we can't allocate that much on stack and allocating elsewhere is problematic, // so we just use the memory allocated by fuzzer. struct fs_image_segment* segs = (struct fs_image_segment*)segments; if (nsegs > IMAGE_MAX_SEGMENTS) nsegs = IMAGE_MAX_SEGMENTS; for (i = 0; i < nsegs; i++) { if (segs[i].size > IMAGE_MAX_SIZE) segs[i].size = IMAGE_MAX_SIZE; segs[i].offset %= IMAGE_MAX_SIZE; if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size) segs[i].offset = IMAGE_MAX_SIZE - segs[i].size; if (size < segs[i].offset + segs[i].offset) size = segs[i].offset + segs[i].offset; } if (size > IMAGE_MAX_SIZE) size = IMAGE_MAX_SIZE; int memfd = syscall(SYZ_memfd_create, "syz_mount_image", 0); if (memfd == -1) { err = errno; goto error; } if (ftruncate(memfd, size)) { err = errno; goto error_close_memfd; } for (i = 0; i < nsegs; i++) { if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) { debug("syz_mount_image: pwrite[%u] failed: %d\n", (int)i, errno); } } snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid); loopfd = open(loopname, O_RDWR); if (loopfd == -1) { err = errno; goto error_close_memfd; } if (ioctl(loopfd, LOOP_SET_FD, memfd)) { if (errno != EBUSY) { err = errno; goto error_close_loop; } ioctl(loopfd, LOOP_CLR_FD, 0); usleep(1000); if (ioctl(loopfd, LOOP_SET_FD, memfd)) { err = errno; goto error_close_loop; } } mkdir((char*)dir, 0777); memset(fs, 0, sizeof(fs)); NONFAILING(strncpy(fs, (char*)fsarg, sizeof(fs) - 1)); memset(opts, 0, sizeof(opts)); // Leave some space for the additional options we append below. NONFAILING(strncpy(opts, (char*)optsarg, sizeof(opts) - 32)); if (strcmp(fs, "iso9660") == 0) { flags |= MS_RDONLY; } else if (strncmp(fs, "ext", 3) == 0) { // For ext2/3/4 we have to have errors=continue because the image // can contain errors=panic flag and can legally crash kernel. if (strstr(opts, "errors=panic") || strstr(opts, "errors=remount-ro") == 0) strcat(opts, ",errors=continue"); } else if (strcmp(fs, "xfs") == 0) { // For xfs we need nouuid because xfs has a global uuids table // and if two parallel executors mounts fs with the same uuid, second mount fails. strcat(opts, ",nouuid"); } debug("syz_mount_image: size=%llu segs=%llu loop='%s' dir='%s' fs='%s' flags=%llu opts='%s'\n", (uint64)size, (uint64)nsegs, loopname, (char*)dir, fs, (uint64)flags, opts); #if SYZ_EXECUTOR cover_reset(0); #endif if (mount(loopname, (char*)dir, fs, flags, opts)) { err = errno; goto error_clear_loop; } res = 0; error_clear_loop: ioctl(loopfd, LOOP_CLR_FD, 0); error_close_loop: close(loopfd); error_close_memfd: close(memfd); error: errno = err; return res; } #endif #if SYZ_EXECUTOR || __NR_syz_kvm_setup_cpu #include #include #include #include #include #include #include #if GOARCH_amd64 #include "common_kvm_amd64.h" #elif GOARCH_arm64 #include "common_kvm_arm64.h" #else static long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7) { return 0; } #endif #endif #if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE #include #include #include #include #include #include // checkpoint/reset_net_namespace partially resets net namespace to initial state // after each test. Currently it resets only ipv4 netfilter state. // Ideally, we just create a new net namespace for each test, // however it's too slow (1-1.5 seconds per namespace, not parallelizable). // Linux headers do not compile for C++, so we have to define the structs manualy. #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64 pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("iptable checkpoint %d: socket failed", family); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family); } debug("iptable checkpoint %s/%d: checkpoint entries=%d hooks=%x size=%d\n", table->name, family, table->info.num_entries, table->info.valid_hooks, table->info.size); if (table->info.size > sizeof(table->replace.entrytable)) fail("iptable checkpoint %s/%d: table size is too large: %u", table->name, family, table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("iptable checkpoint %s/%d: too many counters: %u", table->name, family, table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_ENTRIES)", table->name, family); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("iptable %d: socket failed", family); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) fail("iptable %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("iptable %s/%d: getsockopt(IPT_SO_GET_ENTRIES)", table->name, family); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } debug("iptable %s/%d: resetting\n", table->name, family); table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) fail("iptable %s/%d: setsockopt(IPT_SO_SET_REPLACE)", table->name, family); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("arptable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_INFO)", table->name); } debug("arptable checkpoint %s: entries=%d hooks=%x size=%d\n", table->name, table->info.num_entries, table->info.valid_hooks, table->info.size); if (table->info.size > sizeof(table->replace.entrytable)) fail("arptable checkpoint %s: table size is too large: %u", table->name, table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("arptable checkpoint %s: too many counters: %u", table->name, table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("arptable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) fail("arptable %s:getsockopt(ARPT_SO_GET_INFO)", table->name); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("arptable %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; debug("arptable %s: data changed\n", table->name); } else { debug("arptable %s: header changed\n", table->name); } debug("arptable %s: resetting\n", table->name); table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) fail("arptable %s: setsockopt(ARPT_SO_SET_REPLACE)", table->name); } close(fd); } // ebtables.h is broken too: // ebtables.h: In function ‘ebt_entry_target* ebt_get_target(ebt_entry*)’: // ebtables.h:197:19: error: invalid conversion from ‘void*’ to ‘ebt_entry_target*’ #define NF_BR_NUMHOOKS 6 #define EBT_TABLE_MAXNAMELEN 32 #define EBT_CHAIN_MAXNAMELEN 32 #define EBT_BASE_CTL 128 #define EBT_SO_SET_ENTRIES (EBT_BASE_CTL) #define EBT_SO_GET_INFO (EBT_BASE_CTL) #define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1) #define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1) #define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1) struct ebt_replace { char name[EBT_TABLE_MAXNAMELEN]; unsigned int valid_hooks; unsigned int nentries; unsigned int entries_size; struct ebt_entries* hook_entry[NF_BR_NUMHOOKS]; unsigned int num_counters; struct ebt_counter* counters; char* entries; }; struct ebt_entries { unsigned int distinguisher; char name[EBT_CHAIN_MAXNAMELEN]; unsigned int counter_offset; int policy; unsigned int nentries; char data[0] __attribute__((aligned(__alignof__(struct ebt_replace)))); }; struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("ebtable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("ebtable checkpoint %s: getsockopt(EBT_SO_GET_INIT_INFO)", table->name); } debug("ebtable checkpoint %s: entries=%d hooks=%x size=%d\n", table->name, table->replace.nentries, table->replace.valid_hooks, table->replace.entries_size); if (table->replace.entries_size > sizeof(table->entrytable)) fail("ebtable checkpoint %s: table size is too large: %u", table->name, table->replace.entries_size); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) fail("ebtable checkpoint %s: getsockopt(EBT_SO_GET_INIT_ENTRIES)", table->name); } close(fd); } static void reset_ebtables() { struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; socklen_t optlen; unsigned i, j, h; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } fail("ebtable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) fail("ebtable %s: getsockopt(EBT_SO_GET_INFO)", table->name); replace.num_counters = 0; table->replace.entries = 0; for (h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) fail("ebtable %s: getsockopt(EBT_SO_GET_ENTRIES)", table->name); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } debug("ebtable %s: resetting\n", table->name); // Kernel does not seem to return actual entry points (wat?). for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) fail("ebtable %s: setsockopt(EBT_SO_SET_ENTRIES)", table->name); } close(fd); } static void checkpoint_net_namespace(void) { #if SYZ_EXECUTOR if (!flag_enable_net_reset) return; if (flag_sandbox == sandbox_setuid) return; #endif checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { #if SYZ_EXECUTOR if (!flag_enable_net_reset) return; if (flag_sandbox == sandbox_setuid) return; #endif reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } #endif #if SYZ_EXECUTOR || (SYZ_ENABLE_CGROUPS && (SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP)) #include #include #include #include static void setup_cgroups() { #if SYZ_EXECUTOR if (!flag_enable_cgroups) return; #endif if (mkdir("/syzcgroup", 0777)) { debug("mkdir(/syzcgroup) failed: %d\n", errno); } if (mkdir("/syzcgroup/unified", 0777)) { debug("mkdir(/syzcgroup/unified) failed: %d\n", errno); } if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) { debug("mount(cgroup2) failed: %d\n", errno); } if (chmod("/syzcgroup/unified", 0777)) { debug("chmod(/syzcgroup/unified) failed: %d\n", errno); } write_file("/syzcgroup/unified/cgroup.subtree_control", "+cpu +memory +io +pids +rdma"); if (mkdir("/syzcgroup/cpu", 0777)) { debug("mkdir(/syzcgroup/cpu) failed: %d\n", errno); } if (mount("none", "/syzcgroup/cpu", "cgroup", 0, "cpuset,cpuacct,perf_event,hugetlb")) { debug("mount(cgroup cpu) failed: %d\n", errno); } write_file("/syzcgroup/cpu/cgroup.clone_children", "1"); if (chmod("/syzcgroup/cpu", 0777)) { debug("chmod(/syzcgroup/cpu) failed: %d\n", errno); } if (mkdir("/syzcgroup/net", 0777)) { debug("mkdir(/syzcgroup/net) failed: %d\n", errno); } if (mount("none", "/syzcgroup/net", "cgroup", 0, "net_cls,net_prio,devices,freezer")) { debug("mount(cgroup net) failed: %d\n", errno); } if (chmod("/syzcgroup/net", 0777)) { debug("chmod(/syzcgroup/net) failed: %d\n", errno); } } #if SYZ_EXECUTOR || SYZ_REPEAT static void setup_cgroups_loop() { #if SYZ_EXECUTOR if (!flag_enable_cgroups) return; #endif int pid = getpid(); char file[128]; char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { debug("mkdir(%s) failed: %d\n", cgroupdir, errno); } // Restrict number of pids per test process to prevent fork bombs. // We have up to 16 threads + main process + loop. // 32 pids should be enough for everyone. snprintf(file, sizeof(file), "%s/pids.max", cgroupdir); write_file(file, "32"); // Restrict memory consumption. // We have some syscalls that inherently consume lots of memory, // e.g. mounting some filesystem images requires at least 128MB // image in memory. We restrict RLIMIT_AS to 200MB. Here we gradually // increase low/high/max limits to make things more interesting. // Also this takes into account KASAN quarantine size. // If the limit is lower than KASAN quarantine size, then it can happen // so that we kill the process, but all of its memory is in quarantine // and is still accounted against memcg. As the result memcg won't // allow to allocate any memory in the parent and in the new test process. // The current limit of 300MB supports up to 9.6GB RAM (quarantine is 1/32). snprintf(file, sizeof(file), "%s/memory.low", cgroupdir); write_file(file, "%d", 298 << 20); snprintf(file, sizeof(file), "%s/memory.high", cgroupdir); write_file(file, "%d", 299 << 20); snprintf(file, sizeof(file), "%s/memory.max", cgroupdir); write_file(file, "%d", 300 << 20); // Setup some v1 groups to make things more interesting. snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { debug("mkdir(%s) failed: %d\n", cgroupdir, errno); } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { debug("mkdir(%s) failed: %d\n", cgroupdir, errno); } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); } static void setup_cgroups_test() { #if SYZ_EXECUTOR if (!flag_enable_cgroups) return; #endif char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (symlink(cgroupdir, "./cgroup")) { debug("symlink(%s, ./cgroup) failed: %d\n", cgroupdir, errno); } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.cpu")) { debug("symlink(%s, ./cgroup.cpu) failed: %d\n", cgroupdir, errno); } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.net")) { debug("symlink(%s, ./cgroup.net) failed: %d\n", cgroupdir, errno); } } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NAMESPACE void initialize_cgroups() { #if SYZ_EXECUTOR if (!flag_enable_cgroups) return; #endif if (mkdir("./syz-tmp/newroot/syzcgroup", 0700)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/syzcgroup/unified", 0700)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/syzcgroup/cpu", 0700)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/syzcgroup/net", 0700)) fail("mkdir failed"); unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE; if (mount("/syzcgroup/unified", "./syz-tmp/newroot/syzcgroup/unified", NULL, bind_mount_flags, NULL)) { debug("mount(cgroup2, MS_BIND) failed: %d\n", errno); } if (mount("/syzcgroup/cpu", "./syz-tmp/newroot/syzcgroup/cpu", NULL, bind_mount_flags, NULL)) { debug("mount(cgroup/cpu, MS_BIND) failed: %d\n", errno); } if (mount("/syzcgroup/net", "./syz-tmp/newroot/syzcgroup/net", NULL, bind_mount_flags, NULL)) { debug("mount(cgroup/net, MS_BIND) failed: %d\n", errno); } } #endif #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP #include #include static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { debug("mount(fusectl) failed: %d\n", errno); } #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS setup_cgroups(); #endif } #include #include #include #include #include static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); #if SYZ_EXECUTOR || __NR_syz_init_net_socket int netns = open("/proc/self/ns/net", O_RDONLY); if (netns == -1) fail("open(/proc/self/ns/net) failed"); if (dup2(netns, kInitNetNsFd) < 0) fail("dup2(netns, kInitNetNsFd) failed"); close(netns); #endif struct rlimit rlim; #if SYZ_EXECUTOR rlim.rlim_cur = rlim.rlim_max = (200 << 20) + (kMaxThreads * kCoverSize + kExtraCoverSize) * sizeof(void*); #else rlim.rlim_cur = rlim.rlim_max = (200 << 20); #endif setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; // see kMaxFd setrlimit(RLIMIT_NOFILE, &rlim); // CLONE_NEWNS/NEWCGROUP cause EINVAL on some systems, // so we do them separately of clone in do_sandbox_namespace. if (unshare(CLONE_NEWNS)) { debug("unshare(CLONE_NEWNS): %d\n", errno); } if (unshare(CLONE_NEWIPC)) { debug("unshare(CLONE_NEWIPC): %d\n", errno); } if (unshare(0x02000000)) { debug("unshare(CLONE_NEWCGROUP): %d\n", errno); } if (unshare(CLONE_NEWUTS)) { debug("unshare(CLONE_NEWUTS): %d\n", errno); } if (unshare(CLONE_SYSVSEM)) { debug("unshare(CLONE_SYSVSEM): %d\n", errno); } // These sysctl's restrict ipc resource usage (by default it's possible // to eat all system memory by creating e.g. lots of large sem sets). // These sysctl's are per-namespace, so we need to set them inside // of the test ipc namespace (after CLONE_NEWIPC). typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } int wait_for_loop(int pid) { if (pid < 0) fail("sandbox fork failed"); debug("spawned loop pid %d\n", pid); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_NAMESPACE #include static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) fail("capget failed"); // Drop CAP_SYS_PTRACE so that test processes can't attach to parent processes. // Previously it lead to hangs because the loop process stopped due to SIGSTOP. // Note that a process can always ptrace its direct children, which is enough for testing purposes. // // A process with CAP_SYS_NICE can bring kernel down by asking for too high SCHED_DEADLINE priority, // as the result rcu and other system services that use kernel threads will stop functioning. // Some parameters for SCHED_DEADLINE should be OK, but we don't have means to enforce // values of indirect syscall arguments. Peter Zijlstra proposed sysctl_deadline_period_{min,max} // which could be used to enfore safe limits without droppping CAP_SYS_NICE, but we don't have it yet. // See the following bug for details: // https://groups.google.com/forum/#!topic/syzkaller-bugs/G6Wl_PKPIWI const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) fail("capset failed"); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NONE #include #include static int do_sandbox_none(void) { // CLONE_NEWPID takes effect for the first child of the current process, // so we do it before fork to make the loop "init" process of the namespace. // We ought to do fail here, but sandbox=none is used in pkg/ipc tests // and they are usually run under non-root. // Also since debug is stripped by pkg/csource, we need to do {} // even though we generally don't do {} around single statements. if (unshare(CLONE_NEWPID)) { debug("unshare(CLONE_NEWPID): %d\n", errno); } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); drop_caps(); #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices_init(); #endif if (unshare(CLONE_NEWNET)) { debug("unshare(CLONE_NEWNET): %d\n", errno); } #if SYZ_EXECUTOR || SYZ_TUN_ENABLE initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices(); #endif loop(); doexit(1); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_SETUID #include #include #include #define SYZ_HAVE_SANDBOX_SETUID 1 static int do_sandbox_setuid(void) { if (unshare(CLONE_NEWPID)) { debug("unshare(CLONE_NEWPID): %d\n", errno); } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices_init(); #endif if (unshare(CLONE_NEWNET)) { debug("unshare(CLONE_NEWNET): %d\n", errno); } #if SYZ_EXECUTOR || SYZ_TUN_ENABLE initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices(); #endif const int nobody = 65534; if (setgroups(0, NULL)) fail("failed to setgroups"); if (syscall(SYS_setresgid, nobody, nobody, nobody)) fail("failed to setresgid"); if (syscall(SYS_setresuid, nobody, nobody, nobody)) fail("failed to setresuid"); // This is required to open /proc/self/* files. // Otherwise they are owned by root and we can't open them after setuid. // See task_dump_owner function in kernel. prctl(PR_SET_DUMPABLE, 1, 0, 0, 0); loop(); doexit(1); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_NAMESPACE #include #include #include static int real_uid; static int real_gid; __attribute__((aligned(64 << 10))) static char sandbox_stack[1 << 20]; static int namespace_sandbox_proc(void* arg) { sandbox_common(); // /proc/self/setgroups is not present on some systems, ignore error. write_file("/proc/self/setgroups", "deny"); if (!write_file("/proc/self/uid_map", "0 %d 1\n", real_uid)) fail("write of /proc/self/uid_map failed"); if (!write_file("/proc/self/gid_map", "0 %d 1\n", real_gid)) fail("write of /proc/self/gid_map failed"); #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices_init(); #endif // CLONE_NEWNET must always happen before tun setup, // because we want the tun device in the test namespace. if (unshare(CLONE_NEWNET)) fail("unshare(CLONE_NEWNET)"); #if SYZ_EXECUTOR || SYZ_TUN_ENABLE // We setup tun here as it needs to be in the test net namespace, // which in turn needs to be in the test user namespace. // However, IFF_NAPI_FRAGS will fail as we are not root already. // TODO: we should create tun in the init net namespace and use setns // to move it to the target namespace. initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV initialize_netdevices(); #endif if (mkdir("./syz-tmp", 0777)) fail("mkdir(syz-tmp) failed"); if (mount("", "./syz-tmp", "tmpfs", 0, NULL)) fail("mount(tmpfs) failed"); if (mkdir("./syz-tmp/newroot", 0777)) fail("mkdir failed"); if (mkdir("./syz-tmp/newroot/dev", 0700)) fail("mkdir failed"); unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE; if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL)) fail("mount(dev) failed"); if (mkdir("./syz-tmp/newroot/proc", 0700)) fail("mkdir failed"); if (mount(NULL, "./syz-tmp/newroot/proc", "proc", 0, NULL)) fail("mount(proc) failed"); if (mkdir("./syz-tmp/newroot/selinux", 0700)) fail("mkdir failed"); // selinux mount used to be at /selinux, but then moved to /sys/fs/selinux. const char* selinux_path = "./syz-tmp/newroot/selinux"; if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) { if (errno != ENOENT) fail("mount(/selinux) failed"); if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) && errno != ENOENT) fail("mount(/sys/fs/selinux) failed"); } if (mkdir("./syz-tmp/newroot/sys", 0700)) fail("mkdir failed"); if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL)) fail("mount(sysfs) failed"); #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS initialize_cgroups(); #endif if (mkdir("./syz-tmp/pivot", 0777)) fail("mkdir failed"); if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) { debug("pivot_root failed\n"); if (chdir("./syz-tmp")) fail("chdir failed"); } else { debug("pivot_root OK\n"); if (chdir("/")) fail("chdir failed"); if (umount2("./pivot", MNT_DETACH)) fail("umount failed"); } if (chroot("./newroot")) fail("chroot failed"); if (chdir("/")) fail("chdir failed"); drop_caps(); loop(); doexit(1); } #define SYZ_HAVE_SANDBOX_NAMESPACE 1 static int do_sandbox_namespace(void) { int pid; setup_common(); real_uid = getuid(); real_gid = getgid(); mprotect(sandbox_stack, 4096, PROT_NONE); // to catch stack underflows pid = clone(namespace_sandbox_proc, &sandbox_stack[sizeof(sandbox_stack) - 64], CLONE_NEWUSER | CLONE_NEWPID, 0); return wait_for_loop(pid); } #endif #if SYZ_EXECUTOR || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP #include // open(2) #include // setgroups #include // setxattr, getxattr #define AID_NET_BT_ADMIN 3001 #define AID_NET_BT 3002 #define AID_INET 3003 #define AID_EVERYBODY 9997 #define AID_APP 10000 #define UNTRUSTED_APP_UID AID_APP + 999 #define UNTRUSTED_APP_GID AID_APP + 999 const char* SELINUX_CONTEXT_UNTRUSTED_APP = "u:r:untrusted_app:s0:c512,c768"; const char* SELINUX_LABEL_APP_DATA_FILE = "u:object_r:app_data_file:s0:c512,c768"; const char* SELINUX_CONTEXT_FILE = "/proc/thread-self/attr/current"; const char* SELINUX_XATTR_NAME = "security.selinux"; const gid_t UNTRUSTED_APP_GROUPS[] = {UNTRUSTED_APP_GID, AID_NET_BT_ADMIN, AID_NET_BT, AID_INET, AID_EVERYBODY}; const size_t UNTRUSTED_APP_NUM_GROUPS = sizeof(UNTRUSTED_APP_GROUPS) / sizeof(UNTRUSTED_APP_GROUPS[0]); // Similar to libselinux getcon(3), but: // - No library dependency // - No dynamic memory allocation // - Uses fail() instead of returning an error code static void syz_getcon(char* context, size_t context_size) { int fd = open(SELINUX_CONTEXT_FILE, O_RDONLY); if (fd < 0) fail("getcon: Couldn't open %s", SELINUX_CONTEXT_FILE); ssize_t nread = read(fd, context, context_size); close(fd); if (nread <= 0) fail("getcon: Failed to read from %s", SELINUX_CONTEXT_FILE); // The contents of the context file MAY end with a newline // and MAY not have a null terminator. Handle this here. if (context[nread - 1] == '\n') context[nread - 1] = '\0'; } // Similar to libselinux setcon(3), but: // - No library dependency // - No dynamic memory allocation // - Uses fail() instead of returning an error code static void syz_setcon(const char* context) { char new_context[512]; // Attempt to write the new context int fd = open(SELINUX_CONTEXT_FILE, O_WRONLY); if (fd < 0) fail("setcon: Could not open %s", SELINUX_CONTEXT_FILE); ssize_t bytes_written = write(fd, context, strlen(context)); // N.B.: We cannot reuse this file descriptor, since the target SELinux context // may not be able to read from it. close(fd); if (bytes_written != (ssize_t)strlen(context)) fail("setcon: Could not write entire context. Wrote %zi, expected %zu", bytes_written, strlen(context)); // Validate the transition by checking the context syz_getcon(new_context, sizeof(new_context)); if (strcmp(context, new_context) != 0) fail("setcon: Failed to change to %s, context is %s", context, new_context); } // Similar to libselinux getfilecon(3), but: // - No library dependency // - No dynamic memory allocation // - Uses fail() instead of returning an error code static int syz_getfilecon(const char* path, char* context, size_t context_size) { int length = getxattr(path, SELINUX_XATTR_NAME, context, context_size); if (length == -1) fail("getfilecon: getxattr failed"); return length; } // Similar to libselinux setfilecon(3), but: // - No library dependency // - No dynamic memory allocation // - Uses fail() instead of returning an error code static void syz_setfilecon(const char* path, const char* context) { char new_context[512]; if (setxattr(path, SELINUX_XATTR_NAME, context, strlen(context) + 1, 0) != 0) fail("setfilecon: setxattr failed"); if (syz_getfilecon(path, new_context, sizeof(new_context)) <= 0) fail("setfilecon: getfilecon failed"); if (strcmp(context, new_context) != 0) fail("setfilecon: could not set context to %s, currently %s", context, new_context); } #define SYZ_HAVE_SANDBOX_ANDROID_UNTRUSTED_APP 1 static int do_sandbox_android_untrusted_app(void) { setup_common(); sandbox_common(); if (chown(".", UNTRUSTED_APP_UID, UNTRUSTED_APP_UID) != 0) fail("chmod failed"); if (setgroups(UNTRUSTED_APP_NUM_GROUPS, UNTRUSTED_APP_GROUPS) != 0) fail("setgroups failed"); if (setresgid(UNTRUSTED_APP_GID, UNTRUSTED_APP_GID, UNTRUSTED_APP_GID) != 0) fail("setresgid failed"); if (setresuid(UNTRUSTED_APP_UID, UNTRUSTED_APP_UID, UNTRUSTED_APP_UID) != 0) fail("setresuid failed"); syz_setfilecon(".", SELINUX_LABEL_APP_DATA_FILE); syz_setcon(SELINUX_CONTEXT_UNTRUSTED_APP); #if SYZ_EXECUTOR || SYZ_TUN_ENABLE initialize_tun(); #endif #if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV // Note: sandbox_android_untrusted_app does not unshare net namespace. initialize_netdevices_init(); initialize_netdevices(); #endif loop(); doexit(1); } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_USE_TMP_DIR #include #include #include #include #include #define FS_IOC_SETFLAGS _IOW('f', 2, long) // One does not simply remove a directory. // There can be mounts, so we need to try to umount. // Moreover, a mount can be mounted several times, so we need to try to umount in a loop. // Moreover, after umount a dir can become non-empty again, so we need another loop. // Moreover, a mount can be re-mounted as read-only and then we will fail to make a dir empty. static void remove_dir(const char* dir) { DIR* dp; struct dirent* ep; int iter = 0; retry: while (umount2(dir, MNT_DETACH) == 0) { debug("umount(%s)\n", dir); } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { // This happens when the test process casts prlimit(NOFILE) on us. // Ideally we somehow prevent test processes from messing with parent processes. // But full sandboxing is expensive, so let's ignore this error for now. exitf("opendir(%s) failed due to NOFILE, exiting", dir); } exitf("opendir(%s) failed", dir); } while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); // If it's 9p mount with broken transport, lstat will fail. // So try to umount first. while (umount2(filename, MNT_DETACH) == 0) { debug("umount(%s)\n", filename); } struct stat st; if (lstat(filename, &st)) exitf("lstat(%s) failed", filename); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { // Try to reset FS_XFLAG_IMMUTABLE. int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) debug("reset FS_XFLAG_IMMUTABLE\n"); close(fd); continue; } } if (errno == EROFS) { debug("ignoring EROFS\n"); break; } if (errno != EBUSY || i > 100) exitf("unlink(%s) failed", filename); debug("umount(%s)\n", filename); if (umount2(filename, MNT_DETACH)) exitf("umount(%s) failed", filename); } } closedir(dp); int i; for (i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { // Try to reset FS_XFLAG_IMMUTABLE. int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) debug("reset FS_XFLAG_IMMUTABLE\n"); close(fd); continue; } } if (errno == EROFS) { debug("ignoring EROFS\n"); break; } if (errno == EBUSY) { debug("umount(%s)\n", dir); if (umount2(dir, MNT_DETACH)) exitf("umount(%s) failed", dir); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exitf("rmdir(%s) failed", dir); } } #endif #if SYZ_EXECUTOR || SYZ_FAULT_INJECTION #include #include #include #include static int inject_fault(int nth) { int fd; fd = open("/proc/thread-self/fail-nth", O_RDWR); // We treat errors here as temporal/non-critical because we see // occasional ENOENT/EACCES errors returned. It seems that fuzzer // somehow gets its hands to it. if (fd == -1) exitf("failed to open /proc/thread-self/fail-nth"); char buf[16]; sprintf(buf, "%d", nth + 1); if (write(fd, buf, strlen(buf)) != (ssize_t)strlen(buf)) exitf("failed to write /proc/thread-self/fail-nth"); return fd; } #endif #if SYZ_EXECUTOR static int fault_injected(int fail_fd) { char buf[16]; int n = read(fail_fd, buf, sizeof(buf) - 1); if (n <= 0) exitf("failed to read /proc/thread-self/fail-nth"); int res = n == 2 && buf[0] == '0' && buf[1] == '\n'; buf[0] = '0'; if (write(fail_fd, buf, 1) != 1) exitf("failed to write /proc/thread-self/fail-nth"); close(fail_fd); return res; } #endif #if SYZ_EXECUTOR || SYZ_REPEAT #include #include #include #include #include #include #include #include static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; // First, give it up to 100 ms to surrender. for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } // Now, try to abort fuse connections as they cause deadlocks, // see Documentation/filesystems/fuse.txt for details. // There is no good way to figure out the right connections // provided that the process could use unshare(CLONE_NEWNS), // so we abort all. debug("kill is not working\n"); DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { debug("failed to open %s: %d\n", abort, errno); continue; } debug("aborting fuse conn %s\n", ent->d_name); if (write(fd, abort, 1) < 0) { debug("failed to abort: %d\n", errno); } close(fd); } closedir(dir); } else { debug("failed to open /sys/fs/fuse/connections: %d\n", errno); } // Now, just wait, no other options. while (waitpid(-1, status, __WALL) != pid) { } } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_ENABLE_CGROUPS || SYZ_RESET_NET_NAMESPACE) #include #include #include #include #include #define SYZ_HAVE_SETUP_LOOP 1 static void setup_loop() { #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS setup_cgroups_loop(); #endif #if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE checkpoint_net_namespace(); #endif } #endif #if SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_RESET_NET_NAMESPACE || __NR_syz_mount_image || __NR_syz_read_part_table) #define SYZ_HAVE_RESET_LOOP 1 static void reset_loop() { #if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table char buf[64]; snprintf(buf, sizeof(buf), "/dev/loop%llu", procid); int loopfd = open(buf, O_RDWR); if (loopfd != -1) { ioctl(loopfd, LOOP_CLR_FD, 0); close(loopfd); } #endif #if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE reset_net_namespace(); #endif } #endif #if SYZ_EXECUTOR || SYZ_REPEAT #include #define SYZ_HAVE_SETUP_TEST 1 static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); #if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS setup_cgroups_test(); #endif // It's the leaf test process we want to be always killed first. write_file("/proc/self/oom_score_adj", "1000"); #if SYZ_EXECUTOR || SYZ_TUN_ENABLE // Read all remaining packets from tun to better // isolate consequently executing programs. flush_tun(); #endif } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_CLOSE_FDS #define SYZ_HAVE_CLOSE_FDS 1 static void close_fds() { #if SYZ_EXECUTOR if (!flag_enable_close_fds) return; #endif // Keeping a 9p transport pipe open will hang the proccess dead, // so close all opened file descriptors. // Also close all USB emulation descriptors to trigger exit from USB // event loop to collect coverage. int fd; for (fd = 3; fd < 30; fd++) close(fd); } #endif #if SYZ_EXECUTOR || SYZ_FAULT_INJECTION #include static void setup_fault() { static struct { const char* file; const char* val; bool fatal; } files[] = { {"/sys/kernel/debug/failslab/ignore-gfp-wait", "N", true}, // These are enabled by separate configs (e.g. CONFIG_FAIL_FUTEX) // and we did not check all of them in host.checkFaultInjection, so we ignore errors. {"/sys/kernel/debug/fail_futex/ignore-private", "N", false}, {"/sys/kernel/debug/fail_page_alloc/ignore-gfp-highmem", "N", false}, {"/sys/kernel/debug/fail_page_alloc/ignore-gfp-wait", "N", false}, {"/sys/kernel/debug/fail_page_alloc/min-order", "0", false}, }; unsigned i; for (i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].file, files[i].val)) { debug("failed to write %s: %d\n", files[i].file, errno); if (files[i].fatal) fail("failed to write %s", files[i].file); } } } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_LEAK #include #include #include #include #include #define KMEMLEAK_FILE "/sys/kernel/debug/kmemleak" static void setup_leak() { // Flush boot leaks. if (!write_file(KMEMLEAK_FILE, "scan")) fail("failed to write %s", KMEMLEAK_FILE); sleep(5); // account for MSECS_MIN_AGE if (!write_file(KMEMLEAK_FILE, "scan")) fail("failed to write %s", KMEMLEAK_FILE); if (!write_file(KMEMLEAK_FILE, "clear")) fail("failed to write %s", KMEMLEAK_FILE); } #define SYZ_HAVE_LEAK_CHECK 1 #if SYZ_EXECUTOR static void check_leaks(char** frames, int nframes) #else static void check_leaks(void) #endif { int fd = open(KMEMLEAK_FILE, O_RDWR); if (fd == -1) fail("failed to open(\"%s\")", KMEMLEAK_FILE); // KMEMLEAK has false positives. To mitigate most of them, it checksums // potentially leaked objects, and reports them only on the next scan // iff the checksum does not change. Because of that we do the following // intricate dance: // Scan, sleep, scan again. At this point we can get some leaks. // If there are leaks, we sleep and scan again, this can remove // false leaks. Then, read kmemleak again. If we get leaks now, then // hopefully these are true positives during the previous testing cycle. uint64 start = current_time_ms(); if (write(fd, "scan", 4) != 4) fail("failed to write(%s, \"scan\")", KMEMLEAK_FILE); sleep(1); // Account for MSECS_MIN_AGE // (1 second less because scanning will take at least a second). while (current_time_ms() - start < 4 * 1000) sleep(1); if (write(fd, "scan", 4) != 4) fail("failed to write(%s, \"scan\")", KMEMLEAK_FILE); static char buf[128 << 10]; ssize_t n = read(fd, buf, sizeof(buf) - 1); if (n < 0) fail("failed to read(%s)", KMEMLEAK_FILE); int nleaks = 0; if (n != 0) { sleep(1); if (write(fd, "scan", 4) != 4) fail("failed to write(%s, \"scan\")", KMEMLEAK_FILE); if (lseek(fd, 0, SEEK_SET) < 0) fail("failed to lseek(%s)", KMEMLEAK_FILE); n = read(fd, buf, sizeof(buf) - 1); if (n < 0) fail("failed to read(%s)", KMEMLEAK_FILE); buf[n] = 0; char* pos = buf; char* end = buf + n; while (pos < end) { char* next = strstr(pos + 1, "unreferenced object"); if (!next) next = end; char prev = *next; *next = 0; #if SYZ_EXECUTOR int f; for (f = 0; f < nframes; f++) { if (strstr(pos, frames[f])) break; } if (f != nframes) { *next = prev; pos = next; continue; } #endif // BUG in output should be recognized by manager. fprintf(stderr, "BUG: memory leak\n%s\n", pos); *next = prev; pos = next; nleaks++; } } if (write(fd, "clear", 5) != 5) fail("failed to write(%s, \"clear\")", KMEMLEAK_FILE); close(fd); if (nleaks) doexit(1); } #endif #if SYZ_EXECUTOR || SYZ_ENABLE_BINFMT_MISC #include #include #include #include static void setup_binfmt_misc() { if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) { debug("mount(binfmt_misc) failed: %d\n", errno); } write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:"); write_file("/proc/sys/fs/binfmt_misc/register", ":syz1:M:1:\x02::./file0:POC"); } #endif