// Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // This file is shared between executor and csource package. // Implementation of syz_kvm_setup_cpu pseudo-syscall. // See Intel Software Developer’s Manual Volume 3: System Programming Guide // for details on what happens here. #include "kvm.S.h" #include "kvm.h" #ifndef KVM_SMI #define KVM_SMI _IO(KVMIO, 0xb7) #endif #define CR0_PE 1 #define CR0_MP (1 << 1) #define CR0_EM (1 << 2) #define CR0_TS (1 << 3) #define CR0_ET (1 << 4) #define CR0_NE (1 << 5) #define CR0_WP (1 << 16) #define CR0_AM (1 << 18) #define CR0_NW (1 << 29) #define CR0_CD (1 << 30) #define CR0_PG (1 << 31) #define CR4_VME 1 #define CR4_PVI (1 << 1) #define CR4_TSD (1 << 2) #define CR4_DE (1 << 3) #define CR4_PSE (1 << 4) #define CR4_PAE (1 << 5) #define CR4_MCE (1 << 6) #define CR4_PGE (1 << 7) #define CR4_PCE (1 << 8) #define CR4_OSFXSR (1 << 8) #define CR4_OSXMMEXCPT (1 << 10) #define CR4_UMIP (1 << 11) #define CR4_VMXE (1 << 13) #define CR4_SMXE (1 << 14) #define CR4_FSGSBASE (1 << 16) #define CR4_PCIDE (1 << 17) #define CR4_OSXSAVE (1 << 18) #define CR4_SMEP (1 << 20) #define CR4_SMAP (1 << 21) #define CR4_PKE (1 << 22) #define EFER_SCE 1 #define EFER_LME (1 << 8) #define EFER_LMA (1 << 10) #define EFER_NXE (1 << 11) #define EFER_SVME (1 << 12) #define EFER_LMSLE (1 << 13) #define EFER_FFXSR (1 << 14) #define EFER_TCE (1 << 15) // 32-bit page directory entry bits #define PDE32_PRESENT 1 #define PDE32_RW (1 << 1) #define PDE32_USER (1 << 2) #define PDE32_PS (1 << 7) // 64-bit page * entry bits #define PDE64_PRESENT 1 #define PDE64_RW (1 << 1) #define PDE64_USER (1 << 2) #define PDE64_ACCESSED (1 << 5) #define PDE64_DIRTY (1 << 6) #define PDE64_PS (1 << 7) #define PDE64_G (1 << 8) struct tss16 { uint16 prev; uint16 sp0; uint16 ss0; uint16 sp1; uint16 ss1; uint16 sp2; uint16 ss2; uint16 ip; uint16 flags; uint16 ax; uint16 cx; uint16 dx; uint16 bx; uint16 sp; uint16 bp; uint16 si; uint16 di; uint16 es; uint16 cs; uint16 ss; uint16 ds; uint16 ldt; } __attribute__((packed)); struct tss32 { uint16 prev, prevh; uint32 sp0; uint16 ss0, ss0h; uint32 sp1; uint16 ss1, ss1h; uint32 sp2; uint16 ss2, ss2h; uint32 cr3; uint32 ip; uint32 flags; uint32 ax; uint32 cx; uint32 dx; uint32 bx; uint32 sp; uint32 bp; uint32 si; uint32 di; uint16 es, esh; uint16 cs, csh; uint16 ss, ssh; uint16 ds, dsh; uint16 fs, fsh; uint16 gs, gsh; uint16 ldt, ldth; uint16 trace; uint16 io_bitmap; } __attribute__((packed)); struct tss64 { uint32 reserved0; uint64 rsp[3]; uint64 reserved1; uint64 ist[7]; uint64 reserved2; uint32 reserved3; uint32 io_bitmap; } __attribute__((packed)); static void fill_segment_descriptor(uint64* dt, uint64* lt, struct kvm_segment* seg) { uint16 index = seg->selector >> 3; uint64 limit = seg->g ? seg->limit >> 12 : seg->limit; uint64 sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 | (uint64)seg->type << 40 | (uint64)seg->s << 44 | (uint64)seg->dpl << 45 | (uint64)seg->present << 47 | (limit & 0xf0000ULL) << 48 | (uint64)seg->avl << 52 | (uint64)seg->l << 53 | (uint64)seg->db << 54 | (uint64)seg->g << 55 | (seg->base & 0xff000000ULL) << 56; dt[index] = sd; lt[index] = sd; } static void fill_segment_descriptor_dword(uint64* dt, uint64* lt, struct kvm_segment* seg) { fill_segment_descriptor(dt, lt, seg); uint16 index = seg->selector >> 3; dt[index + 1] = 0; lt[index + 1] = 0; } static void setup_syscall_msrs(int cpufd, uint16 sel_cs, uint16 sel_cs_cpl3) { char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)]; memset(buf, 0, sizeof(buf)); struct kvm_msrs* msrs = (struct kvm_msrs*)buf; struct kvm_msr_entry* entries = msrs->entries; msrs->nmsrs = 5; entries[0].index = MSR_IA32_SYSENTER_CS; entries[0].data = sel_cs; entries[1].index = MSR_IA32_SYSENTER_ESP; entries[1].data = ADDR_STACK0; entries[2].index = MSR_IA32_SYSENTER_EIP; entries[2].data = ADDR_VAR_SYSEXIT; entries[3].index = MSR_IA32_STAR; entries[3].data = ((uint64)sel_cs << 32) | ((uint64)sel_cs_cpl3 << 48); entries[4].index = MSR_IA32_LSTAR; entries[4].data = ADDR_VAR_SYSRET; ioctl(cpufd, KVM_SET_MSRS, msrs); } static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem) { sregs->idt.base = guest_mem + ADDR_VAR_IDT; sregs->idt.limit = 0x1ff; uint64* idt = (uint64*)(host_mem + sregs->idt.base); int i; for (i = 0; i < 32; i++) { struct kvm_segment gate; gate.selector = i << 3; switch (i % 6) { case 0: // 16-bit interrupt gate gate.type = 6; gate.base = SEL_CS16; break; case 1: // 16-bit trap gate gate.type = 7; gate.base = SEL_CS16; break; case 2: // 16-bit task gate gate.type = 3; gate.base = SEL_TGATE16; break; case 3: // 32-bit interrupt gate gate.type = 14; gate.base = SEL_CS32; break; case 4: // 32-bit trap gate gate.type = 15; gate.base = SEL_CS32; break; case 5: // 32-bit task gate gate.type = 11; gate.base = SEL_TGATE32; break; } gate.limit = guest_mem + ADDR_VAR_USER_CODE2; // entry offset gate.present = 1; gate.dpl = 0; gate.s = 0; gate.g = 0; gate.db = 0; gate.l = 0; gate.avl = 0; fill_segment_descriptor(idt, idt, &gate); } } static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem) { sregs->idt.base = guest_mem + ADDR_VAR_IDT; sregs->idt.limit = 0x1ff; uint64* idt = (uint64*)(host_mem + sregs->idt.base); int i; for (i = 0; i < 32; i++) { struct kvm_segment gate; gate.selector = (i * 2) << 3; gate.type = (i & 1) ? 14 : 15; // interrupt or trap gate gate.base = SEL_CS64; gate.limit = guest_mem + ADDR_VAR_USER_CODE2; // entry offset gate.present = 1; gate.dpl = 0; gate.s = 0; gate.g = 0; gate.db = 0; gate.l = 0; gate.avl = 0; fill_segment_descriptor_dword(idt, idt, &gate); } } struct kvm_text { uintptr_t typ; const void* text; uintptr_t size; }; struct kvm_opt { uint64 typ; uint64 val; }; #define KVM_SETUP_PAGING (1 << 0) #define KVM_SETUP_PAE (1 << 1) #define KVM_SETUP_PROTECTED (1 << 2) #define KVM_SETUP_CPL3 (1 << 3) #define KVM_SETUP_VIRT86 (1 << 4) #define KVM_SETUP_SMM (1 << 5) #define KVM_SETUP_VM (1 << 6) // syz_kvm_setup_cpu(fd fd_kvmvm, cpufd fd_kvmcpu, usermem vma[24], text ptr[in, array[kvm_text, 1]], ntext len[text], flags flags[kvm_setup_flags], opts ptr[in, array[kvm_setup_opt, 0:2]], nopt len[opts]) static long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7) { const int vmfd = a0; const int cpufd = a1; char* const host_mem = (char*)a2; const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3; const uintptr_t text_count = a4; const uintptr_t flags = a5; const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6; uintptr_t opt_count = a7; const uintptr_t page_size = 4 << 10; const uintptr_t ioapic_page = 10; const uintptr_t guest_mem_size = 24 * page_size; const uintptr_t guest_mem = 0; (void)text_count; // fuzzer can spoof count and we need just 1 text, so ignore text_count int text_type = text_array_ptr[0].typ; const void* text = text_array_ptr[0].text; uintptr_t text_size = text_array_ptr[0].size; uintptr_t i; for (i = 0; i < guest_mem_size / page_size; i++) { struct kvm_userspace_memory_region memreg; memreg.slot = i; memreg.flags = 0; // can be KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY memreg.guest_phys_addr = guest_mem + i * page_size; if (i == ioapic_page) memreg.guest_phys_addr = 0xfec00000; memreg.memory_size = page_size; memreg.userspace_addr = (uintptr_t)host_mem + i * page_size; ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg); } // SMRAM struct kvm_userspace_memory_region memreg; memreg.slot = 1 + (1 << 16); memreg.flags = 0; memreg.guest_phys_addr = 0x30000; memreg.memory_size = 64 << 10; memreg.userspace_addr = (uintptr_t)host_mem; ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg); struct kvm_sregs sregs; if (ioctl(cpufd, KVM_GET_SREGS, &sregs)) return -1; struct kvm_regs regs; memset(®s, 0, sizeof(regs)); regs.rip = guest_mem + ADDR_TEXT; regs.rsp = ADDR_STACK0; sregs.gdt.base = guest_mem + ADDR_GDT; sregs.gdt.limit = 256 * sizeof(uint64) - 1; uint64* gdt = (uint64*)(host_mem + sregs.gdt.base); struct kvm_segment seg_ldt; seg_ldt.selector = SEL_LDT; seg_ldt.type = 2; seg_ldt.base = guest_mem + ADDR_LDT; seg_ldt.limit = 256 * sizeof(uint64) - 1; seg_ldt.present = 1; seg_ldt.dpl = 0; seg_ldt.s = 0; seg_ldt.g = 0; seg_ldt.db = 1; seg_ldt.l = 0; sregs.ldt = seg_ldt; uint64* ldt = (uint64*)(host_mem + sregs.ldt.base); struct kvm_segment seg_cs16; seg_cs16.selector = SEL_CS16; seg_cs16.type = 11; seg_cs16.base = 0; seg_cs16.limit = 0xfffff; seg_cs16.present = 1; seg_cs16.dpl = 0; seg_cs16.s = 1; seg_cs16.g = 0; seg_cs16.db = 0; seg_cs16.l = 0; struct kvm_segment seg_ds16 = seg_cs16; seg_ds16.selector = SEL_DS16; seg_ds16.type = 3; struct kvm_segment seg_cs16_cpl3 = seg_cs16; seg_cs16_cpl3.selector = SEL_CS16_CPL3; seg_cs16_cpl3.dpl = 3; struct kvm_segment seg_ds16_cpl3 = seg_ds16; seg_ds16_cpl3.selector = SEL_DS16_CPL3; seg_ds16_cpl3.dpl = 3; struct kvm_segment seg_cs32 = seg_cs16; seg_cs32.selector = SEL_CS32; seg_cs32.db = 1; struct kvm_segment seg_ds32 = seg_ds16; seg_ds32.selector = SEL_DS32; seg_ds32.db = 1; struct kvm_segment seg_cs32_cpl3 = seg_cs32; seg_cs32_cpl3.selector = SEL_CS32_CPL3; seg_cs32_cpl3.dpl = 3; struct kvm_segment seg_ds32_cpl3 = seg_ds32; seg_ds32_cpl3.selector = SEL_DS32_CPL3; seg_ds32_cpl3.dpl = 3; struct kvm_segment seg_cs64 = seg_cs16; seg_cs64.selector = SEL_CS64; seg_cs64.l = 1; struct kvm_segment seg_ds64 = seg_ds32; seg_ds64.selector = SEL_DS64; struct kvm_segment seg_cs64_cpl3 = seg_cs64; seg_cs64_cpl3.selector = SEL_CS64_CPL3; seg_cs64_cpl3.dpl = 3; struct kvm_segment seg_ds64_cpl3 = seg_ds64; seg_ds64_cpl3.selector = SEL_DS64_CPL3; seg_ds64_cpl3.dpl = 3; struct kvm_segment seg_tss32; seg_tss32.selector = SEL_TSS32; seg_tss32.type = 9; seg_tss32.base = ADDR_VAR_TSS32; seg_tss32.limit = 0x1ff; seg_tss32.present = 1; seg_tss32.dpl = 0; seg_tss32.s = 0; seg_tss32.g = 0; seg_tss32.db = 0; seg_tss32.l = 0; struct kvm_segment seg_tss32_2 = seg_tss32; seg_tss32_2.selector = SEL_TSS32_2; seg_tss32_2.base = ADDR_VAR_TSS32_2; struct kvm_segment seg_tss32_cpl3 = seg_tss32; seg_tss32_cpl3.selector = SEL_TSS32_CPL3; seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3; struct kvm_segment seg_tss32_vm86 = seg_tss32; seg_tss32_vm86.selector = SEL_TSS32_VM86; seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86; struct kvm_segment seg_tss16 = seg_tss32; seg_tss16.selector = SEL_TSS16; seg_tss16.base = ADDR_VAR_TSS16; seg_tss16.limit = 0xff; seg_tss16.type = 1; struct kvm_segment seg_tss16_2 = seg_tss16; seg_tss16_2.selector = SEL_TSS16_2; seg_tss16_2.base = ADDR_VAR_TSS16_2; seg_tss16_2.dpl = 0; struct kvm_segment seg_tss16_cpl3 = seg_tss16; seg_tss16_cpl3.selector = SEL_TSS16_CPL3; seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3; seg_tss16_cpl3.dpl = 3; struct kvm_segment seg_tss64 = seg_tss32; seg_tss64.selector = SEL_TSS64; seg_tss64.base = ADDR_VAR_TSS64; seg_tss64.limit = 0x1ff; struct kvm_segment seg_tss64_cpl3 = seg_tss64; seg_tss64_cpl3.selector = SEL_TSS64_CPL3; seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3; seg_tss64_cpl3.dpl = 3; struct kvm_segment seg_cgate16; seg_cgate16.selector = SEL_CGATE16; seg_cgate16.type = 4; seg_cgate16.base = SEL_CS16 | (2 << 16); // selector + param count seg_cgate16.limit = ADDR_VAR_USER_CODE2; // entry offset seg_cgate16.present = 1; seg_cgate16.dpl = 0; seg_cgate16.s = 0; seg_cgate16.g = 0; seg_cgate16.db = 0; seg_cgate16.l = 0; seg_cgate16.avl = 0; struct kvm_segment seg_tgate16 = seg_cgate16; seg_tgate16.selector = SEL_TGATE16; seg_tgate16.type = 3; seg_cgate16.base = SEL_TSS16_2; seg_tgate16.limit = 0; struct kvm_segment seg_cgate32 = seg_cgate16; seg_cgate32.selector = SEL_CGATE32; seg_cgate32.type = 12; seg_cgate32.base = SEL_CS32 | (2 << 16); // selector + param count struct kvm_segment seg_tgate32 = seg_cgate32; seg_tgate32.selector = SEL_TGATE32; seg_tgate32.type = 11; seg_tgate32.base = SEL_TSS32_2; seg_tgate32.limit = 0; struct kvm_segment seg_cgate64 = seg_cgate16; seg_cgate64.selector = SEL_CGATE64; seg_cgate64.type = 12; seg_cgate64.base = SEL_CS64; int kvmfd = open("/dev/kvm", O_RDWR); char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)]; memset(buf, 0, sizeof(buf)); struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf; cpuid->nent = 128; ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid); ioctl(cpufd, KVM_SET_CPUID2, cpuid); close(kvmfd); const char* text_prefix = 0; int text_prefix_size = 0; char* host_text = host_mem + ADDR_TEXT; if (text_type == 8) { if (flags & KVM_SETUP_SMM) { if (flags & KVM_SETUP_PROTECTED) { sregs.cs = seg_cs16; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16; sregs.cr0 |= CR0_PE; } else { sregs.cs.selector = 0; sregs.cs.base = 0; } *(host_mem + ADDR_TEXT) = 0xf4; // hlt for rsm host_text = host_mem + 0x8000; ioctl(cpufd, KVM_SMI, 0); } else if (flags & KVM_SETUP_VIRT86) { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; sregs.cr0 |= CR0_PE; sregs.efer |= EFER_SCE; setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3); setup_32bit_idt(&sregs, host_mem, guest_mem); if (flags & KVM_SETUP_PAGING) { uint64 pd_addr = guest_mem + ADDR_PD; uint64* pd = (uint64*)(host_mem + ADDR_PD); // A single 4MB page to cover the memory region pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS; sregs.cr3 = pd_addr; sregs.cr4 |= CR4_PSE; text_prefix = kvm_asm32_paged_vm86; text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1; } else { text_prefix = kvm_asm32_vm86; text_prefix_size = sizeof(kvm_asm32_vm86) - 1; } } else { sregs.cs.selector = 0; sregs.cs.base = 0; } } else if (text_type == 16) { if (flags & KVM_SETUP_CPL3) { sregs.cs = seg_cs16; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16; text_prefix = kvm_asm16_cpl3; text_prefix_size = sizeof(kvm_asm16_cpl3) - 1; } else { sregs.cr0 |= CR0_PE; sregs.cs = seg_cs16; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16; } } else if (text_type == 32) { sregs.cr0 |= CR0_PE; sregs.efer |= EFER_SCE; setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3); setup_32bit_idt(&sregs, host_mem, guest_mem); if (flags & KVM_SETUP_SMM) { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; *(host_mem + ADDR_TEXT) = 0xf4; // hlt for rsm host_text = host_mem + 0x8000; ioctl(cpufd, KVM_SMI, 0); } else if (flags & KVM_SETUP_PAGING) { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; uint64 pd_addr = guest_mem + ADDR_PD; uint64* pd = (uint64*)(host_mem + ADDR_PD); // A single 4MB page to cover the memory region pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS; sregs.cr3 = pd_addr; sregs.cr4 |= CR4_PSE; text_prefix = kvm_asm32_paged; text_prefix_size = sizeof(kvm_asm32_paged) - 1; } else if (flags & KVM_SETUP_CPL3) { sregs.cs = seg_cs32_cpl3; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3; } else { sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; } } else { sregs.efer |= EFER_LME | EFER_SCE; sregs.cr0 |= CR0_PE; setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3); setup_64bit_idt(&sregs, host_mem, guest_mem); sregs.cs = seg_cs32; sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32; uint64 pml4_addr = guest_mem + ADDR_PML4; uint64* pml4 = (uint64*)(host_mem + ADDR_PML4); uint64 pdpt_addr = guest_mem + ADDR_PDP; uint64* pdpt = (uint64*)(host_mem + ADDR_PDP); uint64 pd_addr = guest_mem + ADDR_PD; uint64* pd = (uint64*)(host_mem + ADDR_PD); pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr; pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr; pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS; sregs.cr3 = pml4_addr; sregs.cr4 |= CR4_PAE; if (flags & KVM_SETUP_VM) { sregs.cr0 |= CR0_NE; *((uint64*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON; *((uint64*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS; memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit, sizeof(kvm_asm64_vm_exit) - 1); *((uint64*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE; text_prefix = kvm_asm64_init_vm; text_prefix_size = sizeof(kvm_asm64_init_vm) - 1; } else if (flags & KVM_SETUP_CPL3) { text_prefix = kvm_asm64_cpl3; text_prefix_size = sizeof(kvm_asm64_cpl3) - 1; } else { text_prefix = kvm_asm64_enable_long; text_prefix_size = sizeof(kvm_asm64_enable_long) - 1; } } struct tss16 tss16; memset(&tss16, 0, sizeof(tss16)); tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16; tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0; tss16.ip = ADDR_VAR_USER_CODE2; tss16.flags = (1 << 1); tss16.cs = SEL_CS16; tss16.es = tss16.ds = tss16.ss = SEL_DS16; tss16.ldt = SEL_LDT; struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base); memcpy(tss16_addr, &tss16, sizeof(tss16)); memset(&tss16, 0, sizeof(tss16)); tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16; tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0; tss16.ip = ADDR_VAR_USER_CODE2; tss16.flags = (1 << 1); tss16.cs = SEL_CS16_CPL3; tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3; tss16.ldt = SEL_LDT; struct tss16* tss16_cpl3_addr = (struct tss16*)(host_mem + seg_tss16_cpl3.base); memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16)); struct tss32 tss32; memset(&tss32, 0, sizeof(tss32)); tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32; tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0; tss32.ip = ADDR_VAR_USER_CODE; tss32.flags = (1 << 1) | (1 << 17); tss32.ldt = SEL_LDT; tss32.cr3 = sregs.cr3; tss32.io_bitmap = offsetof(struct tss32, io_bitmap); struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base); memcpy(tss32_addr, &tss32, sizeof(tss32)); memset(&tss32, 0, sizeof(tss32)); tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32; tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0; tss32.ip = ADDR_VAR_USER_CODE; tss32.flags = (1 << 1); tss32.cr3 = sregs.cr3; tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32; tss32.cs = SEL_CS32; tss32.ldt = SEL_LDT; tss32.cr3 = sregs.cr3; tss32.io_bitmap = offsetof(struct tss32, io_bitmap); struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base); memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32)); struct tss64 tss64; memset(&tss64, 0, sizeof(tss64)); tss64.rsp[0] = ADDR_STACK0; tss64.rsp[1] = ADDR_STACK0; tss64.rsp[2] = ADDR_STACK0; tss64.io_bitmap = offsetof(struct tss64, io_bitmap); struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base); memcpy(tss64_addr, &tss64, sizeof(tss64)); memset(&tss64, 0, sizeof(tss64)); tss64.rsp[0] = ADDR_STACK0; tss64.rsp[1] = ADDR_STACK0; tss64.rsp[2] = ADDR_STACK0; tss64.io_bitmap = offsetof(struct tss64, io_bitmap); struct tss64* tss64_cpl3_addr = (struct tss64*)(host_mem + seg_tss64_cpl3.base); memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64)); if (text_size > 1000) text_size = 1000; if (text_prefix) { memcpy(host_text, text_prefix, text_prefix_size); // Replace 0xbadc0de in LJMP with offset of a next instruction. void* patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4); if (patch) *((uint32*)patch) = guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6; uint16 magic = PREFIX_SIZE; patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic)); if (patch) *((uint16*)patch) = guest_mem + ADDR_TEXT + text_prefix_size; } memcpy((void*)(host_text + text_prefix_size), text, text_size); *(host_text + text_prefix_size + text_size) = 0xf4; // hlt memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size); *(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4; // hlt *(host_mem + ADDR_VAR_HLT) = 0xf4; // hlt memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3); memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3); *(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0; *(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0; if (opt_count > 2) opt_count = 2; for (i = 0; i < opt_count; i++) { uint64 typ = opt_array_ptr[i].typ; uint64 val = opt_array_ptr[i].val; switch (typ % 9) { case 0: sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM | CR0_NW | CR0_CD); break; case 1: sregs.cr4 ^= val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE | CR4_PCE | CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE | CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE | CR4_OSXSAVE | CR4_SMEP | CR4_SMAP | CR4_PKE); break; case 2: sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE | EFER_FFXSR | EFER_TCE); break; case 3: val &= ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) | (1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21)); regs.rflags ^= val; tss16_addr->flags ^= val; tss16_cpl3_addr->flags ^= val; tss32_addr->flags ^= val; tss32_cpl3_addr->flags ^= val; break; case 4: seg_cs16.type = val & 0xf; seg_cs32.type = val & 0xf; seg_cs64.type = val & 0xf; break; case 5: seg_cs16_cpl3.type = val & 0xf; seg_cs32_cpl3.type = val & 0xf; seg_cs64_cpl3.type = val & 0xf; break; case 6: seg_ds16.type = val & 0xf; seg_ds32.type = val & 0xf; seg_ds64.type = val & 0xf; break; case 7: seg_ds16_cpl3.type = val & 0xf; seg_ds32_cpl3.type = val & 0xf; seg_ds64_cpl3.type = val & 0xf; break; case 8: *(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff); *(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16); break; default: fail("bad kvm setup opt"); } } regs.rflags |= 2; // bit 1 is always set fill_segment_descriptor(gdt, ldt, &seg_ldt); fill_segment_descriptor(gdt, ldt, &seg_cs16); fill_segment_descriptor(gdt, ldt, &seg_ds16); fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3); fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3); fill_segment_descriptor(gdt, ldt, &seg_cs32); fill_segment_descriptor(gdt, ldt, &seg_ds32); fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3); fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3); fill_segment_descriptor(gdt, ldt, &seg_cs64); fill_segment_descriptor(gdt, ldt, &seg_ds64); fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3); fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3); fill_segment_descriptor(gdt, ldt, &seg_tss32); fill_segment_descriptor(gdt, ldt, &seg_tss32_2); fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3); fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86); fill_segment_descriptor(gdt, ldt, &seg_tss16); fill_segment_descriptor(gdt, ldt, &seg_tss16_2); fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3); fill_segment_descriptor_dword(gdt, ldt, &seg_tss64); fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3); fill_segment_descriptor(gdt, ldt, &seg_cgate16); fill_segment_descriptor(gdt, ldt, &seg_tgate16); fill_segment_descriptor(gdt, ldt, &seg_cgate32); fill_segment_descriptor(gdt, ldt, &seg_tgate32); fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64); if (ioctl(cpufd, KVM_SET_SREGS, &sregs)) return -1; if (ioctl(cpufd, KVM_SET_REGS, ®s)) return -1; return 0; }